THE Loaic IN CoMPUTER SciENcE COLUMN

BY

AnNuJ DawaR

Department of Computer Science and Technology
University of Cambridge, Cambridge, CB3 OFD, UK
anuj.dawar@cl.cam.ac.uk

I am pleased to introduce myself as the new editor of the Logic in Computer
Science Column in the Bulletin. I am stepping into the shoes of Yuri Gurevich,
who has been running this column since 1988 and that is a daunting task. I aim to
do my best to live up to the standards that he has set. If you wish to contribute a
column or have suggestions for other excellent expositors who might be able to, I
would love to hear from you. Please do get in touch.

To kick things off, I offer a column of my own. This is based on an invited
talk that I gave at the LICS 2025 conference in Singapore in June 2025. It was
after returning from the conference that I ran into Quisani, Yuri’s old student who
wanted to hear what I had talked about. We had a fascinating conversation and
you can read all about it below.

https://www.cst.cam.ac.uk/
http://www.cam.ac.uk/
 anuj.dawar@cl.cam.ac.uk

NotioNs oF WIDTH:
VARIABLES, PEBBLES AND SUPPORTS

Anuj Dawar

Abstract

Given a formula, what is the smallest number of variables with which
it can be equivalently written? What seems like an abstruse question in
syntactic manipulation turns out to have significance in a variety of areas of
theoretical computer science. The number of variables in a formula emerges
as an important measure related to notions of width arising in fields as
varied as database theory; combinatorics and graph theory; and permutation
groups. I explore how these notions are related to each other and the exploration
will take us through a diverse landscape of topics, from comonads to lower
bounds in circuit complexity.

1 Width

Quisani: Hello, I’'m Quisani. I’'m a former student of Yuri Gurevich and I often
meet him here for chats about Logic in Computer Science. I don’t believe I have
met you before.

Author: Hello, it’s nice to meet you. My name is Anuj Dawar, and I am new
here. I’ve heard a lot about your chats. Yuri has asked me to take over his
responsibilities here, so I expect to be coming here regularly and seeing more
of you.

Q: Does that mean that Yuri is retiring from his role?

A: Not completely. He will be back from time to time, so you will see more of
him. But, I expect to take over from him in due course. It is daunting to step into
his shoes, but I hope we can find plenty to chat about from the world of Logic in
Computer Science.

Q: I look forward to it. Do you have any new and interesting stories from that
world to share today?

A: T'have recently returned from the LICS 2025 conference in Singapore [4] where
I gave an invited talk and I thought I might tell you what I talked about. The title
of my talk was Notions of Width: Variables, Pebbles and Supports.

Q: Sounds intriguing. What do you mean by width?

A: The word width is used to mean many different things, even within the fields of
logic and combinatorics. Not all of these uses of the word are related to each other.
But, in my talk I was trying to show that many different measures of complexity
that go by this name are, in fact, related and sometimes surprisingly so. I start by
asking the following question: given a first-order formula ¢, say in the language of
graphs, what is the smallest number of variables with which ¢ can be equivalently
rewritten?

Q: I suppose I should see this as an algorithmic problem: given ¢, calculate the
smallest k such that ¢ is equivalent to a formula with just k variables. This sounds
to me like it should be uncomputable, given that equivalence is undecidable.

A: You are quite right. But, I am not so much interested in computing the minimum
but using the number of variables as a measure of the complexity of a formula.
So, let us say that a formula ¢ has width k if no subformula of ¢ has more than k
free variables. This is sometimes called the syntactic width of the formula.

Q: Yes, I see. If that is the case, then it is clear that you can rename bound
variables in such a way that you use no more than k distinct variables. This
means that the formula is equivalent to one in L¥, the fragment of first-order
logic that uses only the variables xi, ..., x;. I remember a conversation with Ian
Hodkinson [23] about this logic many years ago. We also talked about infinitary
logics: L%, which is the closure of L* under infinitary conjunctions and disjunctions
and the logic L2, which is obtained as the union of LX, as k varies.

A: Indeed, I studied these logics back when I was a graduate student and you
talked about some of that work with Ian. I remember once giving a talk in which
I mentioned the logic L* and a member of the audience asking me: “what is
the point of a logic that is not closed under the renaming of bound variables”?
And this is one reason I emphasise the characterization in terms of limiting the
width: the maximum number of free variables in any subformula. That’s what’s
important and not the actual names of the variables. It helps explain the intuition
of the resource we are limiting, i.e. the number of things we can simultaneously
refer to and connect. But, what I want to tell you about today is how this notion of
width connects to many other notions of width that arise in logic, combinatorics
and complexity, not to mention database theory and constraint programming. Let
me start by telling you a bit about conjunctive queries in databases.

2 Conjunctive Queries

Q: I have heard of conjunctive queries. Can you remind me what they are?

A: From the point of view of a logician, it is best to describe this as a fragment
of first-order logic. For simplicity, let’s assume that we are always working in
the language of graphs. That is, we only have one binary relation £ and no
other relation or function symbols. The formulas of first-order logic can then
be described by the following syntax:

p=x=y|Ex,y)|eAp|leVe|-p|dxp|Vxep.

Each formula ¢(x) with free variables x defines a query, which we think of
as a function from graphs G to relations ¢“ C G*. Conjunctive queries are then
those that can be defined by formulas without negation, disjunction or universal
quantification. Once we have disallowed these operations from our formulas, we
can also dispense with equality. Do you see why?

Q: Yes, when x = y appears in a conjunction, we can simply replace all occurrences
of y with x and get rid of y. This way we also get rid of a variable, which is useful
since we are being careful with how many we need.

A: Excellent! This leaves us with this highly reduced syntax.

¢ =Exy) el Ixp.
Can we say anything useful with this? Suppose I want to express the property of
a directed graph that it contains a walk of length five. Can you see how to do it?

Q: I can. A walk of length five is just a sequence of six vertices, not necessarily
distinct, such that there is an edge from each vertex to its successor in the sequence.
I would express it with something like this:

Jxy -+ Axe(E(x1, x2) A -+ A E(X5, X))

A: That certainly works and note how you had to use six variables. But, with a
careful re-use of variables, you can get away with using just two. Here’s how:

AxIy(ECx, y) A Ix(E(y, x) A Iy(- -), (1

where I’m sure you can fill in the - - - .

Q: I see. Instead of having the quantifiers all in front like I did, you push them in
as far as you can.

A: Poizat [33] calls the logic L* an “enemy of the prenex normal form” for this
reason.

Q: There is nothing special about the fact that the walk is of length five. For a
walk of length n, in prenex normal form I would need n + 1 variables but I can

always get away with just two. But this contrast with prenex normal form is not
Jjust about conjunctive queries. What’s special about them?

A: Conjunctive queries are widely studied in database theory as they correspond
to the select-project-join queries which are said to be the most common kind of
queries on relational databases [1]. And we care about the number of variables
because it is tied to the complexity of the natural algorithm for evaluating the
query in a database. Let’s take the example from (I]). Picture the parse tree of the
formula, which we can see in Figure

dx
|
Jy
'
A
v N
E(x,y) dx

|
N\

E(y? x) Hy

Figure 1: The parse tree of the formula Axdy(E(x,y) A Ax(E(y, x) A y(- - -))).

Now, imagine the process of evaluating this formula bottom up in a graph
G. With each node we can associate the relation that is defined in G by the
query given by the subformula below that node. The operations at the nodes are
select (the atomic formulas), project (the existential quantifiers) and join (for the
conjunctions)—hence the name.

Q: I see, and the fact that each subformula has at most two free variables means
all the relations are at most binary.

A: Exactly. This limits the complexity of the evaluation process. Most importantly,
it limits the space complexity as storing relations of higher arity takes up a lot

of space. There is much work in database theory aimed at optimizing queries.
Cutting down the number of variables in a conjunctive query is an important
optimization as it greatly reduces the size of the intermediate results that we have
to consider. That is a topic for another day. If you want to know how the number
of variables may be optimized, I would suggest looking at this paper [7].

For now, I want to look at structural questions about conjunctive queries.
Chandra and Merlin [9] noted that the problem of conjunctive query evaluation
is the same as structure homomorphism.

Q: AsIrecall, for a pair of structures A and B in the same vocabulary, a homomorphism
from A to B is a function 4 : A — B from the universe A of A to the universe B of
B that preserves all relations.

A: Yes, in particular, if A and B are graphs, this means that whenever (u, v) is an
edge in A then (h(u), h(v)) 1s an edge in B. So, what Chandra and Merlin observe
is that from any conjunctive query ¢ we can construct a structure M, such that for
any A, we have A | ¢ if, and only if, there is a homomorphism from M, to A.
Can you see how to construct M,, from ¢?

Q: I suppose so. If we put ¢ in prenex normal form, it is a list of existential
quantifiers followed by a conjunction of atomic formulas. We create M, by taking
the collection x, ..., x, of quantified variables as elements, and then put an edge
between x; and x; whenever an atomic formula E(x;, x;) appears in the body.

A: That’s right. Then, a homomorphism from M, to A is exactly an evaluation of
the existential quantifiers of ¢ in A which makes all conjuncts true.

Q: It’s funny how we considered the prenex normal form of ¢, which you said is
the opposite of minimizing the number of variables. What does this have to do
with the syntactic width of the formula?

A: It turns out that the syntactic width of ¢ is related to an important structural
parameter of the graph M,: its treewidth. The treewidth of a graph G is sometimes
described as a measure of how tree-like G is. Roughly speaking, G has treewidth
k if its edges can be covered by subgraphs of at most k + 1 vertices in a tree-like
fashion. I won’t give a detailed definition of it here as it is well-studied in the
literature.

Q: Yes, I have heard a lot about it. I understand that it plays an important role in
parameterized algorithms.

A: It also has a central role in structural graph theory and often pops up in logic. If
you want to know more I recommend the book on Sparsity by NeSettil and Ossona
de Mendez [30].

Q: So, how does the treewidth of M, connect with the syntactic width of ¢?

A: If the treewidth of M, is less than k, then ¢ can be written with at most
k variables. Indeed, you can turn a tree decomposition of M, into a formula
quite directly and the number of variables is just one more than the width of the
decomposition. You can find details of this and much related material in this paper
by Dalmau et al. [10].

Q: I like how we’ve related a purely combinatorial parameter from graph theory
to a syntactic measure of the complexity of formulas. But, I suppose this is
because of the special nature of conjunctive queries. As we noted, they are almost
already just structures with a string of existential quantifiers in front. Can you say
something about the syntactic width of more general formulas? As I recall, the
reason for studying logics like L* and L, has to do with fixed-point logics.

A: You are absolutely right. Let’s turn to these next.

3 Fixed-Point and Counting Logics

A: Fixed-point logic, which we’ll abbreviate FP, is an extension of first-order
logic with a mechanism for recursion.

Q: I know it well. I have often discussed this with Yuri [S]], and it also came up
in my chat with Ian Hodkinson all those years ago. 1 know that what is called
the Immerman-Vardi theorem [24, 35] tells us that a property of finite ordered
structures is decidable in polynomial time if, and only if, it is definable in FP.
Yuri told me that this was also independently discovered by Livchak [27].

A: That’s all true. But, if you don’t restrict yourself to ordered structures there are
simple properties that are not definable.

Q: Well, yes. Every formula of FP is equivalent to one of LY , and Kolaitis and
Vardi [26] proved that the latter logic has a 0-1 law so cannot express, for instance,
that a structure has an even number of elements.

A: Indeed, simple counting properties are not definable in FP. This led Immerman [24]]
to propose that an extension of FP with a mechanism for counting, which we now
call FPC, might express all polynomial-time properties. Even this turns out not
to be the case but it requires a sophisticated construction to come up with such a
property. Still, the problems definable in FPC are a really interesting class in their
own right and have been much studied (see [11/] for some insights). What I want
to mention today is that just like every formula of FP is equivalent to one of LY ,
so every formula of FPC is equivalent to one of C% —the infinitary logic with
counting. The idea, as in the former case, is that recursion can be unfolded into

an infinitary disjunction while keeping the number of variables bounded.

Q: So, how does counting appear in the infinitary logic?

A: This is a good question and one of the reasons for considering the translation
of FPC because the counting mechanism in CZ , is much easier to explain than the
one used in FPC. First of all, C* is the logic obtained from first-order logic by (i)
allowing counting quantifiers, i.e. we can write J'x¢ which is to be read as “there
exist at least i elements x such that ¢”; and (ii) restricting ourselves to formulas
using only the variables xi, ..., x;.

Q: I suppose, as before, we don’t really care about the names of the variables.
The important thing is that we are restricting ourselves to formulas in which no
subformula has more than k free variables. That is to say, we are again talking
about syntactic width.

A: Yes, but the counting quantifiers make a difference. Note that in the formula
F'x¢p, the i is some constant. To be precise, there is one such quantifier for each
natural number.

Q: But then the counting quantifier 3’ can be replaced by a sequence of i ordinary
existential quantifiers, so the logic C* is a fragment of first-order logic.

A: That’s right, but replacing the counting quantifiers in this way blows up the
number of variables. So, while it is true that C* is a fragment of first-order logic,
it is not contained in any fragment of bounded syntactic width.

The fact we are interested in is that for each formula ¢ of FPC there is a
constant k such that if two structures A and B are not distinguished by any formula
of C* then they cannot be distinguished by ¢: either ¢ is true in both or false
in both. Let’s write A =* B to denote that the two structures satisfy the same
sentences of C*.

Q: This reminds me of the discussion about FP and LY , we mentioned earlier.
There, I remember it was an important result that the corresponding equivalence
for L* was itself definable in FP.

A: Similar facts can be established about FPC and the C*-equivalence relations.
I recommend the book length treatment of this by Martin Otto [32]. In some
ways the C*-equivalence relations are much more interesting though. It turns out
that the family of equivalence relations =* has many natural characterizations.
It pops up quite independently in many contexts. It goes by the name of the
Weisfeiler-Leman equivalences and has equivalent characterizations in terms of
combinatorics, logic, algebra and linear optimization. There is a vast literature on
them if you want to read more. A starting point might be these papers [23, [15].
There is also increasing interest in the topic from people working in the machine
learning community [29].

From my point of view, each = is an approximation of the graph isomorphism
relation, with the approximation getting finer as k increases.

Q: And this refinement process doesn’t stop at any finite k? I suppose if it did, we
would know that graph isomorphism is decidable in polynomial time, since each
individual relation =* is definable in FPC and hence in P.

A: In fact, we do know that there is no k for which =* is the same as isomorphism.
This was proved by Cai, Fiirer and Immerman [8] in their landmark paper which
showed that FPC is strictly weaker than P.

Q: So, is this parameter k one of the notions of width you were talking about?

A: It is. We sometimes speak of the Weisfeiler-Leman dimension of a graph G
to denote the smallest k for which C* distinguishes G from all non-isomorphic
graphs. We also say that a class C of structures has bounded counting width
(see [16]]) if it is definable in C%, . I now want to give you another characterization
of the equivalence relation =F that links back to our discussion of conjunctive
queries.

4 Counting Homomorphisms

A: For a pair of graphs G and H, let’s write hom(H, G) to denote the set of
homomorphisms from H to G and | hom(H, G)| for the cardinality of this set. It is
a classical result of Lovész [28] that two finite graphs G, and G, are isomorphic
if, and only if, |hom(H, G)| = |hom(H, G,)| for all finite graphs H. Dvorak [21]
showed a similar characterization of the equivalence relations =*. To be precise,
G, =* G, if, and only if, |hom(H, G,)| = |hom(H, G,)| for all finite graphs H of
treewidth less than k.

Q: I see. This then connects counting width to treewidth. And, because we are
talking of homomorphisms, it takes us back to conjunctive queries.

A: Yes, for a graph H of treewidth less than k, we can write a conjunctive query ¢y
with at most k variables that says of a graph G that there exists a homomorphism
from H to G. Can you see how we might modify this to a formula that counts the
number of homomorphisms?

Q: I would do something like this. Convert ¢y into prenex normal form: say 3x6
and then if we want to say that there are at least i homomorphisms, I would then
change it to J'x6. But, wait a minute, can I do that? In the definition of C¥, we had
counting quantifiers to count the number of instantiations of a variable x satisfying
a formula 6. Here I want to count the number of instantiations of a tuple x.

A: That’s not a problem. One can show that a quantifier counting tuples can be
defined using just ordinary counting quantifiers without increasing the number of
variables (see [13]). So, we can treat your formula F'x6 as a formula of C* and
Dvorék’s theorem tells us that if a pair of graphs G and H is distinguished by any
formula of C* then they are distinguished by one of this particular form, which I
will call a counting conjunctive query of width k.

Q: And then, it easily follows that any formula of C¥ is a (possibly infinite)
Boolean combination of counting conjunctive queries of width k. I suppose this is
a kind of normal form for this logic. That’s neat.

A: Dvorik’s theorem (and indeed, Lovdsz’) can be put in a much more general
framework, in the language of category theory.

Q: I once had a discussion [6]] with Yuri and Andreas about the merits of category
theory. Are you a fan or a sceptic?

A: I am not a category theorist myself but I have had the fortune to work with
some excellent experts on the topic. In particular, in a paper I wrote with Samson
Abramsky and my student Pengming Wang [2l], we defined what we called the
pebbling comonad. Essentially this is a way of transforming a structure A to a
structure P A which we can think of as the (infinite) tree unfolding of A of width
k. The transformation is a comonad which means it gives rise to a category which
we call the Kleisli category of P, in which a morphism from A to B is a (standard)
homomorphism from P, A to B. It turns out that such a morphism exists precisely
when every k-variable conjunctive query that is true in A is true in B. What’s
more, there is an isomorphism between A and B in this category if, and only if,
A =* B. Thus, in a precise sense, equivalence in C* is the isomorphism relation
that corresponds to morphisms that preserve k-variable conjunctive queries.

Q: That neatly ties in the different notions of width we have been looking at. And,
I suppose treewidth is also a natural part of this picture.

A: It turns out that a structure A admits a coalgebra for the comonad Py if, and
only if, it has treewidth less than k.

Q: You said that you obatin a generalization of the theorems of Dvordk and of
Lovész from this comonad?

A: Not from this particular comonad, but we do know that this is an example
of a much more general phenomenon. Say that a locally finite category A is
combinatorial if two objects a and b in A are isomorphic if, and only if, | hom(c, a)|
|hom(c, b)| for all objects ¢ of A. In a joint paper of mine with Tom4s Jakl and
Luca Reggio [13], we give fairly general conditions in terms of the existence of
pushouts and a proper factorization system for a category to be combinatorial.
The theorems of Dvorak and of Lovasz and some others from the literature [22]]

are examples. In particular, the theorem of Dvotédk follows from showing that the
Eilenberg-Moore category of the comonad Py satisfies these conditions.

Q: Why did you call P, the pebbling comonad?

A: The name comes from pebble games which are a very common construct in
finite model theory. There is a k-pebble one-sided game that characterizes the
relation A =* B which holds if every k-variable conjunctive query true in A is
true in B and there is a k-pebble bijection game which characterizes the relation
A =F B. The rules of the game involve two players called Spoiler and Duplicator
placing pebbles in turn on the elements of the structure. Hence the name pebble
games. For an account of how these games gave rise to the pebbling comonad I
recommend reading this paper [12].

Q: You have given me a lot of material to read today.

A: We have covered a lot of ground. Essentially, we have seen that there is a
notion of width that gives a gradation of the relation of homomorphism and a
corresponding gradation of the relation of isomorphism. These gradations have
many different characterizations. For homomorphisms, we looked at the number
of variables in a conjunctive query; the treewidth of graphs and the number of
pebbles in a one-sided game. For isomorphisms, we have the number of variables
in a counting logic formula, the Weisfeiler-Leman dimension of graphs and the
number of pebbles in a two-sided bijection game. These are the notions of width
we’ve talked about and they are all intertwined.

I do have another related notion of width I want to introduce you to. This
is what I call the support of gates in circuits and it involves some surprising
connections. This will take us on a journey through some material on circuit
complexity and lead us to some quite amazing new results. Do you want to carry
on?

Q: I’'m up for it.

5 Circuits and Supports

A: I don’t know if you are familiar with the basic setup of circuit complexity. In
complexity theory, decision problems are languages, for example over a binary
alphabet, so L C {0,1}*. You can consider the nth slice of the language (i.e.
the membership problem in L of strings of length n) as a Boolean function L, :
{0, 1} — {0, 1} and any such finite Boolean function can be computed by a circuit
C,. The circuit is made of inputs labelled with Boolean variables xi, ..., x, and
gates labelled by Boolean functions like AND, OR, NOT and sometimes richer
functions such as threshold or majority gates and with one designated output gate.

Q: This is all fairly clear. Indeed, we can define such a family of circuits for any
language L, whether decidable or not.

A: That’s true. To restrict ourselves to decidable languages we would have to
impose a uniformity condition specifying that C, is computable from n. But, the
hope in circuit complexity is that we can deduce something about the complexity
of L by combinatorial properties of the circuits C,. In particular, if L is in the
complexity class P, then there is a circuit family (C,),e, deciding L where the
size of C, is bounded by some polynomial in » and moreover the function taking
n to C, is itself computable in polynomial time. The hope is that for NP-complete
problems we might be able to show the impossibility of circuits of polynomial
size, without worrying about uniformity.

But, as a logician and a finite model theorist, I am interested in decision
problems which are not necessarily sets of strings but classes of abstract structures—
say graphs.

Q: Of course. The standard way to present a graph as input to a Boolean circuit
would be by its adjacency matrix. So, the nth slice of a graph class C would be
the collection of graphs in C which have n vertices and this is given by a Boolean
function f, : {0, 1}” - {0,1} and computed by a circuit with n* Boolean inputs,
one for each entry in the adjacency matrix.

A: Not every such function is a slice of graph class, though. Do you see why?

Q: I do. A given graph can be represented by an adjacency matrix in more than
one way. It depends how we order the vertices. So the function f, might take
different values on different representations of the same graph. What we want to
do is define an equivalence relation ~ on strings in {0, 1} where two strings are
equivalent whenever they represent the same graph and then require that f,(x) =
f»(y) whenever x ~ y. Isn’t this the same thing as saying the f, is invariant under
graph isomorphisms?

A: It is. It will be useful to describe this as a permutation invariance property
of f,. Recall that S, is the symmetric group on n elements: the collection of all

. . . . 2 .
permutations of the set {1,...,n}. Thinking of a string x € {0, 1} as a matrix
(xij)i,jern)» for any permutation r € §, define 7(x) to be the string y = (yij)i je[n]
where y;j = Xzix(j- Then, say f, is invariant if f(x) = f(n(x)) for all x € {0, 1}”2
andr € S,.

Q: I can see that this is the same as what I was defining. A permutation in S, is
just a re-ordering of the vertices of the graph and applying the permutation to the
adjacency matrix as you have defined means it’s still an adjacency matrix for the
same graph. So, a family of circuits (C,),c, Where each C,, computes a Boolean
function f, : {0, 1}”2 — {0, 1} that is invariant defines exactly an isomorphism-

closed class of graphs. And this class is in P if, and only if, the family of circuits
satisfies the conditions you mentioned before.

A: Of course it is not obvious, given a circuit C,, whether or not it is invariant.
So, we define a syntactic condition that guarantess invariance. Say that C, is
symmetric if any permutation in S, applied to its inputs (x;;); je[,) can be extended
to an automorphism of C,,. In other words, for each € S, there is an automorphism
of C, which, in particular, takes any input labelled x;; t0 Xx() x(j)-

Q: . I can see that if a circuit is symmetric, and the automophisms fix the output
gate, then the function it computes is invariant. Is the converse true?

A: Well, yes and no. No, in the sense that there are definitely circuits computing
an invaraint function that are not symmetric. Yes, in the sense that every invariant
function is computed by some symmetric circuit.

For the first statement, consider the following example. Take a circuit that
simply takes the conjunction of all its inputs. So, it consists of a single AND gate,
which is also the output gate and all inputs x;; feed into it. It evaluates to 1 if,
and only if, the input graph has all possible edges. This is clearly invariant and
symmetric. But, we can compute the same function with a circuit using only AND
gates of fan-in 2 by making a binary tree of the gates with the root as the output
gate and the inputs at the leaves. This computes the same function and is therefore
invariant but clearly not symmetric in the sense we defined.

Q: And, for the second statement, I suppose we can take an invariant circuit and
convert it into a symmetric one computing the same function.

A: We can. The construction is a bit technical but not difficult. In particular, it
depends to some extent on what functions we allow at the gates. But it is worth
pointing out that it involves, in general, an exponential blow-up in the size of the
circuit. One thing that the above example shows us though is that fan-in matters.
To talk meaningfully of symmetric circuits we should allow gates of unbounded
fan-in.

Q: Do we know that the exponential blowup is necessary? Or is it simply that the
best way we currently know of doing this translation is exponential?

A: We can show it’s impossible to do better. This is not too hard to show if all you
have as gates are the standard Boolean basis of AND, OR and NOT gates. It’s a
bit more involved if you allow threshold or majority gates. In either case, it is a
consequence of results in [3]] which I want to come back to in a little bit.

Q: So, why are we interested in symmetric circuits? It seems like the real condition
we want to think about is invariance and you have just told me that the restriction
to symmetric circuits is sufficient but not necessary for invariance.

A: The interest comes from looking at definability in logic. Suppose you have a
first-order sentence ¢ in the language of graphs. Then for each n you can produce
from ¢ a circuit C, which decides for an input n-vertex graph G whether G satisfies
¢. Moreover, the circuit you get from ¢ is of polynomial-size, bounded depth and
it is symmetric.

Q: Yes, I see that. I believe there was some work on this in the 1980s [19].

A: That’s right. Also some interesting work extending it to infinitary logic by
Otto [31]. When you add counting quantifiers to the mix, however, things get
even more interesting. Do you see what happens if you start with a formula ¢ of
ck?

Q: If I follow the inductive construction of the circuit, where existential quantifiers
become big OR gates and universal quantifiers are big AND gates...Oh, I see. For
a counting quantifier it makes sense to introduce threshold gates. So, formulas of
C* will translate into circuits of bounded depth but with threshold gates. And the
size of the circuits is O(n*).

A: Very good. And formulas of FPC translate into families of symmetric circuits
of polynomial size with threshold gates, but possibly of unbounded depth. What’s
more, we can get a converse statement. Any class of graphs decided by a polynomial-
time uniform family of symmetric circuits with threshold gates is definable in
FPC. So, it is an exact circuit characterization of the logic FPC. This is the main
result of [3]].

Q: That really bolsters your claim that FPC is a natural class to consider. Does
the logic C% give you a non-uniform version of this?

A: Not quite, but it does give us something interesting. The issue of non-uniformity
is dealt with in [3] by allowing numerical relations, and we’ll leave that aside for
now. When we start with infinitary formulas in CZ , there is no guarantee that the

resulting circuit will be of polynomial size. But, it is necessarily of polynomial
orbit size.

Q: What is orbit size?

A: Suppose C, is a symmetric circuit taking as input graphs on n vertices. Then
S, embeds into the automorphism group of C, by definition. For a gate g in
C,, the orbit of g is the collection of gates g’ which are mapped to g by some
automorphism. The orbit size of C, is then just the maximum size of any orbit of
a gate in C,,.

Q: Yes, I think I can see the connection. If I start with a sentence ¢ of CX _, 1 get

an equivalent formula ¢, of C* for any fixed size n of graphs. I suppose the size
of ¢, 1s not necessarily bounded by a polynomial in n which is why we don’t get
polynomial-size circuits.

A: But, the circuit we get from ¢, has orbits of size at most n*. This is because
there is a gate y[a] in the circuit for each subformula ¥ of ¢, along with an
assignment of vertices a to the free variables of . The orbit of the gate y[a]
is then obtained by varying the assignment a.

Q: I see. And since any subformula has at most & free variables, there are at most
n* assignments and this gives you an upper bound on the orbit size. I like the way
we have circled back to the notion of syntactic width.

A: In fact, symmetric circuits give us another related notion of width. That
is to say, there is a combinatorial parameter of symmetric circuits which is a
counterpart to the syntactic width of formulas. It plays a crucial role in the
translation [3] of poly-size symmetric circuits into FPC. It’s what we call supports.

But, before we get to that, I wanted to note that the translation from symmetric
circuits into FPC or into C%, , means that when we prove something is not expressible
in these logics, it is a circuit lower bound result. Indeed, we can now think of the
bijection games that are used to prove inexpressibility in FPC as a method for
proving circuit lower bounds. You can read about this in some generality in my
paper with Greg Wilsenach [18] where we use this method to prove lower bounds
on algebraic circuits.

Q: What are algebraic circuits?

A: We’ll come back to that in a moment. First I want to tell you about supports.
Do you remember the orbit-stabilizer theorem?

Q: You mean from permutation group theory? Let’s see: if you have a group I'
which is a subgroup of S, the I'-orbit of an element i € [n] is the collection of
elements j which map to i under some permutation in I' and the stabilizer of i is
the subgroup A; of I consisting of those permutations that fix i. The theorem then
says that the index [I" : A;] is exactly the size of the orbit of i.

A: That’s right. More generally, we consider any action of I" on a set X (it doesn’t
just have to be [n]) and we can look at the size of the orbit of any element x € X.
In our case, I want to consider the case where I' = §,, and we look at its action on
a symmetric circuit C,, and think about the orbits of gates.

Q: I see, so if the circuit has orbit size at most »#*, that means that the stabilizer
group of any gate g has index in S, of at most n*. In other words the stabilizer
group is big. Many permutations fix g. I can see this is true for the circuits we
constructed from formulas. There each gate was of the form y/[a] and clearly any
permutation of the vertices that fixes all vertices in the tuple a fixes the gate. Since
the tuple is small (at most k elements) there are lots of such permutations. What
you’re saying is that something like this is true in all symmetric circuits, not just
those that we construct from formulas.

A: In fact, it turns out something stronger is true. Say that a set X C [n] is a
support of a group A < §,, if every permutation that fixes all the elements of X is
in A.

Q: So, just like the elements in the tuple a form a support for the stabilizer group
of the gate y/[a].

A: Like that. But, we can show that in any symmetric circuit in which all gates
have an orbit of size at most n¥, the stabilizer of every gate has support of size
at most k. So, we associate with a circuit C a measure we call its support size,
which is the size of the largest support of any gate. This is the parameter that is
the counterpart to width, and which we use to show lower bounds.

In particular, we can directly use bijection games to argue that some properties
are not decidable by symmetric circuits with small support. This is just an adaptation
of their use in showing that the properties are not definable in C2 . But, we can
also use them in the context of circuits where there is no immediate connection to
logic.

Q: Are we now turning to algebraic circuits?

6 Algebraic Circuits

A: Algebraic circuits, sometimes also called arithmetic circuits, are a model of
computation used to study computations over a field (such as the real numbers
or complex numbers) where we treat addition and multiplication as operations of
unit cost.

Formally, an algebraic circuit over a field K and a set of variables X is a
directed acyclic graph where every input (i.e. node of indegree 0) is labelled by
an element of X or an element of K, and every internal node is labelled either +
(a sum gate) or X (a product gate). A distinguished output gate can then be seen
as computing a polynomial in the ring K[X]. The minimal size circuit computing
a polynomial p tells us the minimal number of operations needed to compute p.
Another way of thinking about it is that the circuit is a compact representation of
the polynomial. Potentially much more compact than the usual representation as
a sum of monomials.

Q: This seems quite different from the world of Boolean circuits. We are no longer
looking at the complexity of decision problems or languages.

A: Still, there is an algebraic analogue of the question of whether P # NP, which
is known as Valiant’s conjecture. It is usually stated in the form VP # VNP.

Q: What are VP and VNP?

A: Formally, we are looking at the complexity of families of polynomials (p,),cw
with p, € K[xy,...,x,]. The family is in VP if there are circuits C,, computing p,
and the size of the circuits grows only polynomially in n. VNP has a definition as
families of polynomials whose coefficients can be computed by polynomial-size
circuits. There is a vast literature on algebraic circuits and this tutorial [34] is an
excellent entry point.

Q: I take it you want to define a symmetric version of these circuits. But, the
inputs here are no longer graphs. What are the symmetries you are looking at?

A: In many of the families of polynomials that are often studied in the field of
algebraic complexity, the variables are the entries of a matrix. That is, we can
index the variable set X as X = {x;; | 1 <i < m;1 < j < n}. In particular, when
they form a square matrix, i.e. m = n. The classic examples are the determinant
polynomial:

Det(X) = Z sgn(o) rl Xio(i)s

€S, i€[n]

and the permanent polynomial:

Per(X) = Z 1—[Xior(i)-

€S, i€[n]

Q: Why are these classic examples?

A: They are the most studied in the field of algebraic complexity. The determinant
is known to be in VP and the permanent is VNP-complete. This means that
Valiant’s conjecture is equivalent to the statement that the permanent is not in VP.
Indeed, much work in algebraic complexity is about understanding the difference
between these two families of polynomials.

Q: And I take it there are differences in terms of symmetric circuits?

A: Yes, let’s define what we mean by symmetry. Say we have a circuit C computing
a polynomial p € K[X] and I is a group of permutations of X. We say that p[X] is
I'-invariant if for each 7 € I" the polynomial p™ we get by permuting the variables
of p according to I is identical to p.

And, we say that the circuit C is ['-symmetric if every permutation of I" applied
to the inputs of C can be extended to an automorphism of C.

Q: So it is very much like the Boolean symmetric circuits we talked about. For
Det(X) and Per(X), the set X = {x;; | 1 < i,j < n} and so the full group of
permutations of X looks like S .. What is the group I'?

A: We could, for example, consider the group S, acting simultaneously on the
rows and columns of the matrix as we did for Boolean circuits. So, I' is the

group of permutations 7 € §, acting on X by the action that takes x;; 0 Xx(ix())-
Then, both Det(X) and Per(X) are I'-invariant. The determinant and permanent
of a matrix are not changed if you permute the entries by applying the same
permutation to the rows and columns. We say that these polynomials are square
symmetric.

Q: And what can we say about symmetric circuits for them?

A: We showed [17] that there are polynomial size square symmetric circuits for
Det(X) but provably none for Per(X). This shows an exponential separation in
the complexity of these two families of polynomials in a restricted model, which
is the first such separation I know of. The method of proof for the lower bound
really uses the connection with Boolean circuits and C¥ . In fact, we show that
any family of circuits for Per(X) has exponential orbit size.

Q: I will have to read up more about it. When we talked of Boolean circuits,
the inputs were adjacency matrices of graphs. So the natural notion of symmetry
was permutations of the vertices, which corresponds to what you called square
symmetric. For general matrices, is there any reason to privilege this particular
permutation group?

A: It’s still quite a natural collection of permutations to consider, but you are right,
we could consider others. For instance, consider the group S, X §,, i.e. the direct
product of S, with itself. This has an action on the matrix X of variables where
the pair (7, o) takes x;; tO Xy(;)r(j). In other words we can apply a permutation to
the rows of the matrix and possibly a different permutation to its column. Then
Per(X) is invariant under this group action, but Det(X) is not. We say that Per(X)
is matrix symmetric but Det(X) is not.

Q: I see that. In fact the determinant of a matrix is not changed if you apply one
permutation to the rows and another permutation of the same sign to the columns.
But, if you apply permutations of different signs to the rows and columns, it would
change the sign of the determinant.

A: When you evaluate a polynomial p(X) at values of X which are in the set {0, 1},
you can understand it as computing a parameter of a graph, provided that p(X) has
the right symmetries. So, if p(X) is square symmetric, then substituting for X the
adjacency matrix of a graph gives a value which really only depends on the graph.

Q: What about when it is matrix symmetric?

A: In that case, it is best to think of a {0, 1} valuation of X as putting in the
biadjacency matrix of a bipartite graph. That is, we have one set A of vertices
corresponding to the rows and another set B corresponding to the columns. Then,
any graph property (or more generally any graph parameter) should be invariant
under permuting A and B separately.

Q: In this case, there is no reason to restrict ourselves to square matrices. The sets
A and B could have different sizes.

A: They could. So, let’s go back to the more general case where X = {x;; | 1 <
i <m;1 < j < n}and consider the action of the groupI' = §,, X S, on this where
(7, 0) takes x;; 10 Xq)o(j) form € §,, and o € §,,. It turns out that we can give a
fairly complete characterization of families of polynomials that have I'-symmetric
circuits in this sense. Again, let’s call them matrix symmetric.

Q: What’s this complete characterization?

A: It’s in terms of what we call homomorphism polynomials. So, fix an a X b
matrix M with entries in the field K and the set of variables X = {x;; | 1 < i <
m;1 < j < n}. Note that a and b are not related to the parameters m and n. We
now define the polynomial

hom,,(X) = > [T Mixow
f:lal—[ml.g:[b]—[n] i€lal,je[b]:M; ;#0

Q: Why is this called a homomorphism polynomial?

A: Consider the special case when the matrix M only has entries in {0, 1}. We
can then think of it as the biadjacency matrix of a graph F), on a pair of sets of
vertices A of size a and B of size B. Then hom,,(X) is a polynomial in the variables
X which, when we substitute for X the biadjacency matrix of a bipartite graph G
with vertiex bipartition (U, V) evaluates to the number of homomorphisms from
F); to G. That is, only counting homomorphisms that take A into U and B into V.

Q: I can see that. So, we generalize the homomorphism counting parameter to
matrices M which are not necessarily {0, 1}. I suppose I can think of such matrices
as weighted bipartite graphs.

A: And then homy(X) is in some sense counting “weighted homomorphisms’.
These are polynomials that come up quite naturally in algebraic complexity. For
instance [20] argue that they give rise to the first natural VP-complete families.

Q: Nice. And how do they come up in characterizing matrix-symmetric families
of polynomials?

A: This is a theorem we proved in some recent work that I did with Benedikt Pago
and Tim Seppelt [14].

Theorem 1. A family of polynomials p(X) is computed by a family of matrix
symmetric circuits of polynomial orbit size if, and only if, there is a k such that
each p is a linear combination of homomorphism polynomials homy(X) of graphs
Fy of treewidth less than k.

Q: So bounded treewidth pops up again in the characterization. We’re back at the
same combinatorial notions of width.

A: Yes, you could look at this theorem as an analogue of the normal form for
C2,, we obtain as a consequence of Dvorak’s result. So, C% | defines exactly the
properties of graphs decided by families of symmetric circuits with polynomial
size orbits. And, from Dvordk’s theorem we get that all such properties are
obtained as infinite Boolean combinations of homomorphism counts from a class
of graphs of bounded treewidth.

Q: I do see the analogy. But, we are looking at somewhat different notions of
symmetry.

A: It is indeed just an analogy at the moment. I don’t see how you could derive
one result from the other. But it is compelling and shows the natural connection
between notions of width and symmetry.

7 Conclusion

Q: Well, we have gone over a lot of material and you have given me really a lot to
go away and read and digest. I think it is time for a break.

A: We have covered a lot of ground, some of it very new. The take away is that
width in its various forms is a measure of complexity (of graphs, of formulas,
of circuits) which ties to many natural and independently discovered measures in
combinatorics, logic and complexity. It turns out to be useful in proving surprising
unconditional lower bounds in circuit complexity and other areas.

Q: I will go away and chew on that.

A: And there is so much ground that we didn’t cover. There are notions of width
in the field of constraint satisfaction. There is submodular width and hypertree
width. They are not unrelated to what we have talked about but we didn’t have
time to go over them.

Q: It will have to be another time. I look forward to carrying on our conversations.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

[2] S. Abramsky, A. Dawar, and P. Wang. The pebbling comonad in finite model theory.
In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages
1-12,2017./doi:10.1109/LICS.2017.8005129.

https://doi.org/10.1109/LICS.2017.8005129

(3]

[4]

(5]

(6]

(7]

(8]

[9]

M. Anderson and A. Dawar. On symmetric circuits and fixed-point logics. Theory
Comput. Syst., 60(3):521-551, 2017.

L. Birkedaal and B. Koning, editors. ACM/IEEE Symp. Logic in Computer Science.
IEEE, 2025.

A. Blass and Yu. Gurevich. Two forms of one useful logic: Existential fixed point
logic and liberal datalog. Bull. EATCS, 95:164-182, 2008.

A. Blass and Yu. Gurevich. Who needs category theory? Bull. EATCS, 124, 2018.

S. Bova and H. Chen. How many variables are needed to express an existential
positive query? Theory Comput. Syst., 63:1573-1594, 2019. doi:10.1007/
S00224-018-9884-7Z.

J-Y. Cai, M. Fiirer, and N. Immerman. An optimal lower bound on the number of
variables for graph identification. Combinatorica, 12(4):389—410, 1992.

A.K. Chandra and P.M. Merlin. Optimal implementation of conjunctive queries in
relational databases. In STOC, pages 77-90, 1977.

V. Dalmau, Ph.G. Kolaitis, and M.Y. Vardi. Constraint satisfaction, bounded
treewidth, and finite variable logics. In Proceedings of the Sth International
Conference on Principles and Practice of Constraint Programming, CP’02, Lecture
Notes in Computer Science, pages 311-326. Springer-Verlag, 2002.

A. Dawar. The nature and power of fixed-point logic with counting. ACM SIGLOG
News, 2(1):8-21, 2015.

A. Dawar. Constraint satisfaction, graph isomorphism, and the pebbling comonad.
In Alessandra Palmigiano and Mehrnoosh Sadrzadeh, editors, Samson Abramsky
on Logic and Structure in Computer Science and Beyond, pages 671-699. Springer
Verlag, 2023.

A. Dawar, T. Jakl, and L. Reggio. Lovasz-Type Theorems and Game Comonads.
In 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021,
Rome, Italy, June 29 - July 2, 2021.1EEE, 2021.|/doi:10.1109/LICS52264.2021.
9470609.

A. Dawar, B. Pago, and T. Seppelt. Symmetric algebraic circuits and homomorphism
polynomials. arXiv 2502.06740, 2025.

A. Dawar and D. Vagnozzi. Generalizations of k-Weisfeiler-Leman stabilization.
Moscow Journal of Number Theory and Combinatorics, 9:229-252, 2020.

A. Dawar and P. Wang. Definability of semidefinite programming and Lasserre
lower bounds for CSPs. In 2017 32nd Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS). IEEE, 2017. doi:10.1109/LICS.2017.8005108.

A. Dawar and G. Wilsenach. Symmetric Arithmetic Circuits. In 47th International
Colloquium on Automata, Languages, and Programming, volume 168 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 36:1-36:18, 2020. doi:
10.4230/LIPIcs.ICALP.2020.36.

https://doi.org/10.1007/S00224-018-9884-Z
https://doi.org/10.1007/S00224-018-9884-Z
https://doi.org/10.1109/LICS52264.2021.9470609
https://doi.org/10.1109/LICS52264.2021.9470609
https://doi.org/10.1109/LICS.2017.8005108
https://doi.org/10.4230/LIPIcs.ICALP.2020.36
https://doi.org/10.4230/LIPIcs.ICALP.2020.36

[18]

A. Dawar and G. Wilsenach. Lower bounds for symmetric circuits for the
determinant. In I3th Innovations in Theoretical Computer Science Conference,
ITCS, volume 215 of LIPIcs, pages 52:1-52:22. Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, 2022. |[doi:10.4230/LIPIcs.ITCS.2022.52.

L. Denenberg, Y. Gurevich, and S. Shelah. Definability by constant-depth
polynomial-size circuits. Information and Control, 70:216-240, 1986.

A. Durand, M. Mahajan, G. Malod, N. de Rugy-Altherre, and N. Saurabh.
Homomorphism polynomials complete for VP. Chic. J. Theor. Comput. Sci., 2016.

Z. Dvofék. On recognizing graphs by numbers of homomorphisms. Journal of
Graph Theory, 64:330-342, 2010.

M. Grohe. Counting Bounded Tree Depth Homomorphisms. In Proceedings of the
35th Annual ACM/IEEE Symposium on Logic in Computer Science, pages 507-520.
ACM, 2020. doi:10.1145/3373718.3394739.

I. M. Hodkinson. Finite variable logics. Bull. EATCS, 51:111-140, 1993.

N. Immerman. Relational queries computable in polynomial time. Information and
Control, 68:86—104, 1986.

Sandra Kiefer. The Weisfeiler-Leman algorithm: an exploration of its power. ACM
SIGLOG News, 7(3):5-27, 2020.

Ph. G. Kolaitis and M. Y. Vardi. Fixpoint logic vs. infinitary logic in finite-model
theory. In LICS, pages 46-57, 1992.

A. Livchak. The relational model for process control. Automated Documentation
and Mathematical Linguistics, 4:27-29, 1983.

L. Lovész. Operations with structures. Acta Math. Acad. Sci. Hungar., 18:321-328,
1967.

Ch. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and
M. Grohe. Weisfeiler and Leman go neural: Higher-order graph neural networks.
In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI, pages 4602—
4609. AAAI Press, 2019. doi:10.1609/AAAT.V33I01.33014602.

Jaroslav Nesetril and Patrice Ossona De Mendez. Sparsity: graphs, structures, and
algorithms, volume 28. Springer Science & Business Media, 2012.

M. Otto. The logic of explicitly presentation-invariant circuits. In Computer Science
Logic, 10th International Workshop, CSL 96, Annual Conference of the EACSL,
pages 369-384, 1996.

M. Otto. Bounded Variable Logics and Counting — A Study in Finite Models,
volume 9 of Lecture Notes in Logic. Springer-Verlag, 1997.

B. Poizat. Deux ou trois choses que je sais de L,. Journal of Symbolic Logic,
47(3):641-658, 1982.

https://doi.org/10.4230/LIPIcs.ITCS.2022.52
https://doi.org/10.1145/3373718.3394739
https://doi.org/10.1609/AAAI.V33I01.33014602

[34] A. Shpilka and A. Yehudayoff. Arithmetic circuits: A survey of recent results and
open questions. Foundations and Trends in Theoretical Computer Science, 5(3-
4):207-388, 2010. |[doi:10.1561/0400000039.

[35] M. Y. Vardi. The complexity of relational query languages. In Proc. of the 14th
ACM Symp. on the Theory of Computing, pages 137-146, 1982.

https://doi.org/10.1561/0400000039

	Width
	Conjunctive Queries
	Fixed-Point and Counting Logics
	Counting Homomorphisms
	Circuits and Supports
	Algebraic Circuits
	Conclusion

