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Abstract

This dialog paper offers a preview and provides a foretaste of an upcoming
work on the axiomatization of interactive classical algorithms.

The modern notion of algorithm was elucidated in the 1930s–1950s. It was
axiomatized a quarter of a century ago as the notion of “sequential algorithm”;
we call it “classical algorithm" here. The axiomatization was used to show that
for every classical algorithm there is a behaviorally equivalent abstract state
machine. It was also used to prove the Church-Turing thesis as it has been
understood by the logicians.

Starting from the 1960s, the notion of algorithm has expanded — proba-
bilistic algorithms, quantum algorithms, etc. — prompting introduction of a
much more ambitious version of the Church-Turing thesis commonly known
as the “physical thesis.” We emphasize the difference between the two ver-
sions of the Church-Turing thesis and illustrate how nondeterministic and
probabilistic algorithms can be viewed as classical algorithms with appropri-
ate oracles. The same view applies to quantum circuit algorithms and many
other classes of algorithms.

0Partially supported by the US Army Research Office under W911NF-20-1-0297.



1 Is coin flipping algorithmic?

Q: Consider flipping a coin. Is it algorithmic?

A: Why do you ask?

Q: People speak about randomized algorithms, involving probability distributions.
These distributions stem from physical processes, like flipping a coin. So a question
arises: who flips the coin? I don’t see how an algorithm could achieve that. An
external agent has to perform the flip.

A: You could also ask whether a quantum measurement is algorithmic.

Q: Isn’t that essentially the same question? A quantum measurement also yields a
probability distribution.

A: Well, if you doubt that an algorithm can flip a coin, you might be even more
skeptical about an algorithm performing a quantum measurement. That process
involves Mother Nature, after all.

Q: But coin flipping involves Mother Nature as well, doesn’t it?

A: You are right. The difference is that quantum measurement involves an aspect
of nature that we are not accustomed to and don’t fully understand, whereas coin
flips have been well understood for a long time.

In any case, I stick to the traditional view that algorithms are inherently de-
terministic, making “nondeterministic algorithm” a contradiction in terms. Yogi
Berra, an American philosopher and baseball player, once illustrated this: “When
you come to a fork in the road, take it."

Q: How do you reconcile this view with the widespread use of the term “nondeter-
ministic algorithm”?

A: This could be just a figure of speech. Nondeterministic algorithms can be
viewed as deterministic algorithms that interact with their environment where some-
one makes the necessary choices, possibly by flipping a coin. Some authors say that
a random sequence of 0’s and 1’s is part of the input, so that the necessary choices
are made ahead of time.

Alternatively — and quite legitimately — one can broaden the notion of algo-
rithm, just as the notion of numbers was broadened. From positive integers all the
way to real numbers, then to complex numbers and beyond.

Q: Let’s consider a simple example of a nondeterministic algorithm.



A: Here’s a classic ruler-and-compass algorithm with minimal nondeterminism.
The setting is a fixed Euclidean plane. Given a circle C, its center p, and a point q
outside of C, the algorithm constructs a tangent from q to C.

1. draw the midpoint r between p and q;
2. draw the circle D centered at r and passing through q;
3. choose a point s where the circles C,D intersect;
4. draw the line through q and s.

(1)

The resulting line through q and s is the desired tangent to C.
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Instruction 3 involves a nondeterministic choice. Either intersection point will
work, but the choice must be made. The algorithm doesn’t specify which one to
choose; presumably, that’s left to the executor. Aside from this step, the construc-
tion is fully deterministic.

2 Two vastly different theses

Q: Before we plunge into interactive algorithms, let me ask you, again, about the
Dershowitz-Gurevich derivation of the Church-Turing thesis in [7]. Peter Shor is
critical of it, but I’m interested in exploring the concerns he raises.

“The Dershowitz-Gurevich paper says nothing about probabilistic or
quantum computation. It does write down a set of axioms about com-
putation, and prove the Church-Turing thesis assuming those axioms.
However, we’re left with justifying these axioms. Neither probabilistic
nor quantum computation is covered by these axioms (they admit this for
probabilistic computation, and do not mention quantum computation at
all), so it’s quite clear to me these axioms are actually false in the real
world, even though the Church-Turing thesis is probably true” [21].

But let me start with this: Do you think he read the paper?



A: I’d guess that he just skimmed the abstract and then searched the text for “prob-
abilistic" and “quantum."

Q: Is this arrogance or misperception?

A: Both, I think. The misperception would disappear if he read just a bit beyond
the abstract.

There are two vastly different interpretations of the Church-Turing thesis in play.
The thesis may be formulated thus:

Church-Turing thesis. Every effectively calculable string-to-
string function is Turing computable.

A question arises: what does “effectively calculable” mean?

One interpretation is traditional in logic. In the 1930s – 1950s, the meaning of
“effectively calculable” was not in dispute. Logicians, including Church and Tur-
ing, — Turing wrote his dissertation in logic, under Church — had robust intuition
about it. This intuition is elucidated in many books, for example in the influential
books [15, §62], [19, §1.1], and [20, §9]. In this interpretation, effective calculation
was deterministic. For example Turing writes: “The behaviour of the computer at
any moment is determined by the symbols which he is observing, and his ‘state
of mind’ at that moment” [22, §9]. Let me call this original interpretation of the
thesis “classical” (though we should be careful with this term because, in quantum
computing, “classical” means “not quantum”).

The other interpretation is also natural in a sense, especially if you don’t know
the history of the subject. “Effectively calculable” can be interpreted as physi-
cally computable, which allows probabilistic and quantum computations as well as
highly parallel, distributed, etc. This broader interpretation is commonly known as
the “physical thesis.”

Q: I see. You derive the classical thesis, and you think that Shor has in mind the
physical thesis.

A: Yes, that is what I think. §1 of our paper is about effectivity. If Shor read just a
little beyond the abstract, he would know that we prove the classical thesis.

Q: Why is it “quite clear” to Shor that your axioms “are actually false in the real
world?”

A: I can only speculate about that. The axioms fail to cover probabilistic and quan-
tum algorithms, so they are wrong and the proof does not establish the thesis. Nev-
ertheless, the thesis “is probably true.” Of course I think that it cannot be true [12].



Q: The speculation seems reasonable. But if the axioms imply the physical the-
sis then the thesis must have been formulated in mathematical terms, which is of
independent interest. That should have occurred to Shor unless indeed he spent in-
finitesimal time on your paper. Anyway, is there a convincing formulation of the
physical thesis?

A: I don’t think so. Early on, Robin Gandy attempted such a formulation [6] but
the attempt was not successful. In particular, it didn’t cover distributed computing.

Q: Are your axioms true in the real world?

A: A better question is what algorithms satisfy the axioms?

Q: Do you admit that your axioms don’t cover probabilistic computations?

A: “Admit” is the wrong word. Probabilistic algorithms are out of scope of our pa-
per because they aren’t classical. The relevant paragraph says: “Methods satisfying
the Sequential Postulates include ... On the other hand, the postulates exclude ...
They are also meant to exclude nondeterministic methods ..., probabilistic methods
(like Rabin’s algorithm for testing primality), ..." But the same paragraph includes
this footnote:

“Large classes of such non-classical algorithms are covered by the gener-
alizations of the ASM Theorem in [1, 2, 3, 8].”

Q: I know from our earlier conversations that “ASM” stands for “abstract state
machine.” But what do you mean by the ASM theorem?

A: Let’s take a quick dive into the history of the ASM project. It started in mid
1980s as a computer theory project — I wanted to understand what algorithms are.
That led me to the notion of abstract state machines, originally called evolving
algebras, and to the

ASM thesis. For every algorithm there is a behaviorally equivalent
ASM.

which I see as a natural extension of Turing’s approach to the Church-Turing thesis.
The project quickly became applied and practical. An ASM community emerged,
and ASMs were successfully used for high-level executable specifications and re-
lated tasks. Article [14] is one example.

The ASM thesis was first formulated for classical algorithms [14] and then ex-
tended to algorithms in general [10]. Article [11] turned the ASM thesis, restricted
to classical algorithms, called the Sequential ASM thesis in [11], into a theorem.
That’s the ASM theorem that you asked about.



Q: Why “sequential" rather than “classical" thesis?

A: At the time, it seemed to me that the thesis can’t be called classical, because it
was new. Hence “sequential” as an imperfect substitute, emphasizing the difference
from parallel, distributed, etc.

Q: But the ordinary meaning of sequential algorithms does not rule out probabilis-
tic algorithms for example.

A: True. It would probably have been better to call the thesis classical — even
though it was new — because it is about classical algorithms.

Q: Are readers “left with justifying” your axioms?

A: No. There are four axioms (or postulates) in [7]. The first three aim to capture
all classical algorithms, whether they compute a function or not.

1. Sequential Time Postulate is self-evident, almost trivial. It says that an algo-
rithm could be viewed as (finite or infinite) automaton with states, initial states,
and a transition function.

2. Abstract State is natural, at least to logicians. The main part of it is that states
can be viewed as structures in the sense of mathematical logic.

3. Bounded Exploration Postulate says that, during a step, only a bounded part of
the state is explored, namely the part given by a fixed set of expressions. 1

Besides, the work by the ASM community provided plenty of justification. There
is little doubt that classical algorithms satisfy the three axioms. The surprising
part is that the axioms are sufficient to capture the notion of classical algorithms
mathematically.

Q: What is the fourth axiom for?

A: A string-to-string function, computed by a classical algorithm, is not necessarily
Turing computable because the initial state may have too much information. The
fourth axiom guarantees that the initial states are bare.

1The first two postulates occurred to me right away but it took me years to arrive at the third
postulate. I might have arrived at it earlier if I knew at the time about Kolmogorov’s insight “An
algorithmic process breaks down into separate steps of a priori bounded complexity” [16] in the
minutes of Moscow Mathematical Society in Uspekhi Matematicheskikh Nauk, which is translated
as Russian Mathematical Surveys, but minutes aren’t translated.



3 Spec Explorer

Q: Do you describe ASM applications in the Dershowitz-Gurevich paper?

A: We probably should have, but we didn’t — mainly because we submitted the
paper to the Bulletin of Symbolic Logic rather than a computer science journal.

Q: What would be a good example of ASM applications?

A: Let me tell you about Spec Explorer. The story illustrates how theoretical work
on ASMs had profound practical impact.

In 1998, Microsoft Research (MSR) invited me to create a group and apply the
ASM method. My first hire was Wolfram Schulte, one of the most talented people
in the ASM community in Germany. Unlike me, he had industrial experience. We
built a wonderful Foundations of Software Engineering group. In a few years the
group built an ASM-based tool, Spec Explorer that allowed us to write high-level
executable specifications and test them against programs. Upper management, in-
cluding and especially Bill Gates, liked the tool. But it seemed impossible to get
the developers to use the tool because it required nontrivial training. Spec Explorer
was an advanced but niche tool, rich in features, beloved by testers and those who
appreciated formal methods.

Then the European Union came to our rescue,. In the early 2000s, the EU rep-
rimanded Microsoft—and for good reason. While outside developers were confined
to official Windows interfaces, Microsoft’s own products could tap into undocu-
mented internal protocols that offered privileged access to the core of the operating
system. This asymmetry made meaningful competition on the Windows platform
nearly impossible2.

The EU demanded change. Specifically, it required Microsoft to produce high-
level, executable specifications of the internal Windows protocols that its own prod-
ucts used. Microsoft lacked comprehensive, precise, high-level executable specifi-
cations. Word documents and ad hoc specs weren’t sufficient.

This created a moment of crisis. And then, unexpectedly, Spec Explorer was
thrust into the spotlight. It could produce high-level executable specs using state
machines and C# annotations. It could generate test suites and simulate behaviors.
It was suitable for model checking and detecting inconsistencies.

The Windows Division picked up Spec Explorer to model protocols. The tool
was “dumbed down" a bit for broader adoption — many industrial teams want min-
imal knobs. It was also strengthened and productized to scale to the thousands of
pages of protocol documentation eventually published.

2The European Commission’s antitrust case against Microsoft culminated in a 2004 decision
(Case T-201/04).



It became an industrial-strength workhorse. Teams worked tirelessly to generate
models and produce the documentation needed to satisfy the EU’s demands. The
specifications were released as part of the Microsoft Open Specifications Promise.
Microsoft paid significant fines (over €1.6 billion across multiple years). The case
marked a major shift toward transparency and openness, especially regarding pro-
tocols and APIs.

Ultimately, it was, however, a Pyrrhic victory for the EU. While Microsoft
did produce thousands of pages of protocol specifications and did improve trans-
parency, the underlying technology landscape was shifting. The relevance of those
protocols was already beginning to fade. Web services, cross-platform frameworks,
and cloud computing were quickly rendering the entire issue obsolete.

Still, for a brief and intense period, formal modeling and executable specifi-
cations were at the center of one of the most consequential regulatory battles in
software history—and Spec Explorer played a key role in bridging the gap between
legal compliance and technical execution.

4 Examples

Q: You said that classical algorithms are deterministic, but the tangent algorithm is
not. It is a ruler-and-compass algorithm that comes from antiquity; it can’t be more
classical.

Credit: Wikipedia [23]

A: This is a matter of definition. The notion of algorithm was elucidated in logic
work of the 1930s–1950s. It is these algorithms that I call classical. They are
deterministic. The notion of nondeterministic algorithms was formally introduced
by Stephen Cook only in 1971 [5] (and independently by Levin in 197 [17], with
a slightly different terminology), though Michael Rabin and Dana Scott introduced
nondeterministic finite automata in 1959 [18].

By the way, in classical geometry, the tangent algorithm is not considered non-
deterministic. Both solutions are considered equally valid, and the choice is left to
the user.



Q: I’ve read Church’s and Turing’s thesis papers, [4] and [22], and I don’t recall
them using the word “algorithm.”

A: You are right. The term algorithm (or algorism) existed earlier, but it referred to
performing calculation using Arabic numerals. Logicians used terms like “effective
method”, “mechanical procedure”, and “rule of calculation.” It wasn’t until the
1950s–60s, with the rise of computer science, that “algorithm” took on its current
meaning: a finite, unambiguous, effective procedure for solving a problem.

Q: What ASM is behaviorally equivalent to the tangent algorithm?

A: Let me start from afar. Often, especially in small examples, the form of ASMs
from [11] is used. It is an implicit iteration of a generic one-step rule R and is given
just by R. The most common convention is that R is executed repeatedly until, if
ever, you reach a fixed-point state X, so that, in state X, executing R leaves the state
unchanged.

This convention is not appropriate for interactive algorithms. Executing R in
a fixed-point state isn’t innocent if R involves any interaction with the environ-
ment because this interaction is visible externally. Fortunately, the three axioms of
[11] imply that the halting condition of a classical algorithm can be expressed by
a Boolean-valued term. Accordingly, the program of a classical — in the sense of
classical algorithms – ASM can be given in the form

do until H
R

where R is a generic step rule and H a halting condition. For example, consider the
following version of Euclid’s algorithm for computing the greatest common divisor
d = GCD(a, b) of two nonnegative integers a ≥ b.

while b > 0 do
(a := b) ∥ (b := a mod b);

d := a
(2)

In this case, the program of a simulating ASM could be

do until d = a
if b > 0 then (a := b) ∥ (b := a mod b)
else d := a

where it is presumed that d is initially undefined (or has a value, like −1, that a
cannot possibly have).

Q: Typically, when you convert a while loop into a do-until loop, you just negate
the condition.



A: Since we insist that the do-until loop is the whole program, it needs to “suck
in” the assignment d := a and thus becomes one step longer.

Q: Implicit iteration makes good sense in this case because the step rule makes it
clear when to stop

A: Indeed, if a program (i) merely computes the value of a term t that involves no
oracle queries and (ii) at the final step executes an assignment o := t where o is an
output variable, then the obvious halting condition is o = t and the do-until loop can
be made implicit. In the case of Euclid’s algorithm, the program of the simulating
ASM can be given by the generic step rule

if b > 0 then (a := b) ∥ (b := a mod b)
else d := a

Q: Let’s return to the tangent algorithm. I’d expect that the program of an ASM
that naturally simulates (1) would be similar to (1).

A: This is true in a sense, but the only ASM commands used to form a generic step
rule in [11] are assignments, conditionals, and parallel compositions. Sequential-
ity within a step is handled by conditionals and sequentiality of different steps by
iteration.

To deal with geometric objects, we use a restricted incidence relation Inc of
type Point × Circle→ Boolean, and we need some program variables and function
symbols:

- program variables r, s of type Point, D of type Circle, and T of type Line,
- binary function symbols Cl, L,M with domain type Point × Point and range

types Circle, Line, and Point respectively, and
- a binary function symbol I of domain type Circle × Circle and range type
Point.

The intended meaning of the binary functions is as follows. Let x, y be distinct
points and A, B distinct intersecting circles. Then

- Cl(x, y) is the circle through y with center x.
- L(x, y) is the line through x and y.
- M(x, y) is the midpoint between x and y.
- I is an oracle function. I(A, B) is a point in the intersection of the two circles.

Making the do-until loop implicit, we can mimic the structure of (1).

r := M(p, q) ∥
if r = M(p, q) then D := C(r, q) ∥
if D = C(r, q) then s := I(C,D) ∥
if Inc(s,C) ∧ Inc(s,D) then T := L(q, s).

(3)



Q: Why isn’t the guard s = I(C,D) in the last line?

A: Because we cannot guarantee that the second oracle call I(C,D) will give the
same result as the previous one. (In [2], we have a convention that, within a step,
the same queries have the same anwer.)

By the way, in the case of the tangent algorithm, we can do better:

T := L(q, I(A,C(M(p, q), q))).

Q: I’d like to see an example where you start with a probabilistic algorithm, say
with the Rabin Primality Test.

A: Ok, let me first recall what it is all about.

Problem: Given an integer n determine with sufficiently high probability whether
n is prime.

Algorithm: Let a, i be integer variables initialized to 1, k a positive integer con-
stant, prime a Boolean variable initialized to true, and Random a probabilistic
oracle that, given integers b < c, selects a number in the segment [b, c] according
to the uniform probability distribution.

do until prime = false or i > k
choose a random integer a such that 2 ≤ a ≤ n − 2;

if an−1 , 1 then prime := false
else increment i by 1

The probability of a false positive — n is composite but prime retains value
true— decreases exponentially with k. So the desired precision can be given by
the value of k.

ASM. The program of a simulating ASM could be

do until (prime = false) ∨ (i > k)
a := Random(2, n − 2) ∥ i := i + 1

if an−1 mod n , 1 then prime:=false

Q: You said that classical/sequential algorithms are not parallel, and you keep us-
ing parallel composition in the examples.

A: In [11], parallelism is subject to the following constraints.



• It is used only within a step, and
• the number of components is a priori bounded.

Q: I thought that a single step results in at most one state changing action. Parallel
actions within a single step seem to contradict that.

A: Well, even Turing machines permit these two parallel actions during a single
step: changing the control state and moving the head.

5 On interactive classical algorithms

Q: You say that nondeterministic algorithms are naturally interactive. Determinis-
tic algorithms also could be interactive.

A: Deterministic algorithms are typically interactive, though interaction is often
implicit. For example, algorithm (2) doesn’t have code for computing the modulo
function and therefore interaction is necessary. But interaction is more problematic
in the case of nondeterministic algorithms, as we saw above when we discussed (3).

Q: Have you tried to extend the formalization in [11] to allow algorithms that query
possibly-nondeterministic oracles?

A: We did. The results were reported in lengthy publications [2] and [3], probably
too lengthy and involved for much of the intended audience.

Q: Why so lengthy?

A: Those papers included detailed motivations, discussions of alternatives, expla-
nations, detailed proofs. Also, they explicitly allowed viewing the operating system
as part of the environment and viewing our algorithm as an agent in a distributed
computation.

Anyway, currently Andreas Blass and I are finishing a much shorter version of
[2] with many improvements and simplifications. The axioms are the three axioms
of [11] somewhat expanded.

Q: Give me a simple example of axiom expansion.

A: The simplest example is related to the Sequential Time Postulate.

Q: I guess you just replace the transition function with a transition relation?

A: This would not be enough. There may be steps of the algorithm that transform
a state X to a state X′ but have different interactions with the oracles. The steps are
different but a transition relation would not distinguish them.



Q: I see. Interaction is, at least in principle, externally observable, and so the two
steps exhibit different behavior.

A: Correct.

Q: Does the interactive-classical framework support quantum computing?

A: It was in fact our work on quantum circuit algorithms [13] that prompted the
revision of [2]. Quantum circuits have quantum-transformation gates (unitary gates
and measurement gates) but no code to perform them. Accordingly, we need ora-
cles for those quantum transformations. Quantum circuit algorithms are naturally
interactive classical/traditional algorithms.
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