
 !""#$%& '($)# *+,-. &' /012 334 //56/702 89$':#; <0//

©9
*!;'3#=& +>>'9%=$%'& ('; ,)#';#$%9=" -'?3!$#; .9%#&9#

T D C C



P F

Department of Computer Science, University of Crete

P.O. Box 2208 GR-714 09 Heraklion, Crete, Greece

and

Institute of Computer Science (ICS)

Foundation for Research and Technology (FORTH)

N. Plastira 100. Vassilika Vouton

GR-700 13 Heraklion, Crete, Greece

faturu@csd.uoc.gr

P-CM C

M

Lisa Higham∗ Jalal Kawash† Abhijeet Pareek‡

Abstract

A framework for modelling memory consistency is presented. The frame-

work is used to specify the operation of a total-store-order write buffer mul-

tiprocessor machine. The framework is used again to specify a more abstract

“programmer-centric” model that does not refer to the write-buffer architec-

ture. Finally, we prove that the abstract model correctly captures the com-

putations of the operational model. A mutual exclusion algorithm is used

∗University of Calgary, higam@ucalgary.ca
†University of Calgary, jkawash@ucalgary.ca
‡University of Calgary, apareek@ucalgary.ca

 !" #$%%"&'()* &!" +, -.

 !

to illustrate the advantage of the programmer-centric memory consistency

models and the impact on program correctness of instruction reordering re-

sulting from hardware and software optimizations.

1 Introduction

Researchers in theoretical computer science who design algorithms for asynchro-

nous multiprocessor systems typically assume that the system is sequentially con-

sistent. This means, in Lamport’s words, that “the result of any execution is the

same as if the operations of all the processors were executed in some sequential

order, and the operations of each individual processor appear in this sequence in

the order specified by its program.”[12]

Modern multiprocess systems however do not provide this guarantee. Multi-

core machines, grid configurations, and in general any distributed processing sys-

tem that uses multiple processors typically uses complex memory and communi-

cation structures to enhance performance. These may include write-buffering with

read by-passing, multi-level caching, distributed shared address spaces, and mul-

tiple and hierarchical buses. A consequence of these enhancements is complicated

memory behavior, which results in outcomes that are not sequentially consistent.

Programs designed for sequentially consistent systems will need additional syn-

chronization to remain correct on these machines, which produce executions with

weaker guarantees than sequential consistency.

A multiprocessor computer that associates a write-buffer with each processor

provides a simple example. Figure 1 illustrates a write-buffer architecture for 2

processors. The main memory is single ported with a non-deterministic switch

providing one memory access at a time. When a processor performs a write it

stores the write in the write-buffer and then proceeds with its program. The write-

buffer is responsible for committing pending writes to main memory. When a

read is issued by a processor, the processor’s associated write-buffer is checked

for pending writes to the same location. If there is any such write, the value “to

be written” by the most recent such write to that location is returned. In this case,

the read completes without accessing main memory. Otherwise, the read accesses

main memory and returns the value of the location in main memory. Because each

channel between a processor and an individual main memory location is FIFO, a

write that has left the buffer and is still on its way to main memory, cannot be

bypassed by a read of the same location by the same processor that is issued later

than the write.

There are several variants of this basic architecture depending on additional

assumptions. In this paper, we make two assumptions, which correspond to the

 total-store-order machine [19, 20]. (1) Reads are blocking, meaning that a

 !"#$% &' ()* !" "# $% $&'()*%

 !"

��
��

p1

6 A
AAU

��
��

p2

6

read-hit

A
AAU

write invocation
read invocation

Write

Buffer

t

Write

Buffer

twrite
read-miss

read response

Main Memory

S
SSo

switch

Figure 1: Write-Buffer Architecture (for 2 processors)

read blocks the processor from issuing further instructions until the read completes

by returning a value. (2) The buffer is emptied in FIFO order.

Adding write-buffers improves the overall multiprocessor performance by hid-

ing write latencies and improving processor-level parallelism. However, it com-

plicates reasoning about concurrent (parallel or multi-threaded) programs, and

ensuring the correctness of such program becomes more challenging.

For a simple example, consider Peterson’s two-process mutual exclusion al-

gorithm [17], reproduced in Algorithm 1. This algorithm is known to be correct

for sequentially consistent systems.

Now imagine that the two processes in Algorithm 4 run concurrently at ap-

proximately the same speed on separate processors of a total-store-order machine.

For each process ι ∈ {0, 1}, ι issues the write to flag[ι] (line 1), which is sent to ι’s

write-buffer, and then issues its write of ῑ to turn (line 2), which is also sent to ι’s

write-buffer. Thus, each process ι could perform the test loop at line 3 before ῑ’s

write-buffer commits the write of flag[ῑ] to main memory. So each ι ∈ {0, 1} will

read false for flag[ῑ] and hence both processes enter the critical section simultane-

ously breaking the safety property.

In fact, it is impossible to solve mutual exclusion on a total-store-order ma-

chine with only reads and writes of variables [6, 11]. That is, more powerful

synchronization primitives must be used in order to ensure the correctness of Pe-

terson’s algorithm on . In Section 4, we show how to do this using barrier

instructions, the function of which is to enforce additional orderings on the exe-

cution of reads and writes.

This example illustrates a simple case of a pervasive phenomenon: textbook

correctness, which assumes sequential consistency is not enough. Additional syn-

 !" #$%%"&'()* &!" +, -.

 !

Algorithm 1: Peterson’s two-process mutual exclusion algorithm

Shared variables:

flag [0 . . . 1] ∈ {true, false}, initialized to false

turn ∈ {0, 1}

Program for process ι (ι ∈ {0, 1}, and ῑ = 1 − ι)

entry:

1 flag [ι]← true

2 turn ← ῑ

3 while flag [ῑ] and turn = ῑ do nothing

〈 Critical Section 〉

exit:

4 flag [ι]← false

chronization is necessary to ensure correctness on real systems. But, since addi-

tional synchronization incurs a huge performance hit, programmers strive to add

only the necessary synchronization, rather than sprinkling it “everywhere”. To do

this, programmers need to understand exactly what computations can arise from

their programs when run on a particular multiprocessor or multicore machine.

Asking programmers to reason in terms of the lower level operations of each par-

ticular machine, however, seems unreasonable. For example, in the case of the

total-store-order machine, reasoning about when writes enter and leave the write-

buffer, and whether reads return from the buffer or from main memory, is com-

plicated and error prone. Instead, we advocate for a what we call a programmer-

centric specification of the computations that can arise from a given program on a

given machine. By this we mean a description in terms of the instructions used by

the programmer. It does not refer to the low level events imposed by the hardware

when it executes these instructions. Programmers have a simple abstraction that

captures the outcome of any computation on a sequentially consistent system. We

aim for a similarly abstract and intuitive model for any machine. That is, our ap-

proach specifies a weak memory model as a natural generalization of sequential

consistency. This approach uses enough formalism to provide precision, concise-

ness, and to ensure no ambiguities. Nevertheless, it is accessible to professional

system programmers since the mathematical underpinnings are straightforward.

Finally, the framework used for our programmer-centric specifications is flexible:

it can be used to specify machines and systems at various levels of abstraction.

 !"#$% &' ()* !" "# $% $&'()*%

 !!

Proving the equivalence of an operational description of a machine and its more

abstract programmer-centric model is facilitated by expressing both in the same

framework.

Our framework is presented in in Section 2.

In Section 3 we apply our framework and our proof techniques to the total-

store order machine. First we convert the informal description above into an op-

erational specification in terms of our framework. Then we give a correspond-

ing non-operational programmer-centric specification also using the framework.

Of course, any such specification needs to be proved correct, meaning that any

outcome of a program that could happen when the program is run on the total-

store-order machine is included in the set of outcomes of the programmer-centric

specification for the same program. In this paper we give a complete proof of

this. The result is a generalization of an earlier proof [5] but it is extended and

restructured using logic diagrams to achieve the proof obligations.

Imagine a machine where all shared memory is accessed by a single switch

through which each process must queue. There is only one bus, and there is no

replicated memory such as in local caches or write-buffers. In such a machine, if

each process issues one instruction at a time in the order specified by its program,

the outcome would be sequentially consistent. It is well known that even in this

setting, however, instruction reorderings can arise from compiler optimizations or

CPU speculative execution, read pre-fetching, and pipelining. These reorderings

are independent of the interconnection hardware between the processors and the

shared memory. Such reorderings are safe in a uniprocessor environment because

they cannot alter the correctness of a sequential program; they are not safe in a

concurrent environment. Figure 2 reproduces a classic simple example [4].

Process 1 Process 2

1) A = 1 B = 1

2) x = B y = A

Figure 2: Instruction reordering example [4]

Under sequential consistency, when both processes have terminated, the val-

ues assigned to x and y at line 2 cannot both be the initial values. At least one of x

or y must be assigned the value 1. A CPU, however might reorder the instructions

at line 2 before the writes on line 1 because they are to different locations, and

in a uniprocessor environment such a reordering could not change the program

outcome. In that case both x and y could be assigned the values 0, thus violating

sequential consistency.

Our framework (Section 2) and our total-store order machine running exam-

ple (Section 3) allow for such possible reorderings that are due to components

 !" #$%%"&'()* &!" +, -.

 !"

outside of the shared memory system. So, if we are provided with the possible

reorderings due to components such as CPUs or compilers, and with the memory

system architecture, we can construct a programmer-centric specification of what

computations can arise when a given programs runs on that system.

To illustrate the impact of the combination of a total-store-order memory sys-

tem combined with some CUP reorderings, Section 4 revisits Peterson’s mutual

exclusion algorithm before making some concluding observations.

Our work on write-buffer architectures originally appeared in [5], which as-

sumed that processors issue instructions in the order they appear in their pro-

grams. In this paper, we relax this assumption, capturing compiler and processor

instruction-reordering optimizations. Our model and proofs are revised and our

proofs are presented in a new diagrammatic notation, which we introduced in a

paper that is under review [3] and is concerned with memory consistency models

arising from distributed-shared memory in message-passing systems.

2 Framework for specifying memory consistency

We say that a multiprocess system M has weak memory consistency if there are

programs for M that can produce executions that are not sequentially consistent. A

memory consistency model for M provides a way for the programmer to determine

what executions of a given multiprocess program can arise when it is run on M.

This section briefly presents our framework for specifying memory consis-

tency models and a general methodology for establishing that an abstract model

correctly captures a concrete architecture. Our framework has been developed

and used in previous work [5, 7, 8, 3]. It also benefited from numerous previous

papers in the area of memory consistency modelling (for example, [1, 2, 10, 12]).

2.1 Specifying weak memory consistency systems

The literature contains many descriptions of various memory consistency mod-

els. These range from informal English descriptions to formal mathematical ones.

Steinke and Nutt [18] provide references to several memory consistency models

and provide a unified way to define them. Our framework is close to theirs.

Frameworks for specifying concurrent systems are diverse — the most com-

mon are based on process algebras and automata theory. Communicating Se-

quential Processes (CSP) [9] and the Calculus of Communicating Systems (CCS)

[15] are classic examples of process algebras. They start with a basic set of pro-

cesses, then combine them into larger systems using various algebraic operators.

In the Input-Output Automata (IOA) language [14], processes are specified as au-

tomata that communicate by action synchronization. Actions in IOA are automata

 !"#$% &' ()* !" "# $% $&'()*%

 !"

transitions that can arbitrarily modify local state. They are specified in an imper-

ative language that is essentially pseudocode, making IOA especially useful for

reasoning about algorithms written in imperative programming languages. The

Temporal Logic of Actions, TLA [13], specifies automata using a mathematical

language. It avoids programming languages, making it attractive to hardware de-

signers. TLA also provides many tools for reasoning about automata in general,

and can be used with IOA [16].

Framework:

We model a multiprocess system as a collection of shared objects V , a collection

of processes P that access private objects and the objects in V , and a memory

consistency model that defines exactly what computations can arise when the pro-

cesses in P all run asynchronously while operating on V . (Our framework is also

applicable to message-passing systems, but this is beyond the scope of this paper.)

A shared object is defined by a sequential specification [10] which determines

the set of valid sequences of operations for each such object. This can be done

by providing an object’s initial state, the operations that can be applied to it and

the change of state and response that results from each applicable operation, or

by directly defining the set of sequences. For example, shared variables, which

are the most common objects in this paper are specified as follows. A (shared)

variable, x, is the set of sequences over operations of the type x.(·) and

x.() that satisfy: The output value returned by each x.() operation

is the same as the input value written by the most recent preceding x.(·)

operation in the sequence, if such an x.(·) exists, and is ⊥ otherwise.

An arbitrary sequence of operations applied to object x is valid for x if and only

if it is in the specification of x. An arbitrary sequence S of operations (applied to

possibly several objects) is valid if and only if, for each object x, the subsequence

of S consisting of exactly those operations applied to x is valid for x.

We model an individual (computer) process as a sequential program, which

generates a sequence of operation invocations. A (completed) operation is an op-

eration invocation together with its response. The order of operations invocations

that is dictated by the flow control of the program is called program order.

A multiprogram is a collection of individual processes. A computation of the

multiprogram is formed by arbitrarily completing each operation invocation, in

each individual process sequence of invocations, with a response. Thus, a com-

putation is a collection of sequences of operations — one sequence, in program

order, for each process in the multiprogram. Program order on operation invo-

cations is naturally extended to define program order on the set of completed

operations of a computation. We denote this unrestricted set of computations of a

multiprogram P by C (P). The subset of C (P) that could actually result from the

 !" #$%%"&'()* &!" +, -.

 !"

execution of the multiprogram depends upon the system’s architecture. A memory

consistency model is a predicate defined on the set of all possible computations of

a multiprogram; it filters these computations to include only those that could arise

on the architecture being modeled. The subset of C (P) that satisfies the memory

consistency predicate, MC, is denoted C(MC, P).

We use the following notation, terminology and conventions for the remain-

der of this paper. For a computation C of a multiprogram P, OC denotes all the

operations of C. A completed operation  with input u that returns a value v

is denoted
(u)

v
. For a set of operations O, O| denotes the subset of all op-

erations with type matching . For example, O| denotes the subset of all

 operations. The program order relation on OC, denoted
prog C

−−−−→, is the partial

order formed by the union of the individual process program orders. For all these

notations we omit the subscript C when it is obvious. Given a total order on a

finite set, there is only one sequence of all the elements of the set that realizes that

total order. Therefore, we sometimes overload the term total order for a finite set

A: it refers to either the set of ordered pairs (A,
T
−→) in the order, or the sequence,

which we denote by T , that realizes that total order.

Using this framework, the predicate for sequential consistency, SC becomes:

Definition 2.1. SC[C]
def

= ∃ valid total order (OC,
L
−→) satisfying

(OC,
prog
−−−→) ⊆ (OC,

L
−→).

In Section 3, we will see that there is a programmer-centric definition of the

total-store-order machine that is a natural relaxation of sequential consistency as

defined above.

2.2 Proving correctness of a memory consistency predicate

Given an architecture, called the target model, and a programmer-centric specifi-

cation, called the specified model, for the memory consistency of that architecture,

we need to prove that the specification is correct. That is, we need to prove that

the abstract memory consistency predicate captures exactly the computations that

can arise on the corresponding architecture. We now describe the general set-up

for such proofs.

The transformation of the programmers’ code to machine events converts each

specified operation into a subroutine of operations on target components. The

transformations of each instruction in the code, when concatenated in program

order, induce a natural transformation of the entire specified multiprogram to

a target multiprogram. To prove that the programmer-centric memory consis-

tency predicate is correct, we must show the possible computations of these two

multiprograms that can arise from their respective memory consistency models,

have the same “outcome”. We make this precise as follows. Let τ(P) denote a

transformation of multiprogram P. The possible computations of multiprogram

P (respectively, τ(P)) on the specified (respectively, target) memory consistent

model MCModel (respectively, MCArch) is the set C(P,MCModel) (respectively,

C(τ(P),MCArch)). But τ(P) transforms specified operation invocations that re-

quire a response into subroutines that return a response. So these returned re-

sponses can be used to interpret each computation in C(τ(P),MCArch) as a com-

putation of P. We need to show that each such interpreted computation could have

arisen in the specified model. That is, we must show that the interpretation of any

computation in C(τ(P),MCArch) is in C(P,MCModel). If this is satisfied for any P,

we say that τ(·) correctly implements MCModel on MCArch. Figure 3 depicts this

proof obligation. If, in addition, for every computation C ∈ C(P,MCModel), there

Figure 3: Proof obligation

is a computation Ĉ in C(τ(P),MCArch) such that the interpretation of Ĉ is C, then

we say that τ(·) exactly implements MCModel on MCArch. For clarity,  

font is used to denote specification level operations; teletype is used to denote

target level operations. To emphasize that a component belongs to the target level,

its name is sometimes annotated with a “hat” as in n̂ame.

The memory consistency definitions in Section 3 are relatively simple. They

require that for every computation there is a single valid sequence of all its op-

erations that preserve some subset of program order. Thus, they are relaxations

of SC, which requires all of program order to be preserved. Such a sequence

is called a witness that C satisfies the memory consistency predicate MC, and is

informally referred to as a witness sequence. More formally, we use the predi-

cate Witness[S ,C,MC] to assert that the sequence S witnesses that C satisfies MC.

For architectures other than the total-store-order machine used in this paper, the

memory consistency predicate may require the existence of a collection of valid

sequences each of which extends some partial order together with some agreement

properties between these sequences. The natural extension of these definitions to

the more general case then applies.

 !" #$%%"&'()* &!" +, -.

 !"

Let P be a specified program and τ(P) be a transformation of that program.

The proofs are generally structured into three steps:

Assume: Ĉ ∈ C(τ(P),MCArch). Let C ∈ C (P) be the interpretation of Ĉ.

Build: Choose a sequence Ŝ such that Witness[Ŝ , Ĉ,MCArch]. Use Ŝ to construct

a corresponding sequence S for the operations in C.

Verify: Show that Witness[S ,C,MCModel].

The Verify step is typically long and requires several lemmas.

3 Memory Consistency of total-store-order systems

This section first constructs an operational specification of the total-store-order

machine. Then we provide a programmer-centric specification and finally give

the proof that the operational specification correctly implements the programmer-

centric model.

This section uses work that appeared in an earlier paper [5], but differs in sev-

eral ways. That paper modeled the total-store-order write-buffer machine only

when the processes issue instructions in program order. Here we extend this to a

model that is parametrized by an arbitrary partial order that reflects only what is

guaranteed by the issue order. Thus the programmer-centric model of the total-

store order machine captures the combined effects of CPU reordering and com-

piler optimizations together with the weakened guarantees due to the memory

structure that uses write-buffers. In addition, the models and the proof in this

section are revised and the diagrammatic form of the proofs is new.

3.1 Operational specification of a total-store-order system

The introduction of this paper includes an informal description of how the total-

store-order write-buffer operates. In addition to the reordering caused by the

write-buffers, CPU and compiler optimizations often reorder, overlap and pipeline

operations, causing a process to invoke its operations in an order different from

program order. We use our framework to formalize a total-store-order memory

system that also allows such out of order invocations, by defining the objects, the

processes and the memory consistency predicate of the system.

Let P be a multiprogram that operates on a set of shared variables V . To em-

phasize that, for this application of the framework, we are working at an assemble

level on a -like multiprocessor, for the rest of this paper we use  instead

of  and  instead of  for the shared variable operations used by the

programmer.

 !"#$% &' ()* !" "# $% $&'()*%

 !"

Objects The objects used by the total-store-order machine are write-buffers and

shared memory represented as follows. For each variable x in V there is a cor-

responding main memory variable x̂ in a set called V̂ . To emphasize that the

operations are on the shared memory of the target total-store-order machine, 

and  are renamed mread and mwrite respectively. For each processor p in

P there is a corresponding list object L̂p that contains a list of ordered pairs of the

form (x̂, val) where x̂ ∈ V̂ and val is a value. L̂p supports the three operations:

L̂p.append(x̂,val) that appends the pair (x̂, val) to L̂p,

L̂p.delete(x̂,val) that removes the pair (x̂, val) from L̂p, and

L̂p.last(x̂) that returns the value component (i.e. second component) of the lat-

est pair in L̂p that has x̂ as its first component, if such a pair exists, and ⊥

otherwise.

The set of objects in the system is: V̂ ∪
⋃

p∈P{L̂p}.

A sequence of append, delete and last operations on a list L̂ is valid if the

value returned by each last is the one given by the operational definition above.

Processes The processes in our system arise from replacing each  and each

 operation invocation in P with the transformation τ defined in Algorithms 2

and 3 to yield the transformed multiprogram τ(P).

Algorithm 2: τ(x.p())

1 val ← L̂p.last(x̂)

2 if val = ⊥ then val ← x̂.mread()

3 return val

Algorithm 3: τ(x.p(val))

1 L̂p.append(x̂,val)

2 L̂p.delete(x̂,val)

3 x̂.mwrite(val)

Memory Consistency The invocation of  and  instructions may be

out of order due to compiler or CPU reorderings. This will cause a corresponding

relaxation of the order of the last and append operations in the target system. In

addition, the total-store-order write-buffer architecture may cause the delete and

mwrite operations of any  to be delayed. In spite of reordering due to either

cause, some ordering properties of the operations are ensured.

• When a  or  is invoked, the corresponding τ() or τ()

operations will be executed in program order (though not necessarily con-

tiguously).

 !" #$%%"&'()* &!" +, -.

 !"

• The last and append operations will execute in the order in which the

corresponding  and  operations are invoked.

• Each process’ mwrite operations occur in the same order as its correspond-

ing append operations because each buffer empties in FIFO order.

• When a  is invoked, the invoking process completes all of τ() be-

fore continuing with another invocation, because each  is blocking.

We formulate our memory consistency predicate by formalizing these guaran-

tees of the system. Let (O,
R
−→) denote the subset of (O,

prog
−−−→) that is guaranteed to

be maintained by the order in which  and  instructions are invoked even

after the reorderings due to compiler and/or CPU reorderings. Let Ô be the set of

all the operations of a computation Ĉ of τ(P). Define parent(̂oi) to be o if ôi

is in the program τ(o). Consider any two operations ô1, ô2 ∈ Ô and let o1, o2 ∈ O

such that o1 = parent(̂o1) and o2 = parent(̂o2). Define the following partial

orders on Ô.

matching-ops: (̂o1 ,̂o2) ∈ (Ô,
match
−−−−→) if and only if o1 = o2 and ô1 precedes ô2 in

τ(o1).

buffer-ops: (̂o1 ,̂o2) ∈ (Ô,
buff
−−→) if and only if (o1,o2) ∈ (O,

R
−→) and ô1, ô2 ∈ Ô|append∪last.

fifo-writes: (̂o1 ,̂o2) ∈ (Ô,
fifo
−−→) if and only if (o1,o2) ∈ (O,

R
−→) and ô1 ,̂o2 ∈ Ô |mwrite.

blocking-loads: (̂o1 ,̂o2) ∈ (Ô,
block
−−−→) if and only if (o1,o2) ∈ (O,

R
−→) and ô1 ∈ Ô|mread∪last.

tso-ops: (̂o1 ,̂o2) ∈ (Ô,
tso
−−→) if and only if

(̂o1 ,̂o2) ∈ (Ô,{
match
−−−−→ ∪

buff
−−→ ∪

fifo
−−→ ∪

block
−−−→}+).

We can now define the predicate that captures the computations of a total-

store-order machine when the  and  instructions are invoked in any order

that extends the subset of program order given by (O,
R
−→).

Definition 3.1. TSOArch(
R
−→)[Ĉ]

def

= ∃ a valid total order (ÔĈ,
TSOArch
−−−−−−→) satisfying

(ÔĈ,
tso
−−→) ⊆ (ÔĈ,

TSOArch
−−−−−−→).

3.2 Programmer-centric specification of a system

Again we define a system by specifying its objects, processes and memory consis-

tency predicate, but this time without reference to the write-buffer hardware and

its operations.

 !"#$% &' ()* !" "# $% $&'()*%

 !"

Objects The objects are a set V of shared variables, and arbitrary private objects.

Each shared variable supports the  operation, denoted , and the 

operation, denoted .

Processes Processes are programs that apply operations to their private objects

and the shared variables in V .

Memory Consistency Let O be the set of all the operations of a computation C

of P where the shared variables are V . A  operation by process p is domestic if

the value it returns was ed by p. Otherwise it is foreign. Define the following

partial orders on O as a function of a partial order (O,
R
−→), which is any fixed subset

of (O,
prog
−−−→).

same-object: (o1,o2) ∈ (O,
s.o
−−→) if and only if (o1,o2) ∈ (O |x,

R
−→) for some x ∈ V .

preceding-foreign-load: (o1,o2) ∈ (O,
p.f.l
−−→) if and only if (o1,o2) ∈ (O,

R
−→) and o1

is a foreign load.

following-store: (o1,o2) ∈ (O,
f.s
−→) if and only if (o1,o2) ∈ (O,

R
−→) and o2 ∈ O|.

TSO-abstract: (o1,o2) ∈ (O,
TSO
−−−→) if and only if (o1,o2) ∈ (O, {

s.o
−−→ ∪

p.f.l
−−→ ∪

f.s
−→}+).

Define the abstract memory consistency predicate:

Definition 3.2. TSOModel(R)[C]
def

= ∃ a valid total order (OC,
TSOModel
−−−−−−−→) satisfying

(OC,
TSO
−−−→) ⊆ (OC,

TSOModel
−−−−−−−→).

3.3 Equivalence of the total-store-order architecture and our

abstract model

In this subsection we prove that for any computation of τ(P) on the total-store-

order write-buffer architecture parametrized by any partial order subset of pro-

gram order (that is, one that satisfies predicate TSOArch(
R
−→)), its interpretation as

a computation of P satisfies TSOModel(
R
−→)).

Theorem 3.3. Algorithms 2 and 3 together correctly implement TSOModel(
R
−→) on

TSOArch(
R
−→) for any (O,

R
−→) ⊆ (O,

prog
−−−→).

 !" #$%%"&'()* &!" +, -.

 !

Proof. Assume-TSO: Suppose Ĉ ∈ C(τ(P), TSOArch(
R
−→)). Let C ∈ C (P) be the

interpretation of Ĉ.

Build-TSO: Choose a sequence Ŝ such that Witness[Ŝ , Ĉ, TSOArch(
R
−→)]. Con-

struct S from Ŝ as follows:

Ŝ a: Discard: Discard all last
⊥

, append and delete operations.

Ŝ b: Reorder: For every mwrite operation ô, move all the last
v

operations that

return the value written by ô, to immediately after ô while maintaining the

relative order that these last
v

operations had in Ŝ .

S : Lift: Replace every x.mwrite(v) with a x.(v) . Replace every
x.mread()

v

and
x.last()

v
by a

x.()

v
.

Verify-TSO: We need to show that Witness[S ,C, TSOModel(
R
−→)]. From the

construction it is clear that S contains exactly the operations in OC. From the

definition of TSOModel(
R
−→), the proof is completed as follows:

Proof Obligation Lemma

S is valid. 3.4

S extends (OC,
p.f.l
−−→). 3.5

S extends (OC,
f.s
−→). 3.6

S extends (OC,
s.o
−−→). 3.7

�

Both τ(x.p()) (Algorithm 2) and τ(x.p(val)) (Algorithm 3) invoke

operations on both the list Lp of process p, and (possibly, in the case of ) on a

shared memory variable. In the following proofs, it is convenient to use the term

buffer-op() (respectively, memory-op()) to refer to the operation on the list

object (respectively, the shared variable) in either τ(x.p()) or τ(x.p(val)).

Also, we distinguish the case that τ(x.p()) returns at line 1 or line 2 of Algo-

rithm 2 by refering to the first as a - and the second as a -.

Lemma 3.4. The sequence S as defined in the Build-TSO step of Theorem 3.3 is

valid.

Proof. Since Ŝ is valid, and no mwrite or mread is moved in the construction

of Ŝ b from Ŝ , all memory-op()s are valid in Ŝ b. In the Lift step, each mwrite is

renamed  and each mread is renamed without changing any parameters,

so these remain valid in S . In the Reorder step of Build-TSO each last that

returned a non-⊥ value is moved to immediately after the mwrite operation whose

value it returns. So, when renamed as a  operation, it becomes valid in S . �

 !"#$% &' ()* !" "# $% $&'()*%

 !"

Lemma 3.5. The sequence S as defined in the Build-TSO step of Theorem 3.3

satisfies: S extends (O,
p.f.l
−−→).

Proof. Consider arbitrary operations o1, o2 where (o1, o2) ∈ (O,
p.f.l
−−→). By def-

inition of the preceding foreign load partial order, if (o1, o2) ∈ (O,
p.f.l
−−→) then

(o1, o2) ∈ (O,
R
−→).

Case 1 - o2 is a - or a  operation:

Thus, 
1
p

o2
R

τ

=⇒
last1p

⊥
mread1p buffer-op(o2) memory-op(o2)

match block match

TSOArch
=⇒ mread1p buffer-op(o2) memory-op(o2)

Ŝ Ŝ

Build-TSO
=⇒ 

1
p

o2
S

Case 2 - o2 is a -:

=⇒ 
1
p 

2
p

R

τ

=⇒
last1p

⊥
mread1p

last2p

v

match block

Let the  operation that writes the value returned by 2p’s last op-

eration be ∗p. Let (Ô,
val
−−→) denote the partial order that dictates such order-

ings which are crucial for the validity of the transformed program. Naturally, if

ô1

val
−−→ ô2 then ô1

Ŝ
−→ ô2.

τ

=⇒
last1p

⊥
mread1p

last2p

v

delete∗pappend∗p mwrite∗p

match

match

block

val

val

match

TSOArch
=⇒ mread1p

last2p

v
mwrite∗p

Ŝ Ŝ

Build-TSO
=⇒ mread1p mwrite∗p

last2p

v

Ŝ b Ŝ b

Build-TSO
=⇒ 

1
p 

2
p

S

�

Lemma 3.6. The sequence S as constructed as defined in the Build-TSO step of

Theorem 3.3 satisfies: S extends (O,
f.s
−→).

 !" #$%%"&'()* &!" +, -.

 !!

Proof. Consider arbitrary operations o1, o2 where (o1, o2) ∈ (O,
f.s
−→). By definition

of the following store partial order, if (o1, o2) ∈ (O,
f.s
−→) then (o1, o2) ∈ (O,

R
−→).

Case 1 - o1 is a -: Since a - operation behaves exacltly

like a foreign  operation, the proof from Lemma 3.5 applies, and it follows

that o1

S
−→ o2.

Case 2 - o1 is a -:

=⇒ 
1
p 

2
p

R

τ

=⇒
last1p

v
append2p mwrite2p

block match

Let the  operation that writes the value returned by 1p’s last opera-

tion be ∗p. So then, ∗p is the most recent store to object x before 1p

and ∗p
R
−→ 1p

R
−→ 2p holds.

τ

=⇒
last1p

v

delete∗pappend∗p mwrite∗p

append2p mwrite2p
match

match match

block

val fifo

val

TSOArch
=⇒

last1p

v
mwrite∗p mwrite2p

Ŝ Ŝ

Build-TSO
=⇒

mwrite∗p
last1p

v
mwrite2p

Ŝ b Ŝ b

Build-TSO
=⇒ 

1
p 

2
p

S

Case 3 - o1 is a :

Thus, 
1
p 

2
p

R

τ

=⇒ append1i mwrite1i append2i mwrite2i
match

fifo

match

TSOArch
=⇒ mwrite1p mwrite2p

Ŝ

Build-TSO
=⇒ 

1
p 

2
p

S

�

Lemma 3.7. The sequence S as defined in the Build-TSO step of Theorem 3.3

satisfies: S extends (O,
s.o
−−→).

Proof. Consider arbitrary operations o1, o2 where (o1, o2) ∈ (O,
s.o
−−→). By defini-

tion of the same object partial order, if (o1, o2) ∈ (O,
s.o
−−→) then (o1, o2) ∈ (O,

R
−→).

 !"#$% &' ()* !" "# $% $&'()*%

 !"

Let x be the object that operations o1 and o2 are acting upon.

Case 1 - o1 is a -: Since a - operation behaves exacltly

like a foreign  operation, from Lemma 3.5, it follows that o1

S
−→ o2.

Case 2 - o2 is a : Then, from Lemma 3.6, it follows that o1

S
−→ o2.

Case 3 - o1 is a - and o2 is a -:

=⇒ 
1
p 

2
p

R

τ

=⇒
last1p

v

last2p

⊥
mread2p

block match

Let the  operation that writes the value returned by 1p’s last opera-

tion be ∗p. So then, ∗p is the most recent store to object x before 1p

and ∗p
R
−→ 1p

R
−→ 2p holds. Since 

∗
p and 

2
p are both acting on

the same object and 2p’s last operation returned ⊥, it follows that the o1’s


∗
p operation is flushed to main memory before 2p’s last operation.

τ

=⇒
last1p

v

last2p

⊥
mread2p

delete∗pappend∗p mwrite∗p
match match

val

val

match

val

TSOArch
=⇒

last1p

v
mwrite∗p

last2p

⊥
mread2p

Ŝ Ŝ Ŝ

Build-TSO
=⇒

mwrite∗p
last1p

v

last2p

⊥
mread2p

Ŝ b Ŝ b Ŝ b

Build-TSO
=⇒ 

1
p 

2
p

S

Case 4 - o1,o2 are both -:

=⇒ 
1
p 

2
p

R

τ

=⇒
last1p

v

last2p

v

buff

Let 1p and 2p be the  operations that writes the value returned

by 1p and 
2
p’s last operation, respectively. So then, 

1
p and 

2
p are

the most recent stores to object x before 1p and 2p, respectively. Clearly,


1
p

R
−→ 2p holds.

 !" #$%%"&'()* &!" +, -.

 !"

τ

=⇒
last1p

v

delete1pappend1p mwrite1p

last2p

v

delete2pappend2p mwrite2p

match match

val

val

match match

val
val

fifo
buff

TSOArch
=⇒

last1p

v
mwrite1p mwrite2p

last2p

v

Ŝ Ŝ

Ŝ

Build-TSO
=⇒ mwrite1p

last1p

v
mwrite2p

last2p

v

Ŝ b Ŝ b Ŝ b

Build-TSO
=⇒ 

1
p 

2
p

S

Case 5 - o1 is a  operation and o2 is a -:

=⇒ 
1
p 

2
p

R

τ

=⇒ append1p mwrite1p
last2p

⊥
mread2p

match

buff

match

Since o1 and o2 are both acting on the same object and o2’s last operation

returned ⊥, it follows that the o1’s mwrite operation is flushed to main memory

τ

=⇒ append1p mwrite1p
last2p

⊥
mread2p

match val match

TSOArch
=⇒ mwrite1p mread2p

Ŝ

Build-TSO
=⇒ 

1
p 

2
p

S

Case 6 - o1 is a  operation and o2 is a -:

=⇒ 
1
p 

2
p

R

τ

=⇒ append1p mwrite1p
last2p

v

match

buff

Let x be the object that operations o1 and o2 are acting upon. Let the 

operation that writes the value returned by o2’s last operation be o∗. So then, if

 !"#$% &' ()* !" "# $% $&'()*%

 !"

o∗ , o1 then o∗ is the most recent store to object x before o2 and o1

R
−→ o∗ holds.

τ

=⇒ append1p mwrite1p
last2p

v

delete∗pappend∗p mwrite∗p
match match

val

val

match

fifo

TSOArch
=⇒ mwrite1p mwrite∗p

last2p

v

Ŝ

Ŝ

Build-TSO
=⇒ mwrite1p mwrite∗p

last2p

v

Ŝ b Ŝ b

Build-TSO
=⇒ 

1
p 

2
p

S

�

We do not present the other direction: that every computation C that satisfies

TSOModel(
R
−→) is the interpretation of a computation that satisfies TSOArch(

R
−→). In

fact this also holds. The proof of this for the case when (O,
R
−→) = (O,

prog
−−−→) has

been previously published [5]. The extension to (O,
R
−→) ⊆ (O,

prog
−−−→) is straightfor-

ward and similar to the extension in the other direction in this paper. Combining

both gives the theorem:

Theorem 3.8. Algorithms 2 and 3 together exactly implement TSOModel(
R
−→) on

TSOArch(
R
−→) for any (O,

R
−→) ⊆ (O,

prog
−−−→).

4 Impact of relaxing program order

The partial order (O,
R
−→) used as a parameter in the predicate TSOModel(

R
−→) de-

rived in Section3, can be an arbitrary subset of program order. But because it is

meant to capture the subset of (O,
prog
−−−→) that is guaranteed by a real machine, pro-

cessor, or compiler, there are some natural instantiations of (O,
R
−→) that are worth

defining and investigating further.

The CPU and compiler optimizations that weaken (O,
prog
−−−→) to (O,

R
−→) must,

nevertheless, ensure that when a process runs by itself, the responses returned by

the actual order of invocations are the same as responses that would be returned

when the process executes sequentially invoking one operation after another in

program order. This is called processor-self-consistency, meaning that a process

may execute out of program order but all control dependencies and location de-

pendencies are honored. Processor-self-consistency seems to be the minimum

guarantee of what arises after reordering due to compilers or CPUs since otherwise

even the computation of a single thread in isolation would be too unpredictable.

Define the partial orders:

control-dependence: (o1,o2) ∈ (O,
c.d
−−→) if and only if (o1,o2) ∈ (O,

prog
−−−→) and exe-

cution of o2 is control dependent on o1.

processor-self-consistency-order: (o1,o2) ∈ (O,
psc
−−→) if and only if

(o1,o2) ∈ (O, {
c.d
−−→ ∪

s.o
−−→}+).

At the other extreme, program order seems to be the strongest possible guar-

antee in any purely asynchronous system.

Intermediate ordering guarantees can be imposed by barrier synchronization

instructions, as shown in Figure 4. When inserted into a program, a barrier fur-

Figure 4: Issue order variants

ther restricts the order in which  and  instructions are completed. The

SPARC version 9 architecture introduced four basic barriers and its instruction set

includes all combinations. An a-b-barrier, where a, b ∈ {, }, ensures that

 !"#$% &' ()* !" "# $% $&'()*%

 !"

for any operations o1 of type a and o2 of type b, if o1

prog
−−−→ a-b-barrier

prog
−−−→ o2,

then o1 precedes o2 in the total order guaranteed by TSOM(
R
−→), for any partial

order
R
−→.

To illustrate the difference between TSOM(
prog
−−−→) and TSOM(

psc
−−→),

we return to Peterson’s mutual exclusion algorithm (Algorithm 1) in Section 1,

where we informally demonstrated how this algorithm fails for TSOM(
prog
−−−→).

Thus, it also fails for TSOM(
psc
−−→).

Barrier instructions are added to ensure the correctness of this algorithm for

TSOM(
prog
−−−→) and TSOM(

psc
−−→). To extend the definition of TSOModel(

R
−→)

to include barriers, we revise the definition of a foreign . A  r of some

object x is foreign if r is a not domestic or if there is a --barrier that

intervenes in program order between r and the most recent  to x that precedes

r. The proof for this revision is beyond the scope of this paper. The intuition,

however, is that a --barrier forces the pending s in the buffer to be

committed to main memory before subsequent s are issued. Hence, such 

operations return values from main memory.

To ensure the algorithm’s correctness for TSOM(
prog
−−−→), we now argue that

it is necessary and sufficient to add a --barrier instruction between lines

2 and 3. In the following discussion, before, after, precedes, and follows are

used in the context of the total orders guaranteed by TSOM(
prog
−−−→) or TSO-

M(
psc
−−→).

Both  operations of lines 1 and 2 occur before the  operation of line

3, due to the introduced barrier. The  of flag in the while loop (line 3) is

foreign since flag[ῑ] is only ed by ῑ and ed by ι. Without the barrier,

the  of turn could be domestic but it becomes foreign after the insertion of

the barrier between lines 2 and 3. So, both  operations of the while loop are

foreign. Hence, they precede any operations of the critical section in the total order

guaranteed by TSOM(
prog
−−−→). This observation also holds in TSOM(

psc
−−→).

The  in the exit section (line 4) should follow all the operations in the

critical section. By the definition of TSOM(
prog
−−−→), this is ensured for all 

and foreign  operations. This may not be the case for domestic s in the

critical section. However, since these are domestic, they will be returning values

written by the same process and delaying them to follow the  of flag at line

4 does not affect correctness.

While this barrier is necessary and sufficient for this algorithm to be correct

in TSOM(
prog
−−−→), it is insufficient for TSOM(

psc
−−→). A  in the critical

section could follow the  to flag in the exit section. These two  are re-

lated by program order, but they need not be related by processor self-consistency.

 !" #$%%"&'()* &!" +, -.

 !"

Hence, a --barrier is also needed after the critical section and before

line 4 to ensure the correctness of this algorithm in TSOM(
psc
−−→).

References

[1] Mustaque Ahamad, Rida Bazzi, Ranjit John, Prince Kohli, and Gil Neiger.

The power of processor consistency. In Proceedings of the 5th International

Symposium on Parallel Algorithms and Architectures, pages 251–260, June

1993. Technical Report GIT-CC-92/34, College of Computing, Georgia In-

stitute of Technology.

[2] Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W.

Hutto. Causal memory: Definitions, implementations, and programming.

Distributed Computing, 9:37–49, 1995.

[3] Steven Cheng, Lisa Higam, and Jalal Kawash. Partition consistency: A case

study in modeling systems with weak memory consistency and proving cor-

rectness of their implementations. under review.

[4] Kourosh Gharachorloo, Sarita V. Adve, Anoop Gupta, John Hennessy, and

Mark D. Hill. Programming for different memory consistency models. Jour-

nal of Parallel and Distributed Computing, 15(4):399–407, August 1992.

[5] Lisa Higham, LillAnne Jackson, and Jalal Kawash. Specifying memory con-

sistency of write buffer multiprocessors. ACM Trans. Comput. Syst., 25(1),

2007.

[6] Lisa Higham and Jalal Kawash. Critical sections and producer/consumer

queues in weak memory systems. In Proc. 1997 Int’l Symp. on Parallel Ar-

chitectures, Algorithms, and Networks, pages 56–63, December 1997.

[7] Lisa Higham and Jalal Kawash. Tight bounds for critical sections in processor

consistent platforms. IEEE Trans. Parallel Distrib. Syst., 17(10):1072–1083,

2006.

[8] Lisa Higham and Jalal Kawash. Implementing sequentially consistent pro-

grams on processor consistent platforms. J. Parallel Distrib. Comput.,

68(4):488–500, 2008.

[9] C.A.R. Hoare. Communicating Sequential Processes (Prentice-Hall Interna-

tional Series in Computer Science). Prentice Hall, April 1985.

[10] Maurice Herlihy and Jeannette Wing. Linearizability: A correctness condi-

tion for concurrent objects. ACM Trans. on Programming Languages and

Systems, 12(3):463–492, July 1990.

[11] Jalal Kawash. Limitations and Capabilities of Weak Memory Consistency Sys-

tems. Ph.D. dissertation, Department of Computer Science, The University of

Calgary, January 2000.

 !"#$% &' ()* !" "# $% $&'()*%

 !"

[12] Leslie Lamport. How to make a multiprocessor computer that correctly

executes multiprocess programs. IEEE Transactions on Computers, C-

28(9):690–691, September 1979.

[13] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for

Hardware and Software Engineers. Addison-Wesley, July 2002.

[14] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1997.

[15] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[16] Olaf Müller. I/o automata and beyond: Temporal logic and abstraction in is-

abelle. In Jim Grundy and Malcolm C. Newey, editors, Proceedings of the

11th International Conference on Theorem Proving in Higher Order Log-

ics, volume 1479 of Lecture Notes in Computer Science, pages 331–348.

Springer, September 1998.

[17] Gary L. Peterson. Myths about the mutual exclusion problem. Information

Processing Letters, 12(3):115–116, 1981.

[18] Robert C. Steinke and Gary J. Nutt. A unified theory of shared memory

consistency. J. ACM, 51(5):800–849, 2004.

[19] SPARC Int’l, Inc. The SPARC Architecture Manual version 8. Prentice-Hall,

1992.

[20] David L. Weaver and Tom Germond, editors. The SPARC Architecture Man-

ual version 9. Prentice-Hall, 1994.

