
The Education Column
by

Dennis Komm and Thomas Zeume

ETH Zurich, Switzerland and Ruhr University Bochum, Germany
dennis.komm@inf.ethz.ch and thomas.zeume@rub.de

https://inf.ethz.ch
https://informatik.rub.de
dennis.komm@inf.ethz.ch
thomas.zeume@rub.de

Assessing GPT Performance in a Proof-Based
University-Level Course Under Blind

Grading

Ming Ding
Department of Computer Science, ETH Zurich

ming.ding@inf.ethz.ch

Federico Soldà
Department of Computer Science, ETH Zurich

federico.solda@inf.ethz.ch

Weixuan Yuan
Department of Computer Science, ETH Zurich

weyuan@inf.ethz.ch

Rasmus Kyng
Department of Computer Science, ETH Zurich

kyng@inf.ethz.ch

Abstract

As large language models (LLMs) advance, their role in higher education,
particularly in free-response problem-solving, requires careful examination.
This study assesses the performance of GPT-4o and o1-preview under realistic
educational conditions in an undergraduate algorithms course. Anonymous
GPT-generated solutions to take-home exams were graded by teaching as-
sistants unaware of their origin. Our analysis examines both coarse-grained
performance (scores) and fine-grained reasoning quality (error patterns). Re-
sults show that GPT-4o consistently struggles, failing to reach the passing
threshold, while o1-preview performs significantly better, surpassing the
passing score and even exceeding the student median in certain exercises.
However, both models exhibit issues with unjustified claims and misleading
arguments. These findings highlight the need for robust assessment strategies
and AI-aware grading policies in education.

ming.ding@inf.ethz.ch
federico.solda@inf.ethz.ch
weyuan@inf.ethz.ch
kyng@inf.ethz.ch

1 Introduction
The emergence of large language models (LLMs) has revolutionized how we
interact with artificial intelligence (AI), and garnered significant attention from
researchers and the public. While LLMs have demonstrated impressive capabilities,
their true level of intelligence and reasoning remains a subject of debate.

The classical Turing Test proposes that a machine demonstrating human-like
responses in conversation could be considered intelligent. Over the past few years,
substantial efforts have been devoted to evaluating LLMs from various angles [3].
For example, LLMs can generate essays with their quality rated higher than those
produced by humans [14]; pass questions involving communication skills, ethics,
empathy, and professionalism in a United States Medical Licensing Examina-
tion (USMLE) [2]; achieve passing scores on the reading comprehension test of
the Program for International Student Assessment (PISA), a global standardized
student assessment [31]; and demonstrate strong performance in solving middle
school-level math word problems, with multiple LLMs achieving passing scores
and some exceeding 90% accuracy [32]. However, existing evaluation protocols
may fall short of comprehensively assessing their reasoning and problem-solving
capabilities. Most benchmarks involve structured datasets, such as multiple-choice
or numeric questions, which may not fully capture the complexities of real-world
tasks. While prior research has demonstrated their potential to assist humans or
improve responses through prompt engineering [28, 33], there remains a need to
evaluate LLMs in scenarios that require independent reasoning and creativity.

The study presented in this article addresses this gap by evaluating GPT models’
performance in solving complex free-response questions, specifically proof-based
problems from an undergraduate algorithms course. The tasks require not only
creative algorithm design but also rigorous justification of correctness—a skill
fundamental to human cognitive problem-solving. To ensure unbiased evalua-
tion, we anonymously submitted GPT-generated responses to exam graders, who
evaluated them under the assumption that they were written by students. Unlike
prior work that focuses on coarse-grained metrics such as pass/fail rates or overall
accuracy, we conduct a fine-grained analysis by examining grader feedback and
error patterns. This provides deeper insights into LLMs’ limitations in proof-based
and free-response problem-solving. Beyond assessing performance, our study
contributes to the broader discussion on AI’s role in education by highlighting both
its potential and its constraints. By exploring these aspects, we aim to clarify how
AI can reshape learning and assessment practices, as well as the thresholds it must
surpass to genuinely emulate undergraduate students.

Recent advancements in LLMs have introduced several competing products,
such as OpenAI’s ChatGPT [22], Google’s Gemini [11], GitHub’s Copilot [10], and
SciSpace [27]. As these models continue to improve, their progress necessitates

a reevaluation of the role and effectiveness of academic assessments in the era
of AI-assisted learning. In this work, we focus on ChatGPT-4o and o1-preview,
the latest models from OpenAI available during our experiment period. GPT-4o
(“o” for “omni”) is a multilingual, multimodal generative pre-trained transformer
developed by OpenAI and released in May 2024. In September 2024, OpenAI
released o1-preview, the first of a new series of products, with the full version
released later. Despite their rapid development, the performance of OpenAI’s latest
models in realistic educational settings remains largely unexamined. Our study
evaluates their effectiveness in solving complex academic problems.

With a particular focus on GPT-4o and o1-preview, our study makes the fol-
lowing key contributions:

1. Our study is conducted in real educational settings with authentic grading
conditions, ensuring that the evaluation closely reflects actual academic
environments. The experimental design serves as a reference for mea-
suring AI performance in an unbiased and reliable manner. Specifically,
we implement blind grading, ensuring that the teaching team remains un-
aware of the experiment and the origin of the submissions. This prevents
any potential bias in evaluation. Additionally, we generate solutions us-
ing naive prompts—without providing course materials or additional guid-
ance—ensuring that GPT does not receive any advantages from instructor
input. Different from other benchmarks that are designed to explore the
upper limits of LLM problem-solving capabilities, our approach aims to
establish a realistic lower bound on model effectiveness in educational en-
vironments, reflecting how LLMs might perform when used by students in
typical, unstructured settings.

2. We use a set of original, highly challenging exercises drawn from take-home
exams in an undergraduate algorithms theory course. These problems are
designed to be difficult even with full access to course materials, ensuring
that the evaluation assesses genuine problem-solving skills rather than mere
retrieval-based responses. Our selected exercises are original, which sets
us apart from existing popular evaluations on standardized examinations,
which often have extensive learning material available online for trainees
(including large sets of example questions and answers).

Moreover, our dataset consists of free-response, proof-based questions that
demand multi-stage reasoning. While AI’s abilities have been extensively
studied in structured tasks like coding [34] and multiple-choice questions
[24], there is limited investigation into AI’s performance on complex and
proof-based problems. Our dataset therefore provides a strong benchmark

for evaluating GPT’s capacity to produce correct, logically consistent, and
well-structured responses to expert-level questions.

In Section 6, we present a selection of exercises along with their AI-generated
solutions and the corresponding grader feedback and comments. The com-
plete dataset is made available in the appendix of the full version of this
paper [7].

Our work not only complements existing benchmarks focused on closed-
ended or structured problems but also enriches the landscape of high-difficulty
evaluations, such as BIG-Bench Hard [30], by providing open-ended, proof-
based tasks.

3. We employ expert human grading to ensure a precise and trustworthy evalu-
ation of both student and AI-generated solutions. Although this approach
requires substantial human effort, it significantly enhances the reliability of
comparisons across students, GPT-4o, and o1-preview. Additionally, our
graders provide detailed feedback and comments, allowing for a fine-grained
analysis of AI errors. By categorizing error patterns into unjustified claims,
misleading statements, and mathematical inaccuracies, this qualitative as-
sessment goes beyond numerical scoring, and provides insights into how
the models function at a deeper level and highlights specific areas where
improvements are needed. This depth of analysis distinguishes our study
and offers clearer insights into AI’s strengths and limitations in academic
problem-solving.

2 Related Work
Large Language Models (LLMs), such as GPT-4, have been extensively evaluated
in mathematics and computer science courses to assess their reasoning and problem-
solving capabilities. The evaluation of LLMs has been extensively reviewed [3],
we focus here on the studies most relevant to our work.

Tests against standard datasets. A comprehensive description of how LLMs
are traditionally evaluated can be found, for instance, in the GPT4 Technical
Report [21]. In mathematics, the GSM8K dataset [6] contains 8.5K high-quality,
linguistically diverse grade-school math word problems designed to evaluate and
enhance the mathematical reasoning abilities of language models. Hendrycks et
al. proposed the more challenging MATH dataset [13], which includes 12.5K
problems spanning a wide range of topics and difficulty levels. Recent LLMs
have also been evaluated on a variety of benchmarks: the AIME 2024 benchmark,

which features advanced competition-level mathematics problems [18]; the GPQA
Diamond dataset [24], which focuses on numerical and multiple-choice questions;
and the MMLU benchmark [12], a suite of multiple-choice questions covering
57 subjects. Additionally, the MathArena platform1 offers a live leaderboard and
curated mathematical challenges for benchmarking LLMs. A recent study by
MathArena researchers [23] evaluated LLMs on the 2025 USAMO and found
that, despite partial success by Gemini-2.5-Pro, all models struggled with proof
generation. Other evaluations include ARC, the AI2 Reasoning Challenge [5];
WinoGrande, an adversarial Winograd schema challenge at scale [26]; HumanEval,
which tests functional correctness in code generation from docstrings [4]; DROP, a
reading comprehension benchmark requiring discrete reasoning over paragraphs
[8]; and HellaSwag [36]; and others. Most recently, Latif et al. [17] evaluated the
ChatGPT o1-preview model on established benchmarks. They observed that while
o1-preview excelled in structured tasks, it displayed limitations in problem-solving
and adaptive reasoning. Notably, it outperformed undergraduate and postgraduate
participants in critical thinking, systematic thinking, data literacy, and creative
thinking tasks, and surpassed the highest human scores in scientific reasoning.

The use of LLMs in higher education. The application of AI in higher education
has also been widely explored in recent years. For example, Nikolić et al. [20]
conducted a multi-institutional, multi-disciplinary evaluation of various Generative
AI tools, including ChatGPT-3.5, ChatGPT-4, Copilot, Gemini, SciSpace, and
Wolfram, across ten engineering subjects in seven Australian universities. The
study evaluated AI performance on diverse assessment types. The tasks were
rated as Pass, Fail, Component Pass, or Possible Pass, providing a coarse-grained
evaluation of AI’s educational capabilities. In addition, Susnjak et al. [29] explored
how LLMs challenge the integrity of online exams. Their work emphasized
multi-step reasoning strategies, guiding LLMs through iterative self-review and
refinement to improve their responses. Yeadon et al. [34] evaluated the performance
of GPT-3.5 and GPT-4 in university-level physics coding assignments using Python,
concluding that AI-generated work closely approaches the quality of university
students’ work while remaining detectable by human evaluators.

Tests with human comparison. Several studies have directly compared AI and
human performance in academic settings. Stribling et al. [28] assess the capability
of GPT-4 to answer questions from nine graduate-level final examinations for
scientific trainees in the biomedical sciences. They also examine the impact
of multiple styles of GPT-4 queries (prompt patterns) and compare results to
student performance. Grading has been performed blinded for most examinations.

1https://matharena.ai

https://matharena.ai

Kipp [16] tested GPT-4o on 30 unique anatomical multiple-choice questions from
German medical licensing exams, where it consistently outperformed medical
students across six state exams. In the study of Bayer et al. [1], ChatGPT-4, GPT-4o,
and Google Gemini were tested on a physiology exam for veterinary students, with
their results compared to those of the students. ChatGPT-4o achieved the highest
score with 90% accuracy (18/20 correct answers), followed by Google Gemini
at 75% (15/20), and ChatGPT-4 at 60% (12/20), all outperforming the students’
average accuracy of 70% (13.99/20). Finally, Richards et al. [25] conducted a
dual-anonymous “quality assurance” marking exercise on four end-of-module
assessments within a distance-learning computer science curriculum. A total of
90 scripts, either student-submitted or ChatGPT-generated, were blindly graded.
All ChatGPT-generated undergraduate scripts received at least a passing grade,
whereas none of the ChatGPT-generated postgraduate scripts achieved a passing
grade.

High-difficulty datasets. Several recent studies have explored the limitations
and capabilities of large language models (LLMs) in proof-based and symbolic rea-
soning tasks using relatively small, high-difficulty datasets. BIG-Bench Hard [30]
focuses on a suite of 23 challenging tasks from BIG-Bench that were found to
be beyond the capabilities of current language models. These tasks are those
where prior language model evaluations did not outperform the average human
rater, making them valuable for stress-testing reasoning abilities. Building on
this, Program-Aided Language models (PAL) [9] were evaluated on 13 tasks span-
ning mathematical, symbolic, and algorithmic reasoning drawn from BIG-Bench
Hard and other sources. DeepMind’s AlphaProof system2 evaluated model per-
formance on six problems from the International Mathematical Olympiad (IMO),
four of which were successfully solved. Despite the small dataset, this evaluation
demonstrated that carefully selected high-difficulty problems can yield meaning-
ful insights into model capabilities—enough to support claims of “silver medal”
performance. Similarly, the miniF2F benchmark [35] for the Lean theorem prover
contains a test set of 20 formalized IMO problems, with only six problems having
fully verified Lean proofs. This benchmark highlights the difficulty of formal
reasoning tasks and has become a standard for evaluating autoformalization and
proof synthesis systems in low-data, high-complexity regimes.

3 Methodology

3.1 Experiment Design
The study presented in this article aims to assess the effectiveness of LLMs in
performing algorithm exercises assigned to university students, using a blinded
grading approach to evaluate solutions written by both students and AI.

2https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/

https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/

Course and examination information. The study was conducted in a third-year
undergraduate-level course at ETH Zurich in the Computer Science Department.3

As a core course in the Bachelor’s major “Theoretical Computer Science”, the
class tends to attract a more specialized group of students, which introduces some
selection bias compared to a typical undergraduate cohort. This introductory course
on algorithm theory carries 8 ECTS and involves an estimated workload of 200
hours over a 14-week semester. Topics covered include Randomized Search Trees,
Point Location, Bootstrapping Algorithms, Linear Programming, Randomized
Algebraic Algorithms, and Parallel Algorithms.

The course evaluation comprises two take-home exams featuring free-response
proof-based questions.4 For each take-home exam, students have two weeks to
submit solutions, with unrestricted access to all course materials. They are required
to propose algorithmic solutions and provide formal proof of correctness and
complexity analysis of proposed algorithms. All solutions must be typeset in LATEX
and submitted as PDF.

Since this is a take-home task, students have access to the Internet and poten-
tially AI tools. To ensure academic integrity as much as possible, besides requiring
students to cite any external sources for results not covered in the lectures, the
course instructors take additional measures in exercise design. Before release,
each exercise undergoes a rigorous design process that includes: (1) Non-expert
validation – Ensuring that no off-the-shelf solutions are readily available online
or in past problem sets. (2) Expert validation – Conducting test-solving sessions
among the teaching team to verify the problem’s clarity, difficulty, and originality.
These measures help maintain exercises’ effectiveness while minimizing the risk
of students relying on existing solutions.

Data collection and grading process. Each take-home exam consists of four
exercises with multiple subquestions. For the first exam, we gathered 134 student
submissions and two AI-generated responses, while for the second, we collected
122 student submissions along with two AI-generated responses.

Each exercise was graded independently, and we collected the data per exercise.
Grading was conducted by a teaching team member unaware of the submission
source (student or AI), ensuring a blind evaluation process. This approach ensures
an unbiased comparison between AI-generated and student solutions, making
the study reflective of a realistic educational setting. Our grading team consists
of PhD students and top-performing bachelor’s and master’s students (top 10%)
from previous years of the course. To ensure transparency, consistency, and to
minimize subjectivity in grading, we implemented a rigorous multi-stage process:

3https://inf.ethz.ch
4The course also includes written in-person exams, which we excluded from evaluation.

https://inf.ethz.ch

Table 1: Prompt patterns.

Types Prompts

Problem-
Solving Request

“Please try to solve the following problem. Note that there are three
questions in total. Generate your answer in LaTeX codes. Your
solution should be logically consistent and contain necessary steps
and explanations toward the final answers.
⟨LaTeX source code of the problem statement⟩”

“Now consider the following problem. There are 4 subquestions in
total. Please take the hints into consideration and do not forget the
instructions about generating your solution in LaTeX codes.”

Reference to
Lecture Notes

“Please summarize the following Theorem 4.6 to me.”
⟨LaTeX source code of the theorem statement⟩

Formatting
Request

“Please directly output LaTeX codes so that I can copy.”

“Can you clearly state your algorithm and analyze it (still in latex
codes)?”

graders first drafted a grading scheme, which was reviewed by course lecturers;
this was followed by a first-round grading and a second-round review conducted
by PhD-level graders. After grading was completed, we revealed our experiment
to all graders and asked for their permission to use the results. All graders gave
permission.

AI-solution generation. For each exercise, a member of the teaching team
generated solutions using both GPT-4o and o1-preview. This person did not
participate in any grading. Since the problem statements are well-structured and
clearly worded, no prompt engineering was applied. We used only text-based
prompts, without incorporating vision inputs or attachments. Additionally, as
the course lecture notes were not provided, the LLMs had to rely solely on prior
knowledge from their pre-training to solve the problems. However, an exception
was made for exercises that explicitly required the use of certain results from
the lecture notes. In such cases, we explicitly supplied the relevant content to
ensure the model had access to the necessary information and asked the model to
summarize the results to make sure it understood correctly. The detailed prompts
used in this experiment are provided in Table 1.

For each exercise and for each GPT model, we repeated the query process

three times and selected the best response for submission. We observed that AI-
generated solutions exhibit distinct patterns and formatting, making them easily
distinguishable from student submissions. To address this, we made minimal edits
to remove obvious AI-specific artifacts while preserving the content and reasoning
of the solutions. These adjustments helped prevent graders from unintentionally
identifying AI-generated responses based on formatting alone. More specifically,
our edits include:

1. Removing repeated problem statements, as GPT often restates the question
before providing an answer;

2. Eliminating excessive headings and subheadings, since GPT frequently
structures responses with multiple hierarchical levels;

3. Omitting unnecessary thought processes, as GPT sometimes explicitly out-
lines its reasoning before presenting the actual solution;

4. Reformatting bullet points into standard paragraphs to make the writing style
more natural and human-like.5

In our experiment, we found that only minimal edits to AI-generated responses
were needed to support effective blind grading. In proof-based mathematical
problems, student submissions naturally vary in structure and formatting due to
differences in reasoning style and experience. This natural diversity in student
submissions reduces the likelihood that AI-generated solutions stand out, even if
with slight presentation deviation from typical answers.

4 Results
In this section, we start with a coarse-grained analysis of score distributions, fol-
lowed by a fine-grained examination of error patterns based on graders’ comments.
Additionally, we conducted supplementary experiments using exercises from previ-
ous years to further validate our findings.

4.1 Score Comparison
Section 4.1 illustrates the score information for eight exercises across two exams,
highlighting variability in performance among students and AI models (GPT-4o and
o1-preview). The horizontal axis represents the exercises, while the vertical axis
indicates the percentage of full scores achieved. Each exercise’s score distribution

5Exceptions were made when bullet points are a natural way to present the content.

1st
-Ex

1

1st
-Ex

2

1st
-Ex

3

1st
-Ex

4

2n
d-E

x1

2n
d-E

x2

2n
d-E

x3

2n
d-E

x4
0%

20%

40%

60%

80%

100%

Sc
or

e

Q1/Q3
Median
GPT-4o
GPT-o1

Figure 1: Score per exercise.

is visualized with three key quantile markers: the .25 quantile/Q1 (lower marker),
the .5 quantile/median (middle marker), and the .75 quantile/Q3 (upper marker).

The data reveals significant differences in score distributions across exercises,
reflecting differences in difficulty levels. For example, in 1st-Ex3, the range
between the .25 and .75 quantile is wide, indicating a high level of difficulty.
Students’ scores are widely dispersed, with some struggling while others excelled.
In contrast, for 2nd-Ex3, over 75% of students achieved full points, suggesting that
this exercise was relatively easy for most students.

GPT-4o consistently performs below or slightly above the .25 quantile. This
indicates significant challenges for GPT-4o in tackling the exercises effectively.
Except for 1st-Ex3 where both o1-preview and GPT-4o performed badly, o1-
preview constantly outperforms GPT-4o, even by a substantial margin. Notably,
in the second exam, o1-preview demonstrates particularly strong performance,
exceeding the median and achieving scores close to full marks for 2nd-Ex1, 2nd-
Ex2, and 2nd-Ex3.

Exam passing score. Aggregating the scores across all exercises in each exam
provides insights into the AI’s ability to meet the passing criteria. Table 2 summa-
rizes the results.

For the first exam, where the passing score is set at 50% of the total score across
the four exercises, GPT-4o obtained 46%, falling short of the passing threshold and
outperforming only 17.65% of students. In contrast, o1-preview achieved 62%,
exceeding the passing threshold and outperforming 36.03% of students.

For the second exam, given a relatively easier problem set, the passing score is
higher, set at 60% of the total score across the four exercises. GPT-4o obtained 56%,
falling short of the passing threshold and outperforming only 6.45% of students. In

Table 2: Exam Passing Information

Exam Passing GPT-4o o1-preview

score score quantile score quantile

First 50 46 17.65% 62 36.03%

Second 60 56 6.45% 92 58.07%

contrast, o1-preview achieved an impressive 92%, exceeding the passing threshold
by a large margin and outperforming 58.07% of students.

This analysis highlights the clear superiority of o1-preview over GPT-4o in both
of the two exams and demonstrates the variability in their relative performances
depending on the difficulty of the exercises and the context of the exam.

4.2 Error Types
Through the above score comparison, we conclude that o1-preview outperforms
GPT-4o. In particular, o1-preview has the capability to pass the university-level
course with a relatively large margin, while GPT-4o slightly falls below the passing
score. In this part, we conduct a fine-grained analysis of each exercise. Based on
the graders’ feedback and comments, we draw some interesting error patterns and
findings, and deep dive into the problem-solving abilities of AI tools.

We categorize the errors identified by graders into three major types:

1. Unjustified Claims: Arguments that appear plausible but lack sufficient
rigor or proper justification.

2. Misleading Claims: Incorrect or invalid arguments presented as valid rea-
soning.

3. Mathematical Errors: These include basic arithmetic or algebraic mistakes,
incorrect applications of theorems, failure to address edge cases, misuse of
technical terms, and related issues.

The error types identified in solutions generated by GPT-4o and o1-preview are
summarized in Table 3. In Section 6 and in the appendix of the full version of this
paper [7], the error types and graders’ feedback for each AI-generated solution are
highlighted in red.

When analyzing the error patterns of GPT-4o and o1-preview, we observe clear
differences in their strengths and weaknesses across multiple categories of errors.

Table 3: Error types per exercise.

Exercise Unjustified Claims Misleading Claims Mathematical Errors

GPT-4o o1-preview GPT-4o o1-preview GPT-4o o1-preview

1st-Ex1 × × ×

1st-Ex2 × × × ×

1st-Ex3 × × ×

1st-Ex4 × × × × ×

2nd-Ex1 × × × ×

2nd-Ex2 × ×

2nd-Ex3 ×

2nd-Ex4 × × ×

Unjustified Claims. One of the most prominent issues with GPT-4o is its frequent
tendency to make unjustified claims, which occurs in seven out of eight exercises.
This suggests that GPT-4o often generates plausible-sounding but ultimately un-
supported reasoning. In contrast, o1-preview exhibits this error significantly less
frequently, appearing in only three exercises.

A key reason for this discrepancy is that o1-preview produces longer, more
structured, and more detailed responses compared to GPT-4o. While verbosity
does not necessarily equate to correctness, it appears to help o1-preview provide
better justification and avoid making claims without supporting arguments.

Misleading Claims. Another major issue with GPT-4o is its tendency to make
misleading claims, which appear significantly more frequently compared to o1-
preview. These errors typically involve incorrect arguments presented in a confident
manner, making them particularly problematic for grading, as they may appear
superficially correct but lack validity upon closer inspection.

However, o1-preview is not entirely free from this issue either. In 1st-Ex3
(Section 6.2), both GPT-4o and o1-preview adopt the same incorrect approach. The
significant underperformance compared to students might be AI models’ lack of
familiarity with the course content compared to the students. Moreover, the inability
to reason effectively about geometric concepts may also explain this outcome.
Solving 1st-Ex3 requires spatial intuition and geometric reasoning—areas where
current LLMs tend to struggle [15, 19].

Mathematical Errors. Both GPT-4o and o1-preview are susceptible to mathe-
matical errors, but GPT-4o commits these errors more frequently and with greater
severity. This suggests that GPT-4o may be less precise in its numerical and
algebraic reasoning, leading to more fundamental mistakes in problem-solving.

In contrast, o1-preview’s mathematical errors tend to be more localized and less
impactful on the overall correctness of its solutions. For instance, in subquestion
(b) of 1st-Ex2 (Section 6.1), o1-preview misinterprets notation, leading to minor
computational errors. However, despite these small mistakes, the overall reasoning
and logical approach remain intact, meaning the solution still demonstrates a good
understanding of the underlying concepts. This is in stark contrast to GPT-4o,
which sometimes fails in a more fundamental way by misapplying mathematical
principles altogether.

Other Findings. Course instructors often use the strategy of camouflaging ex-
isting problems to prevent students from directly finding solutions online when
designing new questions. For example, in 2nd-Ex2 (Section 6.3), students were
tasked with analyzing a linear programming technique used in designing an approx-
imation algorithm for the Boolean satisfiability problem (CNF-SAT). To obscure its
connection to well-documented materials, the instructor reframed the problem in
the context of circuit analysis, substituting key terms with alternative terminology.
Specifically, “CNF formula” became “NOT-OR circuit”, “literal” was replaced
with “input wire”, “clause” became “intermediate wire”, and “number of satisfied
clauses” was termed “output current”.

Despite these deliberate modifications, o1-preview successfully identified the
underlying mathematical structure and provided a strong solution, whereas GPT-4o
struggled. One possible interpretation of this is that o1-preview is more adept
at leveraging pre-existing knowledge from publicly available sources, potentially
explaining its superior performance on problems with well-documented solutions.

While we do not have conclusive empirical evidence to support this hypothesis,
our results represent a small but meaningful step toward understanding the true
nature of LLMs’ problem-solving abilities: whether they stem from genuine
reasoning or from leveraging correlations and latent patterns acquired during
training. This remains a fundamental and open research question in the study of
language models.

5 Discussion
In this section, we share grader reflections after revealing the GPT experiment to
them and discuss potential implications for university educators. We also discuss
several limitations of our study.

5.1 Grader Reflections
After completing the experiment, we informed the graders about the study, and
several shared their experiences evaluating AI-generated solutions. Surprisingly,
except for the grader of 1st-Ex4, who initially expressed suspicion while grading,
all other graders stated they could not distinguish AI-generated responses from
student submissions, even after being told which ones were AI-generated. This
underscores the effectiveness of our minimal editing approach in making AI-written
solutions to resemble student writing styles.

More broadly, graders consistently identified “misleading claims” as a major
challenge in evaluating AI-generated free-response answers, particularly for com-
plex reasoning tasks. Unlike clearly incorrect responses, misleading claims often
appear well-structured and confident, making them deceptively plausible. This
forced graders to actively disprove incorrect but superficially logical arguments,
which was significantly more time-consuming and cognitively demanding than
simply verifying a correct solution.

Implications for university educators. Given the strong performance of LLMs
on university-level assignments, we recommend gradually reducing the weight of
take-home exams and supplementing them with in-class assessments. In the future,
take-home assignments may be more effective when used as formative rather than
summative assessments.

Additionally, it is important to adopt AI-aware evaluation strategies that em-
phasize transparent and well-justified reasoning. For instance, our analysis of
AI-generated responses reveals that LLMs frequently make unjustified or mis-
leading claims. Grading rubrics can be adapted to penalize these types of errors
more heavily, helping to distinguish genuine human reasoning from AI-generated
artifacts.

The growing capabilities of LLMs also pose new challenges for question design.
Simple “camouflaging” of existing problems is no longer sufficient to prevent high-
performing LLMs from generating plausible answers. Instructors may need to craft
questions that target areas where LLMs still struggle, such as multi-step logical
analysis.

5.2 Limitations
Dataset size. Our dataset is relatively small, consisting of 8 exercises with 20
subquestions. Given the limited sample size, the variance of AI-generated solutions
may be high, which could introduce some uncertainty in the observed patterns.

However, we emphasize that our dataset is of exceptionally high quality, requir-
ing substantial effort in both exercise design and solution evaluation. The careful

construction of this dataset makes it a valuable resource for evaluating LLMs in
an academic setting, and we believe sharing it for further experimentation will
contribute meaningfully to the field.

Non-penalized errors. The grading schemes used in this study may not capture
all errors made by GPT models. In particular, for “unjustified claims”, graders
did not always deduct points when such reasoning issues arose, as they were not
explicitly penalized under the grading scheme. Instead, graders provided written
comments highlighting these issues. As a result, there may be a slight discrepancy
between the numerical scores and the fine-grained error analysis.

Despite this, the grading scheme was applied consistently across all student
and AI-generated submissions, ensuring that the comparative evaluation between
students, GPT-4o, and o1-preview remains reliable. The overall findings still
provide meaningful insights into AI performance in solving complex academic
problems.

Potential underestimation of LLMs’ capabilities. When generating AI so-
lutions, we deliberately used naive prompts—simple, zero-shot inputs without
advanced prompt engineering—to avoid human bias. While this approach may
not fully activate the reasoning capabilities of LLMs, it aligns with the intended
purpose of our benchmark: not to probe the upper limits of LLM performance, but
to establish a realistic lower bound on their effectiveness in educational contexts
under minimal prompting.

Additionally, since the evaluated tasks were take-home assignments, students
may have had access to AI tools and potentially interacted with them using more
advanced strategies, such as chain-of-thought (CoT) prompting, which can enhance
performance. While this may have inflated student scores, it does not undermine
the validity of our assessment of LLM performance. On the contrary, it strengthens
our conclusions about o1-preview’s capabilities: its ability to achieve comparable
or even superior scores in such a setting highlights its problem-solving abilities
and underscores the need for reassessing how student performance is evaluated in
the presence of powerful LLMs.

6 Selected Exercises

In this part, we include several exercises from our dataset to illustrate and compare
the performance of GPT-4o and o1-preview. The complete dataset is available in
the appendix of the full version of the paper [7].

6.1 1st-Ex2: Number of Spanning Trees in a Complete Graph
The objective of the exercise is to find the number of distinct spanning trees in a
complete graph with n vertices labeled with n distinct labels. An edge between
vertices i and j is labeled {i, j}, and two spanning trees are considered different if
they contain any differently labeled edges. For example, on the graph with n = 3
labeled vertices, we have 3 distinct spanning trees.

Let Kn = (V, E) be the complete graph with n vertices and suppose that the
vertices are labeled 1, 2, . . . , n. Let R ⊆ V : |R| = k be a set of k vertices that
are fixed (for simplicity, you can think of R = {1, 2, . . . , k}). Denote with Tn,k the
number of (labeled) forests on {1, . . . , n} consisting of k trees whose roots are the
vertices in R. Note that Tn,k does not depend on R but only on its size and by fixing
the roots, the number of possible forests decreases, eg. T3,2 = 2 as the vertices 1
and 2 cannot be in the same tree (using R = {1, 2}). For coherence, define also
T0,0 = 1 and Tn,0 = 0 for n > 0.

(b) Show that for all 1 ≤ k ≤ n,

Tn,k =

n−k∑
i=0

(
n − k

i

)
Tn−1,k−1+i.

Hint: It might be helpful to use different sets R in recursive cases.

GPT-4o o1-preview
We fix one vertex (say, vertex
1), and consider different ways in
which this vertex can be part of a
forest: Vertex 1 could either belong
to one of the k roots or a subtree of
any other root. If vertex 1 belongs
to a tree rooted in R (with |R| = k),
we recursively consider the remain-
ing n− 1 vertices and form k − 1+ i
disjoint trees. [Unjustified Claims:
Why k − 1 + i? Not explained] The
number of ways to choose i vertices
from the remaining n− k vertices to
add to the forest is given by

(
n−k

i

)
.

We aim to establish a recursive relationship for Tn,k by con-
sidering the role of vertex n in the forests. Let S = V \ R be
the set of non-root vertices, with |S | = n − k. We consider
how vertex n can be connected in the forest: Since R is fixed
and n may or may not be in R, but for consistency, we can as-
sume R does not contain n (if n ∈ R, the argument is similar).
[Mathematical Errors: No, but you can assume without loss
of generality.] Vertex n is not a root (since n < R), so it must
be connected to some other vertex in the forest. We consider
all possible ways to connect vertex n:

• Connecting to a Root in R: Vertex n connects directly to
one of the k roots in R. This does not change the number
of trees in the forest. However, since R is fixed, we cannot
choose which roots are in R, so we proceed differently.

Continued on the next page...

GPT-4o o1-preview
Thus, the recurrence relation is:

Tn,k =

n−k∑
i=0

(
n − k

i

)
Tn−1,k−1+i

[Unjustified Claims: Why n − k?
Not explained.]

• Connecting to Non-root Vertices in S : Vertex n connects
to one or more [Mathematical Errors: Should be “zero
or more”.] vertices in S . By connecting vertex n to some
vertices in S , we might merge their subtrees, possibly
reducing the number of trees in the forest.

We proceed by considering the number of ways vertex n can
be connected to vertices in S :

• Choose i vertices from S to connect to n: There are(
n−k

i

)
[Mathematical Errors: Should be

(
n−k−1

i

)
.] ways

to choose i vertices from S .

• Resulting Number of Trees: By connecting n to these i
vertices, we potentially reduce the number of trees by i.
However, since n is not a root, the total number of roots
remains k. So after removing vertex n, the forest consists
of n−1 vertices and k−1+i trees (since i subtrees may have
been merged) [Mathematical Errors: i in our formula
k − 1 + i is deg(n) but i + 1 is deg(n) in your solution.].

Therefore, for each i from 0 to n − k, the number of forests is:(
n − k

i

)
Tn−1,k−1+i.

Summing over all possible i, we obtain:

Tn,k =

n−k∑
i=0

(
n − k

i

)
Tn−1,k−1+i.

6.2 1st-Ex3: Point Location
Given a collection S of n points in the plane and a constant d > 0, consider the
problem of, given a query point q, finding all the points in S that are at most at
distance d from q. Devise a data structure for this problem. In order to get the
maximum score, the preprocessing time should be polynomial in the number of
points n and if k is the number of points to report, the query should take O(log(n)+k)
operations in expectation.

GPT-4o o1-preview
[Misleading Claims: Wrong approach.]
We propose using a k-d tree (k-dimensional tree)
to solve this problem. A k-d tree is a binary tree
that recursively partitions the points based on
their coordinates. The k-d tree is built recursively
as follows:

• Start with the set of points S and partition it
based on one of the coordinates (either x or
y).

• At the root level, partition the points by the
x-coordinate: choose the median of the x-
coordinates as the splitting value, and di-
vide the points into two sets: those with x-
coordinates smaller than or equal to the me-
dian, and those with larger x-coordinates.

• Recursively repeat this process for the left and
right subtrees. Alternate between splitting by
x-coordinate and y-coordinate at successive
levels of the tree.

Time complexity for building: Building the k-d
tree takes O(n log n), because at each level of the
recursion, we sort the points and split them, and
there are log n levels in a balanced tree. To query
for all points within a distance d from a given
point q, we perform a range search on the k-d
tree:

• Start at the root of the tree and compare the
query point q with the splitting coordinate at
the current level (either x or y).

• If the distance from q to the splitting plane
is less than d, recursively search both the left
and right subtrees.

• If the distance from q to the splitting plane is
greater than d, only search the subtree on the
side where q lies.

• At each leaf node, compute the Euclidean dis-
tance between the point and q. If this distance
is less than or equal to d, report the point.

Time complexity for querying: The query time
is O(log n+k), where log n comes from traversing
the tree and k is the number of points reported.
[Unjustified Claims: Not obvious argument.]

[Misleading Claims: Wrong approach.]
We propose using a balanced k-d tree (k-
dimensional tree), which is a binary search tree
optimized for organizing points in a multidimen-
sional space—in this case, two dimensions.
We build the k-d tree by recursively partition-
ing the set S as follows: At each level of the
tree, we choose a splitting dimension. For a
two-dimensional plane, we alternate between the
x-coordinate and the y-coordinate.
We select the median point along the chosen di-
mension to split the set. This ensures the tree re-
mains balanced, resulting in a depth of O(log n).
The points are divided into two subsets: those
with coordinates less than or equal to the me-
dian and those greater than the median, along
the splitting dimension. This process continues
recursively until each leaf node contains a single
point or a small number of points.
The preprocessing time to build the k-d tree is
O(n log n), as sorting is required at each level to
find medians.

Query Algorithm: To find all points within dis-
tance d from a query point q, we perform a range
search on the k-d tree: We start at the root of the
tree and compare q’s coordinate along the split-
ting dimension with the node’s splitting value. If
the absolute difference between q’s coordinate
and the splitting value is less than or equal to
d, both subtrees might contain points within dis-
tance d of q. In this case, we recursively search
both subtrees.
If the difference is greater than d, only one sub-
tree needs to be searched—the one on the same
side as q. At each node, if the point stored there
is within distance d from q, we add it to the list of
points to report. The search continues recursively
until all relevant subtrees have been explored.

The traversal time through the tree is O(log n)
for a balanced k-d tree. [Misleading Claims:
Not true if we go through more branches.] The
time to report the k points within distance d of
q is O(k), since we check each candidate point
individually. Therefore, the total expected query
time is O(log n + k).

6.3 2nd-Ex2: NOT-OR Circuits Using Linear Programming
A digital circuit consists of a network of wires connected through logic gates. Each
wire carries a signal, which can be either 0 (representing false) or 1 (representing
true). In this exercise, we consider a class of circuits called NOT-OR circuits,
which consist of three sequential layers.

• Input Layer: The circuit has n input wires, where each wire i (for i =
1, 2, . . . , n) carries either a 1 or a 0. The sequence of values on these input
wires is called the input configuration.

• Negation Layer: The n input wires are passed through a layer that outputs
2n wires. For each input xi, this layer produces both xi and its negation,
denoted as not(xi). These values are referred to as intermediate wires.

• OR Layer: The intermediate wires are then fed into a layer that outputs m
wires, each representing a OR-gate value C j ∈ {0, 1} computed from a subset
of the intermediate wires (for j = 1, 2, . . . ,m). Each OR-gate value is 1 if
at least one of its intermediate wires has value 1. Multiple OR-gates may
receive the same intermediate wire as input.

Figure 2: A scheme of a NOT-OR circuit

We consider a NOT-OR circuit where each OR-gate may take as input an
arbitrary number of intermediate wires. Each output OR-gate C j controls a switch
that regulates an output current f j ≥ 0. The total output of the circuit is defined
as

∑m
j=1 C j f j. Given a circuit and outputs f1, . . . , fm, our goal is to find an input

configuration that maximizes this total output.

(b) Design a polynomial-time deterministic algorithm that returns an input configu-
ration achieving at least half of the maximum possible output current.
Hint: Consider an input configuration and its negation.

GPT-4o o1-preview
We aim to design a polynomial-time deter-
ministic algorithm that achieves at least half
of the maximum possible output current.

Algorithm:
Given a NOT-OR circuit with n input wires,
proceed as follows: 1. Compute the out-
put current for the given input configura-
tion x. 2. Compute the output current
for the negation of the input configuration
not(x). 3. Select the configuration (either
x or not(x)) that results in the higher output
current. [Unjustified Claims: Needs more
argumentation, you are basically already as-
suming the thing you want to show here.]

Justification:
Each OR-gate C j is connected to the val-
ues of the intermediate wires xi and not(xi).
Therefore, either x or not(x) must contribute
at least half of the maximum output current.
Since the algorithm evaluates both configu-
rations, it achieves at least half of the maxi-
mum possible output current.

Conclusion:
This deterministic algorithm runs in poly-
nomial time and guarantees at least half of
the maximum output current. [Misleading
Claims: Wrong claim.]

Algorithm:

1. Compute the total output when all input
wires are assigned 0. Let this output be
T0.

2. Compute the total output when all input
wires are assigned 1. Let this output be
T1.

3. Choose the input configuration (all zeros
or all ones) that yields the higher total
output.

Proof of correctness:
Consider any input configuration S and its
negation S̄ (where each input is flipped). For
each OR-gate C j, at least one of C j and C̄ j

outputs 1 because the inputs to C j in S are
the negation of its inputs in S̄ . Therefore:

C j + C̄ j ≥ 1.

Let Tmax be the maximum possible total out-
put. Then:

T (S) + T (S̄) =
m∑

j=1

(C j + C̄ j) f j

≥

m∑
j=1

f j ≥ Tmax.

Therefore, at least one of T (S) or T (S̄) is at
least 1

2 Tmax.

References
[1] Harun Bayer, Fazilet Gül Ince Araci, and Gülsah Gürkan. Chatgpt-4o, chatgpt-4 and

google gemini are compared with students: A study in higher education. International
Journal of Technology in Education and Science, 8(4):627–644, 2024.

[2] Dana Brin, Vera Sorin, Akhil Vaid, Ali Soroush, Benjamin S Glicksberg, Alexander W
Charney, Girish Nadkarni, and Eyal Klang. Comparing chatgpt and gpt-4 performance
in usmle soft skill assessments. Scientific Reports, 13(1):16492, 2023.

[3] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao
Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang, Yi Chang,
Philip S. Yu, Qiang Yang, and Xing Xie. A Survey on Evaluation of Large Language
Models. 15(3):1–45.

[4] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry,
Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea
Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Fe-
lipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth
Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas
Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saun-
ders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra,
Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati,
Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. Evaluating Large Language Models Trained on
Code.

[5] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa
Schoenick, and Oyvind Tafjord. Think you have Solved Question Answering? Try
ARC, the AI2 Reasoning Challenge.

[6] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz
Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. Training Verifiers to Solve Math Word Problems.

[7] Ming Ding, Rasmus Kyng, Federico Solda, and Weixuan Yuan. Assessing gpt
performance in a proof-based university-level course under blind grading. arXiv
preprint arXiv:2505.13664, 2025.

[8] Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh,
and Matt Gardner. DROP: A Reading Comprehension Benchmark Requiring Dis-
crete Reasoning Over Paragraphs. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 2368–2378.

[9] Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie
Callan, and Graham Neubig. Pal: Program-aided language models. In International
Conference on Machine Learning, pages 10764–10799. PMLR, 2023.

[10] GitHub. GitHub Copilot: Your AI Pair Programmer, 2024.

[11] Google DeepMind. Gemini AI, 2024.

[12] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn
Song, and Jacob Steinhardt. Measuring Massive Multitask Language Understanding.
In International Conference on Learning Representations.

[13] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric
Tang, Dawn Song, and Jacob Steinhardt. Measuring Mathematical Problem Solving
With the MATH Dataset.

[14] Steffen Herbold, Annette Hautli-Janisz, Ute Heuer, Zlata Kikteva, and Alexander
Trautsch. A large-scale comparison of human-written versus chatgpt-generated
essays. Scientific reports, 13(1):18617, 2023.

[15] Mehran Kazemi, Hamidreza Alvari, Ankit Anand, Jialin Wu, Xi Chen, and Radu
Soricut. Geomverse: A systematic evaluation of large models for geometric reasoning.
arXiv preprint arXiv:2312.12241, 2023.

[16] Markus Kipp. From gpt-3.5 to gpt-4. o: A leap in ai’s medical exam performance.
Information, 15(9):543, 2024.

[17] Ehsan Latif, Yifan Zhou, Shuchen Guo, Lehong Shi, Yizhu Gao, Matthew Nyaaba,
Arne Bewerdorff, Xiantong Yang, and Xiaoming Zhai. Can OpenAI o1 outperform
humans in higher-order cognitive thinking?

[18] Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian
Zhang, and Zhicheng Dou. Search-o1: Agentic Search-Enhanced Large Reasoning
Models.

[19] Spyridon Mouselinos, Henryk Michalewski, and Mateusz Malinowski. Beyond lines
and circles: Unveiling the geometric reasoning gap in large language models. arXiv
preprint arXiv:2402.03877, 2024.

[20] Sasha Nikolic, Carolyn Sandison, Rezwanul Haque, Scott Daniel, Sarah Grundy,
Marina Belkina, Sarah Lyden, Ghulam M Hassan, and Peter Neal. Chatgpt, copilot,
gemini, scispace and wolfram versus higher education assessments: an updated
multi-institutional study of the academic integrity impacts of generative artificial
intelligence (genai) on assessment, teaching and learning in engineering. Australasian
journal of engineering education, 29(2):126–153, 2024.

[21] OpenAI. GPT-4 Technical Report.

[22] OpenAI. ChatGPT: Optimizing Language Models for Dialogue, 2024.

[23] Ivo Petrov, Jasper Dekoninck, Lyuben Baltadzhiev, Maria Drencheva, Kristian
Minchev, Mislav Balunović, Nikola Jovanović, and Martin Vechev. Proof or bluff?
evaluating llms on 2025 usa math olympiad. arXiv preprint arXiv:2503.21934, 2025.

[24] David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe
Pang, Julien Dirani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level
google-proof q&a benchmark. arXiv preprint arXiv:2311.12022, 2023.

[25] Mike Richards, Kevin Waugh, Mark Slaymaker, Marian Petre, John Woodthorpe, and
Daniel Gooch. Bob or Bot: Exploring ChatGPT’s Answers to University Computer
Science Assessment. 24(1):1–32.

[26] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Wino-
Grande: An adversarial winograd schema challenge at scale. 64(9):99–106.

[27] SciSpace. SciSpace: AI-Powered Research Platform, 2024.

[28] Daniel Stribling, Yuxing Xia, Maha K Amer, Kiley S Graim, Connie J Mulligan, and
Rolf Renne. The model student: Gpt-4 performance on graduate biomedical science
exams. Scientific Reports, 14(1):5670, 2024.

[29] Teo Susnjak and Timothy R McIntosh. Chatgpt: The end of online exam integrity?
Education Sciences, 14(6):656, 2024.

[30] Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay,
Hyung Won Chung, Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou,
et al. Challenging big-bench tasks and whether chain-of-thought can solve them.
arXiv preprint arXiv:2210.09261, 2022.

[31] Esteban Vázquez-Cano, Jose M Ramirez-Hurtado, Jose M Saez-Lopez, and Eloy
Lopez-Meneses. Chatgpt: The brightest student in the class. Thinking Skills and
Creativity, 49:101380, 2023.

[32] Jonathan Vidal. Evaluation of the performance of state-of-the-art large language
models (llms) in solving math word problems. Available at SSRN 4902960, 2024.

[33] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and
Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large
language models. 36.

[34] Will Yeadon, Alex Peach, and Craig Testrow. A comparison of human, gpt-3.5, and
gpt-4 performance in a university-level coding course. Scientific Reports, 14(1):23285,
2024.

[35] Roozbeh Yousefzadeh, Xuenan Cao, and Azim Ospanov. A lean dataset for interna-
tional math olympiad: Small steps towards writing math proofs for hard problems.
arXiv preprint arXiv:2411.18872, 2024.

[36] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag:
Can a Machine Really Finish Your Sentence? In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pages 4791–4800.

	Introduction
	Related Work
	Methodology
	Experiment Design

	Results
	Score Comparison
	Error Types

	Discussion
	Grader Reflections
	Limitations

	Selected Exercises
	1st-Ex2: Number of Spanning Trees in a Complete Graph
	1st-Ex3: Point Location
	2nd-Ex2: NOT-OR Circuits Using Linear Programming

