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The Landscape of TCS forML

Abstract

We introduce here a new column, TCS for ML. The idealistic goal of
this column will be to examine what special directions, what special insight
Theoretical Computer Science can bring to Machine Learning. In this initial
edition, we attempt to examine how our TCS fields currently contribute to
ML, from all side. This introduction will serve as the basis for deeper in-
vestigation in next columns, where we will try to highlight new theoretical
questions arising from ML and its massive use.

1 Introduction
The past 10 years have seen the rise of Machine Learning (ML), which is now
a recognized and dominant field - in terms of funding, public exposure, research
progress, and applications. As many aspects of ML are directly related to compu-
tation, it would be natural that Theoretical Computer Science (TCS) contributes to
this success-story. However, this is a relatively new field, growing extremely fast:
it is not completely structured, and it is not easy to enter the field, nor to follow
the different contributions. This is perhaps why editors of the Bulletin asked us to
write a column on “TCS for ML”.

As both TCS and ML are vast, fast-moving fields, we do not have a defini-
tive picture of what this means exactly. Hence, we have asked -— more or less
successfully —- experts from various TCS subfields to provide their own hind-
sight, in order to sketch an initial big picture. In this initial column, we present
those expert perspectives along with our own views, and in the coming months
we will dive into more specific aspects of TCS and ML, providing the Bulletin
with interviews of researchers discussing their work. Our far-reaching objective
will be to provide a global picture of the research directions followed by the TCS
community to contribute to ML ; and, ideally, to identify open and interesting
directions.

As a disclaimer, while we aim to capture a broad and honest picture of the
landscape, we are aware that our perspective is limited and shaped by our own
interests. We therefore welcome any comments or criticisms that could help im-
prove this review.



TCS and ML: definitions. We considered as TCS the various communities rep-
resented by EATCS and showcased at ICALP. This spans a wide spectrum of ar-
eas—sometimes overlapping, sometimes far apart—but all connected by SIGACT’s
definition of TCS as “the formal analysis of efficient computation and compu-
tational processes”.1 Guided by this perspective, we focus here on works that
present strong theoretical results or apply theoretical tools to rigorously analyze
the capabilities and limitations of ML models.

ML, as we know, is an expansive discipline at the intersection of computer
science, statistics, and numerous applied fields, dedicated to designing algorithms
and representations that can infer patterns or decision rules from data. Beyond its
practical successes, ML is a source of theoretical challenges for TCS. First, it calls
to revisit fundamental questions about computation, efficiency, and representation.
Second, it offers opportunities for interaction with traditional TCS communities,
such as algorithms, logic, formal verification, databases, and knowledge represen-
tation, where decades of research provide principled ways to encode knowledge,
enforce constraints, and explain or verify model behavior.

In this column we have organized our review by traditional TCS subfields
(Theory of Computation, Ethical ML, Algorithms, Logic/ Formal Languages/
Discrete Structures, Foundations of Data Management, Formal Verification, and
Knowledge Representation), highlighting foundational works and current research
directions relating to ML in each area. But before diving into those subfields, it is
useful to step back and group the interactions between TCS and ML more concep-
tually, following the SIGACT definition above. We identify three complementary
roles:

• Formal analysis of ML models and their capabilities—understanding what
learning architectures (e.g., Transformers, GNNs) can and cannot compute,
their sample complexity, and their expressiveness.

• Formal analysis of ML outcomes — using TCS tools to verify, explain,
and guarantee properties such as fairness, privacy, or logical consistency of
predictions.

• Support for efficient computation—drawing on TCS techniques in algo-
rithms, data management, and KR to scale ML pipelines, optimize prim-
itives, and integrate explicit knowledge with data-driven learning.

These perspectives are not exhaustive, but they capture recurring themes across
the subfields we survey. They also remind us that while ML often pushes TCS to
confront new challenges, TCS offers a deep well of methods for making ML more
principled, reliable, and interpretable.

1https://www.sigact.org/

https://www.sigact.org/


Understanding the power and limits of neural networks. One of the central
themes of TCS is understanding computation—specifically, what can be com-
puted and with which model of computation. These questions can be directly
reformulated in the context of ML: what can be learned, and what can a spe-
cific model learn? From the beginning of the field, several research areas have
emerged to provide different perspectives on computation. As we will see, they
all offer viewpoints that can explain—or at least begin to explain—the power and
limits of neural networks.

First, Learning Theory emerged alongside ML precisely to build a theory of
learnability. Here, “learning” means that an algorithm is given some labeled data
as input and must infer the labels of new data points. The labels are functions of
the data, and the goal is to understand which functions are “easy” or “hard” to
learn. Difficulty is measured primarily in terms of the amount of input data neces-
sary for inference or the computational complexity required. This general theory
therefore aims to broadly characterize which functions can be learned, defining
properties of functions (or dimensions) that measure the difficulty of learning
them. One specific learning task that has recently been investigated—shedding
TCS light on a broader debate—is the task of learning languages, which we will
cover in more detail later.

Logic and formal languages provide a different view: instead of studying func-
tions broadly, their tools and theory allow us to focus on particular network archi-
tectures. A fixed architecture, or a family of architectures, restricts the compu-
tations possible for a network; these fields examine the properties that can be
recognized by specific architectures. A similar perspective comes from complex-
ity theory, which focuses on specific learning tasks and derives lower bounds on
the size of a network required to compute those tasks. Recent examples highlight
the difficulty for LLMs to “compose” functions—a task they are neither explicitly
designed nor trained for, but which they can sometimes handle surprisingly well
and, at other times, fail at quite spectacularly.

In both cases, substantial modeling effort is required before answering such
questions: one must model which class of functions networks attempt to learn or
provide a formal model for the network architecture.

Formal analysis of ML’s results. One of the major critiques of ML systems
concerns the uncertain nature of their outcomes: given a new data point—different
from those observed during the learning process—how can we be sure that the
model will remain satisfactory? Here, formal guarantees are required regarding
the model’s ability to generalize. This is where TCS steps in, as proving guaran-
tees is our daily bread.

These guarantees can sometimes be automatically established via formal veri-



fication: given a model, one may wish to automatically verify that its output satis-
fies certain desirable properties. Hardness results — even for simple models and
properties — make this task quite challenging, which is why several relaxations
have been investigated.

Another approach is to prove such guarantees manually, by establishing the-
orems about specific properties of the models. Beyond the correctness of predic-
tions—which is the focus of Learning Theory—several ethical properties are be-
ing actively studied. A growing field of ethical AI and ML formally defines these
properties and designs learning algorithms that enforce them, so that the resulting
model can be called “fair” or “private,” for instance. Here again, modeling plays
a central role: mathematically defining “fairness” is not an easy task. Many defi-
nitions exist, are not necessarily compatible with each other, and may not provide
practical leverage for algorithm design. As we will see in the dedicated section,
this modeling can be guided by TCS insights.

Design of Efficient ML Algorithms. The aspect of TCS perhaps closest to prac-
tical applications is the design of efficient algorithms and database techniques that
enable fast and memory-efficient computation. Since ML is inherently tied to big
data, it requires algorithms and data-management tools that can scale: our field
provides such tools, backed by solid theory and formal guarantees.

The communication between TCS and ML goes both ways. Ideas from TCS
have been incorporated into big-data pipelines — such as streaming and sketch-
ing techniques in algorithms or in-database learning frameworks and functional
aggregate queries (FAQs) from database theory, which allow training models di-
rectly within relational systems without expensive data extraction. Conversely,
the ML industry continues to raise new computational questions: identifying and
optimizing the critical tools or subroutines used in practice. For example, efficient
gradient computation over relational data, fast query-based feature generation,
and probabilistic database techniques for uncertainty handling are all areas where
database theory informs ML workflows.

Finding which subroutines are ripe for algorithmic improvement is itself an
art—one that requires expertise in both ML and TCS. This ongoing exchange
not only optimizes existing pipelines but also opens opportunities for theoretical
insights to drive entirely new approaches to scalable ML.

We will now dive, subfield by subfield, into more details. Again, we are not
expert in all of those: we have tried to ask better-placed persons their opinion,
and have probably overlooked some directions and over-emphasized some others.
Nonetheless, we still believe those partial thoughts are an interesting first step,
and will warmly welcome any feedback.



2 Theory of Computation
The interplay between theory of computation and ML has deep roots, from VC
theory in statistics to PAC learning in theoretical computer science. Today, rapid
advances in ML far outpace rigorous theoretical understanding, creating both a
challenge and an opportunity. Theory is needed to explain the successes and
limitations of current methods and to distinguish fundamental phenomena from
transient trends. While ML theory can be messy—often involving toy models or
impractical algorithms, it is precisely this principled, analytical perspective that
ensures AI’s development is grounded in solid foundations.

• Learning Theory: Learning theory is a well-established field whose pri-
mary goal is to understand which functions are learnable and which are not.
Several definitions of learnability co-exist, most prominently PAC learning
[113], and efficiency may be measured in terms of the number of samples
or computational time. In other words, this field studies the theory of super-
vised machine learning and is therefore at the heart of our topic.

To analyze learnability, no assumptions are made about the structure of the
learning or prediction algorithms, so the results apply very broadly. The
trade-off is that there are limitations on the types of problems studied. For
instance, PAC learning traditionally assumes that input examples follow
a distribution and that the test set also follows this distribution. In addi-
tion, positive results often require strong assumptions on this distribution,
e.g., that it is Gaussian or a product distribution. Distribution-free learning
is generally hard (see, for instance, [71, 30, 72]), and some recent works
attempt to lift results from specific distributions to general ones [28, 29].
To address limitations regarding distributions, a theory of robustness has
emerged (see, e.g., [88, 50, 80, 93]) to characterize what sorts of noise or
adversarial conditions can be handled.

Beyond fundamentally understanding what is learnable, concepts from learn-
ing theory are also used to evaluate algorithms in practice. For example,
[54, 36] show that diffusion models can learn mixtures of Gaussians, ex-
tending a recent line of work on these models, and [116] evaluate the ability
of transformers to learn k-fold composition functions.

Recent work has studied “hallucinations" in LLMs [66, 65]. These results
show that even an ideal, perfectly calibrated language model cannot en-
tirely avoid hallucinations: it must assign nonzero probability to facts not
seen during training, leading inevitably to some false outputs. Conceptually,
these findings echo No Free Lunch theorems, as they highlight fundamental
trade-offs between generality and accuracy.



• Language generation in the limit: The success of Large Language Mod-
els (LLMs) has intensified the need to understand the principles underlying
their effectiveness and to identify the mathematical components that sup-
port it. Recent research has begun addressing these questions by studying
the design of generative algorithms for language [78]. This line of work
builds on a rich set of theoretical tools, most notably the Gold–Angluin
framework for language identification, originally developed to analyze the
learnability of formal languages. More formally speaking, imagine an ad-
versary who keeps listing strings from some unknown language L, which
we only know belongs to a possibly infinite list of candidate languages. A
computational agent tries to learn how to generate strings from L. We say
the agent generates from L in the limit if, after seeing enough of the adver-
sary’s examples, it can start producing new strings that (1) always belong to
L, and (2) have never been shown before. The main result in this area shows
that there exists such an agent for any countable list of possible languages.
Subsequent work has examined the following key question: is it possible to
design language generation algorithms that are not only valid—producing
well-formed strings in the target language L—but also broad—producing
a diverse set of strings from L [68, 100, 77, 67]. LLMs inherently face
this validity–breadth trade-off: they must balance the need for accuracy and
coherence (avoiding hallucination) with the need for variety and coverage
(avoiding mode collapse).

• Complexity, and Lower bounds for ML architectures: Transformers are
the ML architecture that lies at the core of LLMs. Transformers use a mech-
anism known as self-attention to weigh the importance of different parts of
an input sequence. They also use chain-of-thought (CoT) reasoning as a
way to break down a complex problem into a series of intermediate steps
which the model explicitly generates before arriving at a final answer. By
providing these intermediate steps, CoT effectively gives the Transformer
model a form of "scratchpad memory" or "workspace" to perform compu-
tations.

A key question in understanding the computational capabilities of Trans-
formers is how many CoT steps they require to carry out function compo-
sition, a core operation in both symbolic reasoning and natural language
understanding. Recent theoretical work has tackled this from complemen-
tary perspectives, depending on whether one considers hard or soft attention
mechanisms. Hard attention makes a discrete, non-differentiable choice, fo-
cusing on a small, selected subset of input elements. In contrast, soft atten-
tion computes a weighted average of all elements in the input sequence.
The first approach uses communication complexity to prove that single-



layer Transformers with soft attention cannot perform function composition
when the function domains are large, and extend this to show that iterated
composition requires a number of CoT steps that grows with the domain
size [101]. The second approach uses the notion of Ehrenfeucht-Haussler
rank of a Boolean function and the minimum number of Chain of Thought
(CoT) steps required by a single-layer Transformer with hard attention to
compute it, demonstrating that l-fold function composition requires exactly
l CoT steps [18]. The third approach provides the first unconditional lower
bounds for multi-layer Transformers with soft attention. This work intro-
duces a new multi-party autoregressive communication model and uses it to
obtain strong lower bounds for the number of CoT steps required to com-
pute the composition of L functions [35].

3 Ethical ML
Another direction in which a principled and analytical perspective is required is
that of ethical ML, in which we include urgent issues of AI safety, ethics, and
trustworthiness. For these, formal guarantees are required—and sometimes even
enforced by law. Theoretical insights not only clarify what is possible in these
directions but may also help in modeling and proving these formal guarantees.
The wonderful book by Kearns and Roth [70] dives deep into the topic; we will
only briefly cover some of its aspects related to privacy and fairness.

In this field, TCS provides technical tools and analyses, but a technical solu-
tion is not enough. While this is beyond our survey, we refer, for instance, to the
works by the FAccT community (organized around the ACM conference on Fair-
ness, Accountability and Transparency) or STS scholars (e.g., [92] and the journal
Big Data and Society), which are key to studying ethical questions. We emphasize
that, in our view, TCS only provides a helping hand, not a complete answer.

• Privacy: Certain ML applications rely on sensitive training data, which
must be carefully protected during training. This protection is required by
the European GDPR; privacy concerns are therefore brought into legal de-
bates, in which TCS arguments are used to argue for the privacy of some
algorithms. Over the past decade, differential privacy has emerged as a
foundational tool to address this challenge. A major line of research fo-
cuses on designing differentially private algorithms for empirical risk mini-
mization (ERM), particularly when the loss function is Lipschitz or strongly
convex [23]. This work introduced several algorithms and established tight
theoretical error bounds, providing optimal risk guarantees. Building on
these ideas, differential privacy has been extended to deep learning. Differ-
entially Private Stochastic Gradient Descent (DP-SGD) offers a principled



framework for algorithm design while carefully controlling privacy budgets
[1], whereas Private Aggregation of Teacher Ensembles (PATE) leverages
the teacher-student paradigm to achieve strong utility alongside differential
privacy guarantees [98]. More recent research has focused on efficient algo-
rithms for differential learning and on handling non-convex loss functions
[21, 22]. Other work investigates how to add just enough noise to preserve
privacy without compromising accuracy, introducing mechanisms that care-
fully balance privacy and utility [55]. On the other hand, what differential
privacy actually means for practical privacy is somewhat unclear—in partic-
ular because of parameter choices [48]—and some works focus on attacks
in order to better understand the limits of this model for privacy [14].

• Fairness: The dramatic analysis of the COMPAS system by the journal-
ists of ProPublica [64] has shown that ML predictions are prone to massive
bias—sometimes replicating bias from the training data, sometimes inher-
ent to the task. In order to measure this bias, several notions of fairness
coexist, with two main categories: individual fairness tries to measure how
much predictions differ for individuals that are similar [46], while group
fairness measures whether the predictions are fair between different popu-
lation groups [20]. While the Statistics community is designing fair proce-
dures—i.e., that have small bias according to one of these measures—for
problems such as regression or classification, with the objective of bound-
ing risk or learning rate under some statistical assumption, TCS naturally
contributed to designing fair and efficient algorithms and to designing a
toolbox for fair algorithms [38, 47]; but also to understanding the relations
between different fairness notions and to formalizing impossibility results
[79, 105, 52].

Here, our survey has some shortcomings: the story for Ethical AI is not limited
to these two topics, but we did not manage to cover more. In particular, it seems
there are exciting developments around the notion of trustworthy ML, that we
would have liked to be able to discuss.

We note that, in all cases, the solutions proposed by computer scientists are
not sufficient as standalone tools. Quantifying privacy and fairness is not easy, and
perhaps not even possible; and the number of different fairness notions may blur
the debate, as mentioned on Wikipedia: "the different and sometimes competing
notions of fairness left little room for clarity on when one notion of fairness may
be preferable to another" [117]. However, these tools may be helpful when used
in combination with other sociotechnical approaches.



4 Algorithms
One of the goals of algorithm design is to invent algorithms that make better use
of memory and time. Quite naturally, some of the algorithmic techniques devel-
oped in the past now find applications in ML and diffuse ideas into that domain;
conversely, new problems arising in ML are extensively studied and optimized by
the algorithmic community.

• Algorithms for data-intensive tasks: Prominent examples of past algo-
rithms finding application today are related to the “big data” side of ML,
with huge memory and efficiency constraints. To address this, the study
of metric embeddings (e.g., embedding into structured trees [49]) and di-
mensionality reduction (so-called Johnson-Lindenstrauss [83] or Locality-
Sensitive Hashing [8]) helps simplify the input space and reduce the impact
of the curse of dimensionality. The streaming model, with its emphasis on
memory, led to the invention of sketches that allow data compression while
still enabling computation of certain statistics or information [6]. Other ex-
tensively studied problems include basic unsupervised learning algorithms,
namely clustering and regression. These have been studied through different
formulations (e.g., metric-based with k-means [11, 40] or graph-based with
sparsest cut [10]) and algorithmic settings, with emphasis on time efficiency
[45] or memory efficiency [41, 42].

• Computation of ML primitives: More recently, part of the community
has focused on efficiently computing primitives often used in contempo-
rary ML. Two examples are optimal transport and its variants, investigated
through an approximation-algorithm perspective [27], computational geom-
etry tools [3], or with an emphasis on linear-time complexity [13]; and
kernel-density estimation, with memory-efficient [104] or fast algorithms
[34, 33]. Finding other problems relevant to ML and data analysis where
the algorithmic toolbox may yield substantial improvements is not easy, as
it requires expertise in both domains. Nevertheless, it remains one of the
major questions for the subfield of algorithms that focuses on improving
practical algorithms.

5 Logic, Formal Languages, and Discrete Structures
Studying the capabilities and limitations of ML architectures involves examining
the properties they can express and the structures they can distinguish. This line of
research is deeply rooted in logic and formal languages, which provides a frame-
work for analyzing the properties of inputs that an architecture can represent. It



also draws on discrete algorithms as a tool for understanding how these architec-
tures differentiate between various inputs. Over the past decade, a surge of studies
has focused on understanding the capabilities of two fundamental ML architec-
tures: Transformers, which we have seen before, and Graph Neural Networks
(GNNs), which learn by propagating information across the edges of a graph.

• Transformers: The ability of Transformers to process sequences can be
formally analyzed by drawing on the rich traditions of logic and formal lan-
guage theory. Since Transformer inputs can be viewed as strings over a
finite alphabet, researchers can investigate which classes of languages these
models are capable of recognizing. The resulting characterization, how-
ever, critically depends on the architectural features under consideration.
The languages recognized by Transformers with hard attention have been
shown to be closely tied to those expressible in First-Order Logic (FO) and
its extensions with counting [17, 120]. In turn, while equipped with certain
expressive features, soft attention Transformers can be shown to recognize
all FO-definable languages, and even extensions [119, 121]. However, when
restricting the model to more practical architectures used in real-world ap-
plications, their ability to recognize the entire class of FO-definable lan-
guages becomes limited [84].

Interesting results have also been obtained regarding the expressive limita-
tions of certain Transformer models. For instance, Transformers equipped
with a restricted form of hard attention, known as unique hard attention, are
limited to recognizing languages within the complexity class AC0 [61]. This
limitation has significant consequences. Specifically, models with unique
hard attention are provably incapable of recognizing languages that fall out-
side this class. A prime example is the Parity language, which determines
whether a binary string has an even or odd number of ones. Because the
Parity language is not in AC0, these restricted Transformers are unable to
solve this seemingly simple task [60].

Yet another line of work has analyzed the ability to recognize languages
for Transformers extended with CoT reasoning. This capability has been
shown to boost the model’s expressive power; in fact, several models of
Transformers with CoT and hard attention have been shown to be Turing-
complete, meaning that they are capable of recognizing all decidable lan-
guages [102, 90, 51].

An excellent survey on different aspects of this topic has recently been pub-
lished [109].

• Graph Neural Networks: The foundational work in understanding the ex-
pressive power of Graph Neural Networks (GNNs) began with the semi-



nal result that their ability to distinguish graphs coincides with that of the
Weisfeiler-Leman (WL) test [118, 96]. The WL test is a widely studied
polynomial-time heuristic for checking graph isomorphism. This initial re-
sult opened a large avenue of research exploring the relationship between
different flavors of GNNs and various higher-order versions of the WL test.
The WL connection has also allowed developing a clear understanding of
which substructures of graphs can be detected, or counted, with GNNs
[37, 15, 82]. Finally, the WL test has also been related to the VC dimen-
sion of GNNs, thus providing a critical benchmark for graph representation
learning [95].

A parallel line of work has focused on understanding which properties of
graphs can be recognized or defined by GNNs. Early results in this area pro-
vided a logical characterization of the class of FO definable graph properties
that can be captured by GNNs, which coincides with the expressive power
of graded modal logic (GML) [16]. This characterization requires GNNs
to be equipped with a specific class of piecewise linear activation functions,
which are expressive enough to simulate counting up to fixed bounds. On
the other hand, it has been shown that if the activation functions are re-
stricted to be linear or polynomial, the expressive power of GNNs drops
significantly, and they can no longer capture even basic GML-definable
properties [73]. More recently, the full expressive power of GNNs—beyond
FO-definable properties—has been characterized for a restricted but expres-
sive class of activation functions (known as eventually constant functions)
in terms of an extension of GML enriched with Presburger arithmetic con-
straints [26]. In contrast, when activation functions are not eventually con-
stant, the landscape becomes less well understood. In this more general
setting, only upper and lower bounds are known for the expressive power
of GNNs in logical terms [57]. Recently, the expressive power of recurrent
GNNs—that is, GNN architectures where the same message-passing layer
is applied repeatedly over multiple rounds—has also begun to be systemat-
ically investigated [4, 103, 32].

Several of these topics are presented in depth in a recent survey [56].

6 Foundations of Data Management

Database theory offers rigorous frameworks for organizing, querying, and man-
aging large-scale structured data, which forms the backbone of many ML appli-
cations. By integrating principles from database theory, ML systems can achieve
more efficient data access, better feature extraction, and more interpretable models



grounded in logical formalisms. This synergy enhances the scalability and relia-
bility of ML algorithms and opens new avenues for understanding model behavior
through formal queries. Below, we highlight several key ideas and approaches
proposed by the database theory community that contribute to advancing these
goals.

• In-database learning: A framework that enables the training of a wide
array of statistical models directly inside a relational database has been pro-
posed [74]. This is achieved by representing features as sparse tensors and
expressing gradient computations as functional aggregate queries [75], a
powerful and general framework for expressing a wide range of database
queries that involve aggregation. The proposed method leverages the in-
herent join structure and functional dependencies of the database to signif-
icantly reduce per-iteration costs to a sub-linear level. By eliminating the
need to extract data, the system achieves substantial speedups compared to
conventional ML workflows, highlighting the power of applying database-
theoretic optimization to modern ML pipelines.

• Logic-based feature generation: This line of research investigates how
data management techniques can be exploited to learn sophisticated ML
features specified by logical queries. A concrete example is the use of the
well-known class of unions of conjunctive queries (UCQs)—which coin-
cides with the existential-positive fragment of first-order logic—to sepa-
rate classification data via a linear model whose features are given by such
UCQs [76]. Learning such query-defined features is particularly important
in settings with relational or graph-structured data, where predictive signals
often stem from patterns spanning multiple entities and relationships. Their
formal semantics also make them interpretable and amenable to theoreti-
cal analysis of expressiveness and generalization. This setting has inspired
renewed interest in the long-studied problem of learning database queries
from examples, leading to recent advances in both theoretical frameworks
and algorithmic techniques [111, 112].

• Querying ML models: One of the central concerns in the foundations of
data management is how to efficiently and effectively extract answers to
logical queries over a dataset. A notable development in recent years is the
realization that ML models can themselves be viewed as datasets—albeit
implicit and compact ones—and thus can be queried to extract meaningful
information about their input-output behavior [9, 58]. For example, query-
ing an ML model can help generate explanations for its predictions, or ver-
ify whether it satisfies certain desirable properties. The computational com-



plexity of extracting such explanations over different classes of ML models
has become a recurring topic in recent literature [19, 44, 97].

• Dealing with uncertain data: Modern ML models are powered by vast
amounts of noisy data, which means that the information extracted from
them often comes with varying degrees of confidence. A natural question,
then, is how to measure such confidence in a principled way. Database the-
ory has developed a foundational framework for addressing this challenge
through the notion of probabilistic data [110]. At its core, a probabilistic
database assigns a probability to each tuple, representing the likelihood that
the tuple is present. These probabilities can be subject to constraints or cor-
relations, enabling the modeling of rich and complex uncertainty scenarios.
A central computational task in this setting is to determine the probabil-
ity that a given query is true across all possible “worlds” encoded by the
probabilistic data—an answer that directly quantifies our confidence in the
query’s validity given the noisy dataset. This framework has led to ma-
jor theoretical advances, most notably a landmark dichotomy theorem for
unions of conjunctive queries (UCQs): some UCQs can be evaluated in
polynomial time with respect to data complexity, while others are #P-hard,
revealing a sharp boundary between tractable and intractable cases [43].
Query evaluation over probabilistic databases is closely linked to another
central problem in AI: knowledge compilation, which studies how to effi-
ciently perform reasoning tasks—such as satisfiability—over propositional
knowledge bases. This field has produced an impressive body of results,
particularly in the design and use of classes of tractable Boolean circuits
that enable efficient solutions to problems arising in the management and
analysis of probabilistic data (see [7] for a survey on this topic).

7 Formal Verification

The theory of verification—concerned with rigorously proving that systems be-
have as intended—offers powerful tools for increasing the reliability and trust-
worthiness of ML models. As ML systems are deployed in safety-critical do-
mains such as healthcare, transportation, and finance, ensuring their correctness,
robustness, and fairness becomes essential. Verification theory contributes for-
mal methods to specify desired properties of models, systematically check them
against all possible inputs, and identify counterexamples when guarantees fail.
This integration not only strengthens the safety and accountability of ML but also
deepens our theoretical understanding of its behavior, enabling the design of mod-
els that are both powerful and provably reliable. Next, we highlight several key



ideas that have emerged at the intersection of formal verification and ML over the
past decade.

• Classical verification: The verification of ML models has mostly cen-
tered around (deep) neural networks [5]. Languages for specifying desir-
able properties of the input–output behavior of neural networks are often
based on logical formalisms such as Hoare logic or linear real arithmetic,
allowing one to express statements of the form: whenever an input x to a
network N satisfies certain constraints, the corresponding output y = N(x)
also satisfies certain constraints. A closely related reachability problem
asks whether there exists an input in a given set that leads to an output
in another given set. From a complexity-theoretic standpoint, exact verifi-
cation of even simple properties is computationally intractable in the worst
case. For feed-forward ReLU networks, the reachability problem is NP-
complete [69], and this hardness persists even for shallow architectures with
a single hidden layer [108]. Going beyond reachability, robustness verifi-
cation—deciding whether all points in a perturbation set around a given
input yield outputs in a safe region—has also been shown NP-complete
[115]. Other properties can reach higher complexity: for instance, deciding
surjectivity of ReLU networks can be ΣP

2 -complete [53]. These results de-
lineate precise tractability frontiers, showing that certain restrictions—such
as monotonic activations, fixed topology, or bounded input dimension—are
necessary for polynomial-time verification. Together, these hardness classi-
fications form the theoretical foundation for why approximate or restricted
verification methods are often unavoidable in practice [69, 62].

• Advanced verification: Recently, research has increasingly focused on
more sophisticated verification models and tasks. One prominent line of
work investigates the decidability of verifying neural networks with smooth
activation functions, such as sigmoid or tanh. It has been shown that this
problem is equivalent to the decidability of the FO theory of the reals ex-
tended with the exponential function—a long-standing open problem in
model theory known as Tarski’s exponential function problem [63]. An-
other area of study is #NN-Verification, the counting analogue of standard
neural network verification. The objective here is to determine the number
of inputs that violate a given safety property. This problem is #P-complete,
motivating the design of exact algorithms and randomized approximation
techniques [89]. Building on this, a generalized probabilistic verification
framework has been proposed, aiming to compute bounds on the probabil-
ity of property violations under arbitrary input distributions. This proba-
bilistic variant is also #P-hard, and a branch-and-bound approach has been



developed to address it, with formal proofs guaranteeing both soundness
and completeness [31].

8 Knowledge Representation
Theoretical research in knowledge representation (KR) is essential for the ad-
vancement of ML because it provides a complementary perspective that helps
build AI systems that are both powerful and interpretable. KR has been part of
AI since its inception, giving the community deep insights into the strengths and
limitations of purely data-driven methods, as well as a rich set of tools for ad-
dressing key challenges in ML. While the limitations of ML—such as difficulty
in reasoning over structured knowledge or capturing complex relational depen-
dencies—are well-known, the field of KR offers concrete technical approaches to
address them. Properly integrated, KR can enhance ML by enabling the encod-
ing of explicit domain knowledge, enforcing constraints, explaining predictions in
human-understandable terms, and supporting reasoning over learned models. The
subsequent sections illustrate some of these technical solutions, including statisti-
cal relational learning, probabilistic and differentiable logic, and knowledge graph
embeddings, which collectively demonstrate how KR can complement and extend
standard ML techniques.

• Statistical relational learning: Over the past decade, statistical relational
learning (SRL) has made major theoretical advances that sharpen our un-
derstanding of the trade-offs between expressivity and tractability, while
strengthening the links between logic, probability, and ML. SRL is impor-
tant for AI because many real-world domains are both relational (entities
and their relationships matter) and uncertain (data is noisy, incomplete, or
stochastic). SRL provides the formal machinery to jointly model these
properties, enabling AI systems to learn from data while reasoning with
structured, semantically rich knowledge. A key unifying development has
been the view of many SRL formalisms through the lens of probabilistic
circuits (PCs), where structural constraints guarantee polynomial-time in-
ference and closedness under key transformations, thus reframing inference
complexity in relational models in circuit-theoretic terms [39]. Comple-
menting this, there has been work on lifted inference, which is the task of
doing probabilistic inference over a model without grounding all the vari-
ables in it. Lifted inference can be rephrased as the model counting prob-
lem: Given a FO formula ϕ and an integer n, compute the number of mod-
els of ϕ of size n. A precise characterization of which FO formulas admit
tractable model counting has been obtained [24]. In addition, several exten-
sions of this tractable fragment have been found by applying combinatorial



techniques [81, 114, 86]. SRL has also expanded beyond purely discrete
domains through the theory of model integration [25, 94].

• Probabilistic and differentiable logic: Probabilistic and differentiable logic
frameworks have become crucial for enabling reasoning under uncertainty
while still supporting gradient-based optimization. This allows symbolic
rules to be learned jointly with neural components. Over the last decade,
several theoretical advances have shaped this area. For instance, differen-
tiable logic systems such as DeepProbLog [87] have introduced end-to-end
differentiable reasoning frameworks that extend classical logical semantics
with gradient-based learning, together with analyses of complexity and ex-
pressivity [85]. This has been complemented by frameworks like Logic Ten-
sor Networks (LTNs), which introduced a many-valued, end-to-end differ-
entiable FO logic that unifies learning and reasoning in a single formalism
[12]. Further advances include the development of Logical Neural Networks
(LNNs)—a differentiable neuro-symbolic model where each neuron corre-
sponds to a component of a logical formula, enabling resilience to logical
contradictions and support for open-world semantics via real-valued truth
bounds [107].

• Knowledge graph embeddings: Knowledge graph embeddings (KGEs)
have become a central research topic at the intersection of knowledge rep-
resentation and ML because they provide a scalable way to bridge symbolic
relational knowledge with continuous vector-space learning. KGEs oper-
ate by mapping entities and relations into geometric spaces where reason-
ing tasks—such as link prediction, query answering, and ontology comple-
tion—can be carried out efficiently. Their design raises fundamental theo-
retical questions: what kinds of logical patterns, rules, and graphs can differ-
ent embedding families represent, and what are their inherent limitations?
In recent years, substantial theoretical progress has been made in addressing
these questions. For example, a geometry-based framework was proposed
demonstrating that widely used KGE models fail to capture certain exis-
tential rule patterns, and introducing embeddings based on convex regions
that can faithfully encode a particular class of existential rules while ensur-
ing both logical consistency and deductive closure [59]. Another important
contribution is BoxE, a fully expressive embedding model in which entities
are points and relations are boxes in latent space, supporting higher-arity
relations and principled incorporation of logical rules [2]. Its temporal ex-
tension, BoxTE, preserves full expressivity in temporal knowledge graphs
while exhibiting strong inductive generalization [91]. More recently, re-
search has focused on enhancing both the expressivity and interpretability



of KGEs. For instance, ExpressivE represents entities as points and rela-
tions as hyper-parallelograms in a 2D Euclidean space [99]. This geometric
design enables the model to capture a rich set of inference patterns, in-
cluding composition and hierarchy, while providing an intuitive geometric
interpretation of these patterns. An interesting survey on different aspects
of lind prediction and query answering over incomplete knowledge graphs
has recently been published [106].

9 Final Remarks

We thought of this initial column as a wide review on how different areas of TCS
— both the questions they pose and the tools they develop — have contributed
to recent advances in ML, or how they could contribute. And on the flip side,
whether developments in ML are starting to shape or inspire work in those fields
in any meaningful way.

Those questions appear ubiquitous in TCS: the future publications of the col-
umn will dive deeper into topics we glanced over. It will consist of interviews,
reviews of specific topics or position papers: we would appreciate any suggestion,
thoughts or feedback you might have!
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