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Abstract

In 2002, J. Díaz, M. Serna and the author published “A Survey of Graph
Layout Problems”, which then was a complete view of the current state of
the art of layout problems from an algorithmic point of view. The current
review expands the contents of the original survey with updated results from
these latest ten years and contributes an extensive bibliography.

1 Introduction

Graph layout problems are a particular class of combinatorial optimization prob-
lems whose goal is to find a linear layout of an input graph in such way that a
certain objective cost is optimized. In [Díaz et al., 2002], Maria Serna, Josep Díaz
and me presented a survey that considered their motivation, complexity, approx-
imation properties, upper and lower bounds, heuristics and probabilistic analysis
on random graphs. The result was a complete view of the current state of the art
with respect to layout problems from an algorithmic point of view.

In the occasion of Professor Josep Díaz’s 60th birthday, a conference on Trends
in Theoretical Computer Science was organized [Àlvarez et al., 2011]. Besides
celebrating his birthday, the purpose of the conference was to bring together re-
searchers to discuss various aspects of Theoretical Computer Science. As invited
speaker, I opted to take the opportunity to revisit layout problems —the topic of
my thesis and one of the favorites themes of Professor Díaz.

Indeed, after ten years, I found worthwhile to perform an exhaustive search
on the newer literature on the topic and, consequently, to update the results in
the survey. I was also curious to know whether major results in heuristics for the
Minimum Linear Arrangement problem had appeared. Furthermore, the current
status of the open problems stated in the original survey intrigued me.

The result of this search is synthesised in these addenda to the survey. In par-
ticular, the following topics are covered: new NP-completeness results, new poly-
nomial time solvable graph classes, new fixed parametrized complexity results,
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new approximability results, and new practical results on the Minimum Linear
Arrangement problem. It does not cover: new application domains, new results
on random graphs, other variants of layout problems.

2 Layout problems

For the sake of completeness, we start with the definition of several graph lay-
out problems and associated concepts. This enables us to treat different layout
problems using a unique framework.

Linear layouts. A linear layout, or simply a layout, of an undirected graph
G = (V, E) with n = |V | vertices is a bijective function ϕ : V → [n] = {1, . . . , n}.
A layout has also been called a linear ordering [Adolphson et al., 1973], a lin-

ear arrangement [Shiloach, 1979], a numbering [Chinn et al., 1982] or a label-

ing [Juvan et al., 1992] of the vertices of a graph. We denote by Φ(G) the set of
all layouts of a graph G.

Given a layout ϕ of a graph G = (V, E), its reversed layout is denoted ϕR and
is defined by ϕR(u) = |V | − ϕ(u) + 1 for all u ∈ V .

Layout measures. Given a layout ϕ of a graph G = (V, E) and an integer i,
define the set L(i, ϕ,G) = {u ∈ V | ϕ(u) ≤ i} and the set R(i, ϕ,G) = {u ∈ V |
ϕ(u) > i}. The edge cut at position i of ϕ is defined as

θ(i, ϕ,G) = |{uv ∈ E | u ∈ L(i, ϕ,G) ∧ v ∈ R(i, ϕ,G)}|

and the modified edge cut at position i of ϕ as

ζ(i, ϕ,G) = |{uv ∈ E | u ∈ L(i, ϕ,G) ∧ v ∈ R(i, ϕ,G) ∧ ϕ(u) , i}|.

The vertex cut or separation at position i of ϕ is defined as

δ(i, ϕ,G) = |{u ∈ L(i, ϕ,G) | ∃v ∈ R(i, ϕ,G) : uv ∈ E}|.

Given a layout ϕ of G and an edge uv ∈ E, the length of uv on ϕ is

λ(uv, ϕ,G) = |ϕ(u) − ϕ(v)|.

These measures are summarized in Table 1.
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Table 1: Layout measures for a layout ϕ of a graph G = (V, E).

L(i, ϕ,G) = {u ∈ V | ϕ(u) ≤ i}.
R(i, ϕ,G) = {u ∈ V | ϕ(u) > i}.

θ(i, ϕ,G) = |{uv ∈ E | u ∈ L(i, ϕ,G) ∧ v ∈ R(i, ϕ,G)}|.
ζ(i, ϕ,G) = |{uv ∈ E | u ∈ L(i, ϕ,G) ∧ v ∈ R(i, ϕ,G) ∧ ϕ(u) , i}|.
δ(i, ϕ,G) = |{u ∈ L(i, ϕ,G) | ∃v ∈ R(i, ϕ,G) : uv ∈ E}|.
λ(uv, ϕ,G) = |ϕ(u) − ϕ(v)|, uv ∈ E.

Table 2: Layout problems and costs for a graph G = (V, E) with |V | = n.

Problem Name Cost

Bandwidth Bandwidth bw(ϕ,G) = maxuv∈E λ(uv, ϕ,G).

Min. Lin. Arrangement MinLA la(ϕ,G) =















∑

uv∈E λ(uv, ϕ,G),
∑n

i=1 θ(i, ϕ,G).

Cutwidth Cutwidth cw(ϕ,G) = maxn
i=1 θ(i, ϕ,G).

Modified Cut ModCut mc(ϕ,G) =
∑n

i=1 ζ(i, ϕ,G).

Vertex Separation VertSep vs(ϕ,G) = maxn
i=1 δ(i, ϕ,G).

Pathwidth Pathwidth pw(ϕ,G) = vs(ϕ,G).

Sum Cut SumCut sc(ϕ,G) =
∑n

i=1 δ(i, ϕ,G).

Profile Profile pr(ϕ,G) =















∑

u∈V(ϕ(u) −minv∈Γ∗(u) ϕ(v)),

sc(ϕR,G).

Edge Bisection EdgeBis eb(ϕ,G) = θ(⌊n/2⌋ , ϕ,G).

Vertex Bisection VertBis vb(ϕ,G) = δ(⌊n/2⌋ , ϕ,G).
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(a) G = (V, E).

θ(i, ϕ, G) = 6

ζ(i, ϕ,G) = 4δ(i, ϕ,G) = 3

L(i, ϕ,G) R(i, ϕ,G)

λ(gi, ϕ,G) = 5

a ch g b d ef i

1 2 3 i = 4 5 6 7 8 9

(b) Graphical representation of ϕ. Dividing the layout
at i = 4, left vertices are shown in light yellow, right
vertices in dark green, cut edges and separator vertices
are bold.

Figure 1: A graph G together with some layout measures and a graphical represen-
tation of the layout ϕ = {(a, 1), (b, 5), (c, 3), (d, 7), (e, 8), ( f , 6), (g, 4), ( j, 9), (h, 2)}.

Graphical representation. A common way to represent a layout ϕ of a graph G

is to align its vertices on a horizontal line, mapping each vertex u to position ϕ(u),
as shown in Figure 1. This graphical representation gives an easy understanding
of the previously defined measures: By drawing a vertical line just after position
i and before position i + 1, the vertices at the left of the line belong to L(i, ϕ,G)
and the vertices at the right of the line belong to R(i, ϕ,G). It is easy to compute
the cut θ(i, ϕ,G) by counting the number of edges that cross the vertical line. The
modified cut ζ(i, ϕ,G) counts all the edges in θ(i, ϕ,G) except those that have
vertex ϕ−1(i) as endpoint. It is also easy to compute the separation δ(i, ϕ,G) by
counting the number of vertices at the left of the vertical line that are joined with
some vertex at the right of the vertical line. Finally, the length λ(uv, ϕ,G) of an
edge uv corresponds to the natural distance between its endpoint images.

Layout costs. A layout cost is a function F that associates to each layout ϕ of
a graph G an integer F(ϕ,G). Let F be a layout cost; the optimization layout
problem associated with F consists in determining some layout ϕ∗ ∈ Φ(G) of an
input graph G such that

F(ϕ∗,G) = min
ϕ∈Φ(G)

F(ϕ,G).

For any F and G, we define minF(G) = minϕ∈Φ(G) F(ϕ,G).
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Layout problems. The particular costs we consider are listed below, together
with the layout problems they give raise to:

• Bandwidth (Bandwidth): Given a graph G = (V, E), find a layout ϕ∗ ∈ Φ(G)
such that bw(ϕ∗,G) = minbw(G) where

bw(ϕ,G) = max
uv∈E
λ(uv, ϕ,G).

• Minimum Linear Arrangement (MinLA): Given a graph G = (V, E), find a
layout ϕ∗ ∈ Φ(G) such that la(ϕ∗,G) = minla(G) where

la(ϕ,G) =
∑

uv∈E

λ(uv, ϕ,G) =
n

∑

i=1

θ(i, ϕ,G).

• Cutwidth (Cutwidth): Given a graph G = (V, E), find a layout ϕ∗ ∈ Φ(G)
such that cw(ϕ∗,G) = mincw(G) where

cw(ϕ,G) = max
i∈[|V |]
θ(i, ϕ,G).

• Modified Cut (ModCut): Given a graph G = (V, E), find a layout ϕ∗ ∈ Φ(G)
such that mc(ϕ∗,G) = minmc(G) where

mc(ϕ,G) =
∑

i∈[|V |]
ζ(i, ϕ,G).

• Vertex Separation or Pathwidth (VertSep/Pathwidth): Given a graph G =

(V, E), find a layout ϕ∗ ∈ Φ(G) such that vs(ϕ∗,G) = minvs(G) where

vs(ϕ,G) = max
i∈[|V |]
δ(i, ϕ,G).

• Sum Cut (SumCut): Given a graph G = (V, E), find a layout ϕ∗ ∈ Φ(G) such
that sc(ϕ∗,G) = minsc(G) where

sc(ϕ,G) =
∑

i∈[|V |]
δ(i, ϕ,G).

• Profile (Profile): Given a graph G = (V, E), find a layout ϕ∗ ∈ Φ(G) such
that pr(ϕ∗,G) = minpr(G) where

pr(ϕ,G) =
∑

u∈V

(

ϕ(u) − min
v∈Γ∗(u)

ϕ(v)

)

and Γ∗(u) = {u} ∪ {v ∈ V | uv ∈ E}.

The Profile and SumCut problems are equivalent.
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• Edge Bisection (EdgeBis): Given a graph G = (V, E), find a layout ϕ∗ ∈
Φ(G) such that eb(ϕ∗,G) = mineb(G) where

eb(ϕ,G) = θ(
⌊

1
2 |V |

⌋

, ϕ,G).

• Vertex Bisection (VertBis): Given a graph G = (V, E), find a layout ϕ∗ ∈
Φ(G) such that vb(ϕ∗,G) = minvb(G) where

vb(ϕ,G) = δ(
⌊

1
2 |V |

⌋

, ϕ,G).

Although the Edge Bisection and Vertex Bisection problems are not strictly
layout problems, they fit well in our framework for layout problems.

The definitions of the previous problems are summarized in Table 2.

3 Results

The results of addenda are mainly organized as entries in the following tables. In
order to distinguish the new results, their respective entries are marked with a little
star (⋆) in the tables. Because some results have been published first in conference
proceedings and then in journals, table entries are sorted topologically, rather than
strictly chronologically.
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Table 3: Complexity results

bw in general [Papadimitriou, 1976]
for trees with maximum degree 3 [Garey et al., 1978]
for caterpillars with hair-length ≤ 3 [Monien, 1986]
for caterpillars with ≤ 1 hair per backbone vertex [Monien, 1986]
for cyclic caterpillars [Muradyan, 1999]
⋆ for cyclic caterpillars with hair length 1 [Muradian, 2003]
for grid graphs and unit disk graphs [Díaz et al., 2001]

la in general [Garey et al., 1976]
for bipartite graphs [Even et al., 1975]
⋆ for interval graphs [Cohen et al., 2006]
⋆ for permutation graphs [Cohen et al., 2006]

cw in general [Gavril, 1977]
for graphs with maximum degree 3 [Makedon et al., 1985]
for planar graphs with maximum degree 3 [Monien et al., 1988]
for grid graphs and unit disk graphs [Díaz et al., 2001]
⋆ for split graphs and chordal graphs [Heggernes et al., 2008]

mc for planar graphs with maximum degree 3 [Monien et al., 1988]

pw in general [Lengauer, 1981]
for planar graphs with maximum degree 3 [Monien et al., 1988]
for ⋆ starlike and chordal graphs [Gustedt, 1993]
for bipartite graphs [Goldberg et al., 1995]
for grid graphs and unit disk graphs [Díaz et al., 2001]
⋆ for split graphs [Gustedt, 1993]

sc in general [Díaz et al., 1991]
[Lin et al., 1994b]
[Golovach, 1997]

for cobipartite graphs [Yuan et al., 1998]
⋆ for split graphs [Peng et al., 2006]

eb in general [Garey et al., 1976]
for graphs with maximum degree 3 [MacGregor, 1978]
for graphs with bounded maximum degree [MacGregor, 1978]
for d-regular graphs [Bui et al., 1987]
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Table 4: Graphs optimally solvable in polynomial time I

bw caterpillars with hair-length ≤ 2 O(n log n) [Assman et al., 1981]
hypercubes O(n log n) [Harper, 1966]
⋆ hypercubes [Wang et al., 2009]
butterflies O(n log n) [Lai, 1997]
interval graphs O(n∆2 log∆) [Muradyan, 1986]
interval graphs O(n log n) [Mahesh et al., 1991]
interval graphs O(n log n) [Sprague, 1994]
chain graphs O(n2 log n) [Kloks et al., 1998]
complete k-level t-ary tree O(n) [Heckmann et al., 1998]
⋆ rectangular grids O(1) [FitzGerald, 1974]
⋆ cubic grids O(1) [FitzGerald, 1974]
square grids O(n) [Mai et al., 1984]
⋆ toroidal meshes O(1) [Paterson et al., 1993]
⋆ unit interval graphs O(n) [Jinjiang et al., 1995]
⋆ 3-dimensional grids O(1) *[Otachi et al., 2011]

la trees O(n3) [Goldberg et al., 1976]
rooted trees O(n log n) [Adolphson et al., 1973]
trees O(n2.2) [Shiloach, 1979]
trees O(nlog 3/ log 2) [Chung, 1988]
rectangular grids O(n) [Muradyan et al., 1980]
square grids O(n) [Mitchison et al., 1986]
2-dimensional cylinder O(n) [Muradyan, 1982]
hypercubes O(n) [Harper, 1964]
de Bruijn graph of order 4 O(n) [Harper, 1970]
d-dimensional c-ary cliques O(n) [Ellis et al., 1964]
complete p-partite graphs O(n + p log p) [Muradyan et al., 1988]
⋆ proper interval graphs O(n) [Safro, 2002]
⋆ certain Halin graphs O(n) [Easton et al., 1996]
⋆ Outerplanar graphs O(δ2n + n2) [Frederickson et al., 1988]
⋆ unit interval graphs O(n) [Jinjiang et al., 1995]
⋆ chord graphs O(n log n) [Rostami et al., 2008]

sc trees O(n2.3) [Lepin, 1986]
trees O(n) [Díaz et al., 1991]
trees O(n1.722) [Kuo et al., 1994]
interval graphs ? [Lin et al., 1994a]
⋆ unit interval graphs O(n) [Jinjiang et al., 1995]
⋆ d-trapezoid and permutation graphs O(nd) [Bodlaender et al., 1998]
square grids O(n) [Díaz et al., 2000]
⋆ cographs O(n) [Fomin et al., 2000]
⋆ primitive starlike graphs pol(n) [Peng et al., 2006]
⋆ unit interval graphs O(n) [Jinjiang et al., 1995]
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Table 5: Graphs optimally solvable in polynomial time II

cw trees O(n log∆−2 n) [Chung et al., 1982]
trees O(n log n) [Yannakakis, 1985]
hypercubes O(n) [Harper, 1964]
d-dimensional c-ary cliques O(n) [Nakano, 1994]

max degree ≤ ∆ and treewidth ≤ k O(n∆k2
) [Thilikos et al., 2001]

ordinary 2- and 3-dim. meshes O(n2) [Rolim et al., 1995]
toroidal and cylindrical 2-dim. meshes O(n2) [Rolim et al., 1995]
toroidal 3-dim. meshes O(n2) [Rolim et al., 1995]
complete p-partite graphs O(n + p log p) [Muradyan et al., 1988]
⋆ complete binary trees O(n) [Lengauer, 1982]
⋆ abelian Cayley graphs O(1) [Berend et al., 2008]
⋆ de Bruijn graphs ? [Raspaud et al., 1995]
⋆ bounded degree partial w-tree nO(wd) [Thilikos et al., 2005b]
⋆ threshols graphs O(n) [Heggernes et al., 2008]
⋆ bipartite permutation graphs O(n) [Heggernes et al., 2010]
⋆ unit interval graphs O(n) [Jinjiang et al., 1995]

pw trees O(n log n) [Ellis et al., 1979]
trees O(n) [Skodinis, 2000]
cographs O(n) [Bodlaender et al., 1993]
permutation graphs O(n2) [Bodlaender et al., 1995b]
n-dimensional grids O(n2) [Bollobás et al., 1991]
⋆ bounded degree partial w-tree nO(wd) [Thilikos et al., 2005b]
⋆ unicyclic graphs O(n) [Ellis et al., 2004]
⋆ 2-dimensional grids, cylinders, tori O(n) [Ellis et al., 2008]
⋆ 3-dimensional grids O(1) [Otachi et al., 2011]*
⋆ k-starlike, split, primitive starlike graphs [Peng et al., 2000]
⋆ trapezoid and permutation graphs O(n2) [Bodlaender et al., 1998]
⋆ biconvex bipartite graphs O(n) [Peng et al., 2007]
⋆ circular-arc graphs O(n) [Suchan et al., 2007]
⋆ cographs O(n) [Bodlaender et al., 1993]
⋆ comparability graphs of interval orders O(n) [Garbe, 1995]
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Table 6: Graphs optimally solvable in polynomial time III

mc ⋆ unit interval graphs O(n) [Jinjiang et al., 1995]

eb trees O(n3) [MacGregor, 1978]
hypercubes O(n) [Nakano, 1994]
d-dimensional c-ary arrays O(n) [Nakano, 1994]
d-dimensional c-ary cliques O(n) [Nakano, 1994]
ordinary 2- and 3-dim. meshes O(n2) [Rolim et al., 1995]
toroidal and cylindrical 2-dim. meshes O(n2) [Rolim et al., 1995]
toroidal 3-dim. meshes O(n2) [Rolim et al., 1995]
grid graphs O(n5) [Papadimitriou et al., 1996]
treewidth ≤ k O(n2) [Soumyanath et al., 1990]
cube-connected cycles graphs O(n) [Manabe et al., 1984]
⋆ Abelian Cayley graphs ? [Berend et al., 2008]

Table 7: Fixed parameterized complexity results

Bandwidth(2) O(n) [Garey et al., 1978]
Bandwidth(k) O(nk+1) [Saxe, 1980]
Bandwidth(k) O(nk) [Gurari et al., 1984]
Bandwidth(k) W[k] [Bodlaender et al., 1994]

Cutwidth(2) O(n) [Garey et al., 1978]
Cutwidth(k) O(nk) [Gurari et al., 1984]
Cutwidth(k) O(nk−1) [Makedon et al., 1989]
Cutwidth(k) O(n2) [Fellows et al., 1992]
⋆ Cutwidth(k) O(n) [Thilikos et al., 2005a]

ModCut(k) O(n2) [Fellows et al., 1992]

⋆SumCut(k) FPT [Gutin et al., 2006b]

Pathwidth(k) O(n2) [Fellows et al., 1988]
Pathwidth(k) O(n) [Bodlaender, 1996]

MinLA(n + k) O(m + n + 5.88k) [Gutin et al., 2006a]
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Table 8: Approximability results I

bw 3-appr for δ-dense graphs nO(1/δ) [Karpinski et al., 1997]
2-appr for AT-free graphs O(n3) [Kloks et al., 1999]
O(log n)-appr for caterpillars O(n2) [Haralambides et al., 1991]
O(log n)-appr for GHB-trees O(n2) [Haralambides et al., 1997]
rnd O(log4.5 n)-appr O(m(lg4 n lg lg n) [Feige, 2000]

rnd O(log3 n
√

log log n)-appr pol(n) [Dunagan et al., 2001]
rnd O(

√
n/bw(G) log n)-appr pol(n) [Blum et al., 2000]

rnd O(log2.5 n)-approx. for trees pol(n) [Gupta, 2001]
and for chordal graphs

no PTAS — [Blache et al., 1998]
no PTAS for trees — [Blache et al., 1998]
no APX — [Unger, 1998]
⋆ no APX for caterpillars — [Dubey et al., 2011]

pw O(log2 n)-appr pol(n) [Bodlaender et al., 1995a]
O(log n)-appr for planar graphs pol(n) [Bodlaender et al., 1995a]
⋆ O(log1.5 n)-appr ? [Feige et al., 2005]
⋆ 3-appr for outerplanar graphs O(n) [Govindan et al., 1998]
⋆ 3-appr for Halin graphs O(n) [Fomin et al., 2006]
⋆ not appr within an additive constant — [Bodlaender et al., 1995a]
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Table 9: Approximability results II

la PTAS for dense graphs nO(1/ǫ2) [Arora et al., 1996]
O(log2 n)-appr pol(n) [Hansen, 1989]
O(log2 n)-appr pol(n) [Leighton et al., 1999]
O(log n log log n)-appr pol(n) [Even et al., 2000]
O(log n)-appr pol(n) [Rao et al., 1998]

⋆ O(
√

log n log log n)-appr pol(n) [Charikar et al., 2006]
[Feige et al., 2007]

O(log log n)-appr for planar graphs pol(n) [Rao et al., 1998]
⋆ 4-appr for interval graphs pol(n) [Safro, 2002]
⋆ 2-appr for interval graphs pol(n) [Cohen et al., 2006]
⋆ no APX under Unique Games Conjecture — [Devanur et al., 2006]
⋆ no APX if NP-C is not in rnd. sub-exp time — [Ambuhl et al., 2007]

cw PTAS for dense graphs nO(1/ǫ2) [Arora et al., 1996]
O(log2 n)-appr pol(n) [Leighton et al., 1999]

sc ⋆ O(log2 n)-appr pol(n) [Ravi et al., 1991]
O(log n log log n)-appr pol(n) [Even et al., 2000]
⋆ O(log n)-appr for planar graphs pol(n) [Even et al., 2000]
O(log n)-appr pol(n) [Rao et al., 1998]
O(log log n)-appr for planar graphs pol(n) [Rao et al., 1998]

eb PTAS for dense graphs f (n, ǫ) [Frieze et al., 1996]
O(log2 n)-appr pol(n) [Feige et al., 2006]
O(log1.5 n)-appr pol(n) [Kao, 2008]
O(log n)-appr for planar graph pol(n) [Feige et al., 2006]
⋆ no APX if NP-C not in rnd. sub-exp time — [Khot, 2006]
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airfoil1 crack

Figure 2: Sample graphs from the MinLA test suite

4 Practical results for minla

After having reviewed theoretical results on several layout problems, we turn now
to practical results for the Minimum Linear Arrangement problem. We first dis-
cuss heuristic methods to get upper bounds, then we consider lower bounds.

Upper bounds. A first comparison of various heuristics for the MinLA prob-
lem was reported in [Petit, 1998, Petit, 2003]. This work stablished a test suite
of graphs that has become an standard benchmark for this problem. Figure 2
illustrates some of these graphs. The algorithms considered included Succes-
sive Augmentation heuristics, Local Search heuristics and Spectral Sequencing.
[Petit, 1998] concluded that the best approximations are usually obtained using
Simulated Annealing, which involves a large amount of computation time wheras
solutions found with Spectral Sequencing are close to the ones found with Simu-
lated Annealing and can be obtained in significantly less time. Taken these consid-
erations into account, [Petit, 2000] combined Spectral Sequencing and Simulated
Annealing in a parallel setting to improve both time and solution quality.

The work of [Koren et al., 2002] presented a novel algorithm based on the
multi-scale paradigm. Its results are on a par to those of Simulated Annealing, but
the running time is significantly faster. Consequently it can be applied to larger
graphs (ten thousands of vertices).

In [Poranen, 2005], a Genetic Hillclimbing algorithm is presented and anal-
ized on the same test suite. The solutions delivered by Genetic Hillclimbing im-
prove those delivered by Simulated Annealing in quality and runtime in some
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Heuristic Reference airfoil1 gd95c gd96c c1y

SS+SA [Petit, 2003] 288977 506 519 63858
Genetic [Poranen, 2005] 306005 506 519 64610
Multi-scale [Koren et al., 2002] 291794 509 519 64934
Memetic [Rodriguez-Tello et al., 2006] 285429 506 519 62333
Multi-level [Safro et al., 2006] 272931 506 519 66262
2stage-SA [Rodriguez-Tello et al., 2008] 276381 506 519 62230

Table 10: MinLA upper bounds computed by several heuristics on different
graphs.

graphs, but not in others. Similarly, in [Rodriguez-Tello et al., 2006], a Memetic
algorithm was presented. This algorithm uses a greedy algorithm to generate an
initial population, a fine tuned Simulated Annealing algorithm, and a specialized
crossover operator. The solutions obtained with this Memetic algorithm are better
than those obtained with the Genetic Hillclimbing.

A major improvement on heuristics for MinLA was [Safro et al., 2006], which
presented a Multi-level algorithm with weighted edge contraction. This method
generates better results in less time and, again, even larger graphs can be consid-
ered.

The Two-Stage Simulated Annealing in [Rodriguez-Tello et al., 2008] integrates
an heuristic to generate good quality initial solutions, a discriminating evaluation function,
a special neighborhood space and an effective cooling schedule. This heuristic can be
considered the current MinLA champion, improving several of the previous best results.

Table 10 tries to summarize the above results for a minimalistic benchmark made of
four graphs.

Lower bounds. A comparison of various simple lower bounds was also provided
in [Petit, 2003]. These included the Degree and Edge methods (both based on the local
connectivity of each vertex), the Gomory-Hu tree method (based on fundamental cuts),
and the Mesh method (aimed to get lower bounds for graphs arising from finite element
methods). The results made evident the existence of a a big gap between the best obtained
upper bounds and the best obtained lower bounds.

In [Caprara et al., 2011], so called Decorous lower bounds were presented. These
are based on a linear-programming approach, with variables representing distances and
an exponential number of constraints. For the smallest grahs in the test suite, the lower
bounds stablish gaps of 5–20% with respect to the state-of-the-art heuristics.

A further improvement was obtained in [Schwarz, 2010], which presents a novel ap-
proach based on a branch-and-cut algorithm using so called betweenness variables. Cou-
pled with the upper bounds found by various heuristics, this method stablishes the opti-



 !" #$%%"&'( )* &!" +, -.

 ! 

Graph best UB [Petit, 2003] [Caprara et al., 2011] [Schwarz, 2010]

c1y 62230 14101 59971
c2y 78757 17842 76253
gd95c 506 292 443 506

gd96a 95263 5155 76253
gd96b 1416 702 1281 1416

gd96c 519 241 402 519

gd96d 2393 595 2021 2391

Table 11: MinLA lower bounds computed by several methods on different graphs.

mality of some linear arrangements for the smallest graphs in the test suite (the have less
than 120 vertices) and shows the high quality of the heuristics in medium sized graphs
(arround 1000 vertices).

Table 11 gives a feeling on the lower bounds obtained with the above techniques and
how they compare with the best upper bounds.

5 Conclusions

This paper extended the survey in [Díaz et al., 2002] with new results that have appeared
in the literature up to the present.

Some of the new theoretical results show how the thin line that defines the hardness
of some layout problems is being drawn more and more precisely. This can clearly be
observed in the case of the Bandwidth problem: researchers have identified many par-
ticular classes of graphs where this problem remains NP-complete, or can be efficiently
solved or cannot be approximated. Likewise, many similar results have been obtained in
the latest ten years on the VertSep problem, mainly because of its equivalence with the
Pathwidth problem, which has received a great interest due to its relation with the graph
minors theory.

With regard to the experimental results for the MinLA problem, one can remark that
the current research on lower bounding techniques based on linear programming is very
promising, having stablished in some cases that heuristics yield solutions close to the
optima. This may suggest that further development of heuristics for this problem is not
worth, wheras the current lower bounding methods should be improved to be applied to
larger graphs.

Regarding the open problems stated in the concluding remarks of the 2002 original
survey, I could not find any reference tackling them.
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