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This month, in the Distributed Computing Column, Neil Giridharan surveys
some exciting recent work on DAG BFT protocols. Over the last decade, Byzan-
tine fault-tolerant (BFT) state machine replication has proved to be one of the most
effective and robust general techniques for building a distributed service. Tradi-
tionally, such protocols were based around repeatedly executing Byzantine agree-
ment, where servers agreed iteratively on the sequence of actions to take. More
recently, however, there has been a new “DAG-based” approach where servers
collectively construct a DAG that can then be ordered in a consistent manner.
This new approach has led to significant performance improvements, and enabled
a variety of new optimizations (e.g., decoupling data transfer from agreement).

In this survey, Neil Giridharan provides an overview of this new class of proto-
cols. He begins by describing Bullshark, the first partially sychronous DAG BFT
protocol; and he then shows how more recent protocols such as Shoal++, Sail-
fish, and Cordial Miners, Mysticeti, and Autobahn build on Bullshark to optimize
performance.

Overall, this article provides a comprehensive overview of the state-of-the-art
for DAG BFT protocols today, along with some nice insights into the subtleties
involved in high performance state machine replication.

The Distributed Computing Column is particularly interested in contributions that propose inter-
esting new directions and summarize important open problems in areas of interest. If you would
like to write such a column, please contact me.
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Abstract

Traditional Byzantine fault tolerant (BFT) state machine replication (SMR)
protocols have a reputation of having poor performance despite decades of
work in optimizing these protocols. Recently, a new family of protocols,
DAG BFT, has been shown to have much higher throughput than traditional
BFT protocols despite having higher communication complexity. This has
attracted a lot of interest in improving DAG BFT protocols. This brief survey
gives background on the foundational DAG BFT protocols and summarizes
the techniques of state-of-the-art results. Finally, it concludes by highlight-
ing avenues for future work.

1 Introduction
Byzantine fault tolerant (BFT) state machine replication (SMR) protocols imple-
ment the abstraction of a single totally ordered log of client requests. These proto-
cols must handle malicious failures and network asynchrony, which can arbitrar-
ily delay messages. BFT SMR is a core building block of many systems such as
blockchains, distributed databases, and cloud infrastructure.

The most well-known and extensively studied BFT SMR protocols are in the
traditional BFT [6, 14, 26, 18, 11, 13, 15] family. Traditional BFT protocols typi-
cally work by having a leader drive progress, while having a view change mecha-
nism to replace leaders that are faulty or slow. These family of protocols have been
extensively optimized to achieve optimality in theoretical metrics such as round
and communication complexity. Despite this theoretical optimality, traditional
BFT SMR protocols have shown to have poor performance in practice [12, 7, 23].

Recently, a new family of BFT SMR protocols emerged known as DAG BFT [16,
7, 5, 10, 23, 22, 3, 17, 4]. These protocols work by having all replicas build a DAG
of data proposals, and then totally ordering this DAG according to some determin-
istic rule to reach a consistent state. DAG BFT is suboptimal in theoretical metrics
like communication complexity. However, they have impressive practical perfor-
mance, achieving 10x throughput compared to traditional BFT protocols [7]. This



is in large part because they decouple data dissemination from agreement, allevi-
ating a key throughput bottleneck of traditional BFT SMR.

These impressive performance results have attracted a lot of interest in DAG
BFT from academics and industry practitioners alike. They have been adopted
by several blockchain projects [5, 1, 10] and have been cited numerous times.
Unfortunately, these protocols are not the easiest to understand. DAG BFT uses
different techniques and arguments, making it difficult for those unfamiliar to de-
velop a strong intuition for these protocols. Furthermore, it is also hard to compare
DAG BFT protocols, and to understand the various trade-offs that each protocol
makes. This makes it difficult to tweak and extend these protocols, which is often
necessary when trying to deploy these protocols into production.

This paper is a survey on DAG BFT protocols in the partial synchrony model [9],
as partial synchrony is the most widely used network model for BFT SMR. Our
goals are twofold. We first hope to give an intuition of how DAG BFT works, so
that unfamiliar readers can understand new DAG BFT protocols. Secondly, we
aim to cover the various techniques of recent state-of-the-art DAG BFT protocols
with the goal of illustrating the different trade-offs of each protocol.

We first give background on Bullshark [23, 24], the first partially synchronous
DAG BFT protocol (Section §3). Understanding Bullshark is the key to under-
standing many of the newer DAG BFT protocols, which either directly use Bull-
shark in a black-box manner or modify its internals. Next, we begin to cover
recent DAG BFT results starting with protocols in the certified DAG family (Sec-
tion §4). These protocols utilize techniques that do not modify or change the
Bullshark’s DAG structure. After that, we cover protocols in the uncertified DAG
family (Section §5). These protocols use a similarly structured DAG but with dif-
ferent properties. Finally, we cover protocols in the hybrid DAG family (Section
§6, which combine characteristics of traditional leader-based BFT protocols with
DAG BFT.

2 Preliminaries
All covered protocols adopt the most popular BFT system model [6]. We as-
sume a total of n = 3 f + 1 replicas, where at most f of the n replicas can be
faulty. Faulty replicas can behave arbitrarily, while correct replicas must execute
the protocol faithfully. We assume a static adversary that can coordinate the ac-
tions of faulty replicas. Partial synchrony [9] is the adopted network model. In
partial synchrony, there exists an unknown Global Stabilization Time (GST) and
a known upper bound ∆ on the message delivery time, such that before GST the
network is asynchronous (no bound on message delivery time), but after GST all
messages are guaranteed to arrive within ∆. We also often refer to δ as the ac-



tual message delay when analyzing latency. We assume standard cryptographic
primitives like hash functions and digital signatures and assume that they cannot
be broken by the adversary. Replicas use authenticated, reliable, point-to-point
channels to communicate. They are assumed to check the validity of signatures
before processing the corresponding messages.

BFT SMR outputs a linearizable totally ordered log of client requests which
satisfy the following properties:

• Safety. No two correct replicas commit different values at the same log
position.

• Liveness. All client requests are eventually committed in the log.

• External Validity. Any committed value must satisfy an external predi-
cate P.

3 Bullshark
In this section, we give background on the Bullshark [23, 24] protocol, since it
was the first partially synchronous DAG BFT protocol. Bullshark consists of two
core components: (i) an algorithm that constructs a DAG of data proposals, and
(ii) an algorithm that outputs a consistent total order of the DAG. We first focus
on the algorithm that constructs the DAG (§3.1). We then show how the order-
ing algorithm (§3.2) totally orders the DAG without exchanging any additional
messages.

3.1 Constructing the DAG
The DAG is divided into a number of integer-valued rounds (starting from 0),
where in each round there is at most one vertex per replica. A vertex in the DAG
represents a data proposal from a source replica, while an edge indicates a causal
relationship between vertices. A valid vertex in round r only contains edges to at
least n− f vertices from round r−1. The causal history of a vertex, v, is the set of
vertices that are reachable from v by following some sequence of edges. In every
even-numbered round there is a pre-defined leader. An anchor is a vertex whose
source replica is the leader for the round. The ordering algorithm uses anchors to
reach a consistent total order.

DAG properties. The ordering algorithm requires the DAG to satisfy the fol-
lowing properties:



• Non-equivocation. For any position in the DAG, no two correct replicas
will have different vertices.

• Data availability. For any vertex in a correct replica’s DAG, at least one
correct replica has stored the corresponding data proposal.

A DAG that satisfies these properties is known as a certified DAG.

Adding Vertices to the DAG. To add a vertex to the DAG, a replica invokes
consistent broadcast on its data proposal. Consistent broadcast guarantees the
following properties:

• Validity. If the source replica is honest, then all correct replicas will deliver
the source replica’s vertex.

• Consistency. If a correct replica delivers vertex v and another correct replica
delivers vertex v′, then v = v′.

• Integrity. A correct replica delivers at most vertex.

Consistency ensures the non-equivocation property of the DAG, while validity
and integrity ensure that each DAG round contains at least n − f vertices — one
per replica. When a replica delivers a vertex from consistent broadcast it obtains a
certificate, which acts as a proof of delivery and a proof of data availability. Then
it adds the certificate to its local DAG, so that its next vertex can include at least
n − f certificates.

Consistent Broadcast Protocol. When a replica, ri has a new vertex, vi, con-
taining a data proposal and n − f certificates (edges) it sends a signed Propose
message containing vi to all replicas. Upon receiving a Propose message from a
replica, ri, a replica r j checks (i) that the vertex contains n− f certificates form the
previous round and (ii) that it has not voted for another vertex in the same round
from the same source replica. If these checks pass, a replica stores the associated
data proposal, and sends a signed Votemessage containing a hash of the vertex to
replica ri. When replica ri receives n − f matching Vote messages, it assembles
them into a certificate, acting as a proof of delivery. Replica ri then sends this
certificate to all replicas. Once a replica receives this certificate it delivers vertex
vi and adds the certificate to its DAG.



Advancing DAG rounds. Once a replica has delivered n − f vertices in round
r, it has enough information to create a new vertex for round r + 1. However,
eagerly doing so can compromise liveness of the ordering algorithm, which relies
on hearing from slow but correct replicas. As a result, a replica starts a timer in
every DAG round to wait for vertices from slow but correct replicas.

In even rounds, a replica waits to hear from the leader. It can move to the next
round if it delivers the anchor or if the timer expires. For odd rounds, a replica can
advance if the ordering algorithm commits the anchor in the previous round or if
the timer expires. As an optimization (in odd rounds), replicas can also advance
if they conclude that it was impossible for the anchor to be committed.

3.2 Totally Ordering the DAG
In traditional state machine replication or atomic broadcast protocols, replicas
agree on an ordered sequence of values. Bullshark takes a similar approach by
agreeing on a sequence of anchors. Once a sequence of anchors is committed, the
causal history of each anchor in the sequence is ordered by any deterministic rule,
to establish a consistent total order for all vertices in the DAG. Thus, the main
goal of the ordering algorithm is to agree on a sequence of anchors. An example
execution of the ordering algorithm is shown in Figure 1.

The sequence of anchors can be thought of a hash chain, where each anchor
has a parent anchor. The parent of an anchor, Ai, is defined as the anchor with
the highest round in Ai’s casual history. An anchor A j extends another anchor Ai

if A j is a descendant of Ai in the hash chain. Given an anchor, A, the sequence
of anchors is determined by recursively computing the parent for each anchor.
Once a replica commits an anchor, all prior anchors in the hash chain are also
committed. To preserve safety, the commit rule needs to satisfy the following
invariant.

• Extension. If a correct replica commits an anchor, A, in round r, then any
anchor in round r′ > r must extend A.

The extension invariant ensures safety as any committed anchor must be in the
prefix of any later anchor that is committed. For example, if one correct replica
commits anchor A1 and another correct replica does not (due to asynchrony or
faults), then once the other correct replica commits a future anchor, A2, A2 is
guaranteed to extend A1; thus, A1 will also be committed.

Commit Rule. The commit rule counts the number of votes for an anchor,
where a vote is a vertex that has an edge to the anchor. A replica can commit
an anchor, A, in round r if it observes f + 1 vertices (votes) in round r + 1 that



each have an edge to A. This guarantees that any vertex in round r + 2 will have
an edge to at least one of the f + 1 votes (by quorum intersection). The extension
property is satisfied, since any future anchor is in round r + 2 or contains some
vertex in round r + 2, which must have a path to the anchor in round r. Note that
the commit threshold only needs to be f + 1 rather than 2 f + 1, since the DAG
guarantees non-equivocation.

Final Total Order. Recall that an anchor, A, defines a hash chain of anchors
where A is the tip. Once an anchor is committed, all anchors in the hash chain are
also committed. To compute the anchor sequence, a replica recursively gets the
parent anchor, which is the latest anchor in its causal history.

Once the sequence of anchors is computed, a replica will iterate through each
anchor in order and execute its causal history in some deterministic order. This is
safe since the causal history of an anchor is unique.

3.3 Analysis

Communication Complexity. Each vertex has size O(n), since it contains n− f
edges. Each edge is a certificate containing O(n) signatures, but assuming thresh-
old signatures this cost can be reduce to O(1). Consistent broadcast has O(n2)
complexity for messages of size O(n). So since there are O(n) replicas each broad-
casting a vertex, the total complexity is O(n3).

Throughput. Communication complexity has often been assumed to negatively
correlate with throughput. However, prior work [7] observed that in practice data
dissemination is a major throughput bottleneck. Bullshark parallelizes data dis-
semination across all replicas, avoiding a bottleneck at a single leader replica un-
like other traditional BFT protocols. This results in better bandwidth utilization
and higher throughput compared to traditional BFT protocols [7, 23], despite the
higher communication complexity. In practice with batching, consensus metadata
messages are often much smaller in size compared to data proposals. Thus, the
overhead from more metadata messages does not significantly impact throughput.

Latency. We analyze latency under good-case conditions when the network is
synchronous, and there are no faults. Anchors take 2 DAG rounds to commit,
where each DAG round takes 3δ (message delays) due to consistent broadcast.
Vertices in odd (non-anchor) rounds require an additional DAG round to be com-
mitted, since they must wait to be included by the anchor in the next round. Fi-
nally, vertices in even (anchor) rounds that are not the anchor require 4 DAG
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Figure 1: Illustration of the DAG at replica R1 with n = 4, f = 1. The columns
represent the round numbers and the rows are all the vertices from a particular
source replica. L1 denotes the first anchor (in round 0). There are f + 1 = 2 votes
for L1, so L1 is committed. L2 is the second anchor in round 2. L1 is the parent
of L2 in the hash chain sequence since it is the latest anchor in L2’s causal history.
L2 only has one vote for it, so it is not committed. The next anchor, L3, does
not have L2 in its causal history, but does have a path to L1, so L1 is its parent
anchor. There are 2 votes for L3 in round 5, so the hash chain sequence L1, L3
is committed. Anchor L4 has L3 in its causal history, so L3 is its parent anchor.
Similarly, it has 2 votes and so the hash chain anchor sequence of L1, L3, L4 is
committed.

rounds to commit, since they must wait until the next anchor (in the next even
round) includes them.

In summary, for an even rounds the anchor has a commit latency of 6δ, while
non-anchor vertices have a commit latency 12δ. For odd rounds, vertices have
a commit latency of 9δ. Thus, the expected commit latency is 10.5δ. However,
the full consensus latency encapsulates not just the commit latency but also the
queuing latency for a client request to be included in a vertex. Since a vertex is
disseminated every DAG round, and each DAG round takes 3δ, on average it will
take 1.5δ for a request to be included in a vertex. Thus, the full consensus latency
is 12δ.



Chain Quality. In traditional BFT protocols there is no bound on the number of
committed proposals from Byzantine replicas. However, in Bullshark, each DAG
round contains at least n− f vertices, of which at least a majority are from correct
replicas. This guarantees a property called chain-quality which states that at least
1
2 of committed blocks must be from correct replicas.

Fairness. The verison of Bullshark described here lacks fairness in the sense
that vertices from some correct replicas may be "orphaned". Since each vertex
is only guaranteed to have n − f edges, vertices from slow but correct replicas
in round r may not be referenced by vertices in round r + 1. Once this happens,
the orphaned vertices from round r are effectively abandoned since no future ver-
tex will reference them. To solve this issue, Bullshark adopts weak edges [16]
to allow vertices to also have edges to some vertices not in the immediate prior
round. Weak edges make garbage collection difficult, since vertices can reference
prior vertices in arbitrarily lower rounds. We omit discussing how to do garbage
collection while preserving fairness and refer to the Bullshark paper [23] for more
details.

Data Synchronization. For a given vertex, v, a replica may only have a cer-
tificate proving data availability, and not the actual corresponding data payload
for v or for vertices in v’s causal history. A replica therefore must synchronize
with other replicas to fetch all payload data if it does not already have the data
locally. This data synchronization process unfortunately is sequential and may
require multiple network round-trips. To see why, take an example of a vertex
v in round 3. First, a replica must fetch the data for v’s edges in round 2. Only
when the vertices from round 2 are fetched does a replica know what vertices to
synchronize on from round 1. Similarly, once all data for the vertices in round 1
are fetched, the replica must synchronize on the data for vertices in round 0.

Key question. Of the metrics we analyzed, latency is the major one for which
Bullshark is suboptimal compared to other BFT protocols. Bullshark’s consensus
latency of 12δ is significantly higher than the optimal 3δ that leader-based proto-
cols can achieve [2]. Thus, most recent work address the key question of whether
it is possible to design a DAG BFT protocol that achieves low latency. Recent
work has answered this question in the affirmative, using different designs. We
classify the recent results into three different protocol families: Certified DAG,
Uncertified DAG, and Hybrid DAG, and start by discussing the Certified DAG
family.



4 Certified DAG

In this section, we cover the Shoal [22], Shoal++ [3], and Sailfish [21] protocols.
These protocols belong to the certified DAG family. The certified DAG family
of protocols adopt the same DAG as in Bullshark but adopt various techniques to
reduce Bullshark’s latency.

4.1 Shoal

Shoal [22] does not modify Bullshark internals, but instead applies two general-
purpose techniques to reduce latency: pipelining and leader reputation. Shoal
takes as a starting point a single-shot version of the Bullshark protocol. Single-
shot Bullshark runs on a certified DAG starting at some round r. It terminates
immediately upon committing the first anchor in some round r′ ≥ r.

Pipelining. Shoal creates a pipelining effect by invoking multiple single-shot
Bullshark instances sequentially. Once an anchor is committed in round r, a new
instance is started in round r + 1. Optimistically, every instance will commit an
anchor in the first round it was invoked, resulting in an anchor being committed
in every round. As in Bullshark, once an anchor is committed its causal history
is ordered in some deterministic way. Safety is preserved since each instance in-
herits Bullshark’s safety property, which ensures all correct replicas will agree on
the same first anchor to order. Bullshark’s safety property also ensures all cor-
rect replicas will agree on which round to invoke each new single-shot Bullshark
instance.

Leader reputation. The pipelining effect can be nullified by faulty or slow lead-
ers. To see this, suppose the first single-shot Bullshark instance commits an anchor
in round 0 but the second instance commits an anchor in round 3 instead of round
1 because the round 1 leader was faulty. Vertices in rounds 1 and 2 experience
high latency because they have to wait for the anchor in round 3 to be commit-
ted. To mitigate this issue, replicas can assign reputation scores to other replicas,
and only elect leaders with high reputation scores. These reputation scores can be
computed based on past participation history. A key challenge is ensuring that all
correct replicas agree on reputation scores; otherwise, different replicas can elect
different leaders when running a single-shot Bullshark instance, causing a possible
safety violation. Shoal solves this challenge by computing reputation scores de-
terministically using only the causal history of the last committed anchor. Since
all correct replicas will agree on the same first anchor to commit, and use the



same deterministic function, they will compute the same reputation scores, and
thus compute the same leaders to use for the next single-shot Bullshark instance.

4.2 Shoal++
Shoal still has the same commit latency for anchors as Bullshark (6δ). Shoal++ [3]
proposes a faster commit rule to reduce this latency down to 4δ. Additionally,
Shoal++ more aggressively pipelines to further reduce consensus latency.

Fast Commit Rule. Recall that the Bullshark commit rule requires f + 1 votes
delivered through consistent broadcast. Shoal++ makes the observation that re-
ceiving 2 f + 1 Propose messages for vertices in round r + 1 that have an edge to
the anchor in round r is enough to commit the anchor in round r (without needing
to wait for consistent broadcast to finish for those vertices). To see why, note that
of these 2 f + 1 messages at least f + 1 are from correct replicas. By the validity
property of consistent broadcast, all correct replicas are guaranteed to eventually
deliver the vertex that appears in a Proposemessage from a correct source replica.
Thus, since there are at least f + 1 votes that will eventually be delivered for the
anchor, it is safe to commit without waiting for consistent broadcast to complete.
This saves two message delays compared to Bullshark’s commit rule, reducing
the anchor commit latency to 4δ.

Aggressive Pipelining. Shoal limited pipelining to at most one new single-shot
Bullshark instance per round. Shoal++ supports pipelining multiple single-shot
instances in the same round as in Mysticeti [4] (covered in Section §5.2). Shoal++
pipelines up to n instances in the same round. Each instance is assigned a mono-
tonically increasing sequence number (starting from 1) corresponding to a posi-
tion in a totally ordered log as in PBFT [6].

Unlike in Shoal, each single-shot instance is initialized with a round r and
a source replica i. Replica i’s vertex in round r acts as the first anchor in the
single-shot instance. The instance either decides to commit replica i’s vertex in
round r or to skip it. Once a correct replica has committed or skipped an instance
with sequence number j, it waits until all sequence numbers from 1 through j − 1
have been committed or skipped. It then iterates through each sequence number
in order and either executes the causal history of the committed vertex in some
deterministic order or skips the instance. By the safety property of Bullshark,
all correct replicas will agree on the same committed vertex or all agree to skip,
so a consistent total order is established. This aggressive pipelining essentially
makes all vertices anchors in some instance, and so with the fast commit rule they
experience a commit latency of 4δ.



More DAGs. Shoal++ additionally pipelines more DAGs to reduce the queuing
delay for a client request to be included in a vertex. Normally a client request
would take on average 1.5δ to be included in a vertex, since consistent broadcast
completes in 3δ. Shoal++ staggers three DAGs in parallel, that are each offset by
one message delay, so that for a given replica, a vertex is proposed every mes-
sage delay in some DAG. Therefore, a new client request can be included in the
next vertex of whichever DAG is ready, reducing the queuing delay to 0.5δ. To
maintain a consistent total order, the committed anchor sequence for each DAG
is interleaved into a single totally ordered log, where the causal history of each
anchor is executed in some deterministic order.

4.3 Sailfish
Unfortunately, the fast commit rule is not always guaranteed to trigger in good-
case conditions when the network is synchronous and there are no faults. Sail-
fish [21] addresses this issue by introducing a notion of timeout certificates to
the protocol. Timeout certificates prevent situations where Byzantine replicas can
cause correct replicas to skip voting. Timeout certificates additionally enable Sail-
fish to support an anchor in every round without pipelining. Sailfish also has a
multi-leader variant, which pipelines multiple instances in a round.

Fast Commit Rule Revisited. Recall that the fast commit rule requires 2 f + 1
Propose messages for vertices in round r + 1 that reference the anchor in round r.
Suppose a Byzantine replica observes f Byzantine vertices that do not reference
the anchor, and f + 1 correct vertices in round r + 1 that vote for the anchor in
its DAG. This Byzantine replica can quickly propose a valid vertex in round r + 2
causing the f remaining correct replicas to jump to round r + 2. Since these f
correct replicas will not vote in round r + 1, the normal Bullshark commit rule
must be used since there are only f + 1 correct votes.

Timeout Certificates. The key problem is that a Byzantine replica can cause a
subset of correct replicas to advance rounds too quickly and not vote. To solve
this, Sailfish adds additional constraints to vertices so that Byzantine replicas can-
not advance rounds too quickly. A valid vertex must now contain an edge to the
anchor or a timeout certificate. A timeout certificate contains 2 f + 1 timeout mes-
sages, where a timeout message indicates that a replica did not receive the anchor
after a certain amount of time. The previous attack fails with this change because
if a Byzantine replica tries to propose a vertex without an edge to the anchor, then
it must include a timeout certificate, which requires at least f + 1 correct replicas
to timeout. Since correct replicas do not timeout in good-case conditions, no time-



out certificate can form and the fast commit rule will be satisfied at every correct
replica.

This constraint on the vertices also enables an anchor in every round without
pipelining. If an anchor in round r + 1 has an edge to the anchor in round r,
then the extension invariant is satisfied. Otherwise, if the anchor in round r + 1
has a timeout certificate, then it is not possible for the anchor in round r to have
committed, so it is safe for the anchor in round r + 1 to not reference the anchor
in round r.

4.4 Discussion

Shoal, Shoal++, and Sailfish utilize the same certified DAG backbone so they in-
herit the same chain quality, fairness, data synchronization, and throughput prop-
erties.

Communication Complexity. The communication complexity of Shoal and Shoal++
remains at O(n3), since they do not add any extra messages. Sailfish also has the
same complexity because timeout certificates can be reduced to O(1) size using
threshold signatures.

Latency. In terms of latency, Shoal still requires two DAG rounds or 6δ to com-
mit anchors. However, with pipelining there is an anchor in every round, so non-
anchor vertices only have a latency of 9δ. The queuing latency is on average 1.5δ
since vertices are proposed every 3δ. The full consensus latency is thus 10.5δ.

Shoal++ reduces the commit latency of anchors to 4δ, and pipelines aggres-
sively so that all vertices experience 4δ commit latency. By pipelining DAGs,
Shoal++ also reduces the queuing latency down to 0.5δ for a total end-to-end la-
tency of 4.5δ. Sailfish also uses the fast commit rule, so anchor commit latency is
also 4δ. Non-anchor vertices require an extra DAG round to be included by an an-
chor, resulting in a commit latency of 7δ. However, applying the same pipelining
optimizations to Sailfish results in a consensus latency of 4.5δ.

5 Uncertified DAG

The uncertified DAG family of protocols assume a DAG structure similar to a cer-
tified DAG. However, they do not require the DAG to satisfy the non-equivocation
property. As a result, they eschew consistently broadcasting vertices and instead
send vertices on a best-effort basis. Best-effort broadcast reduces latency by two



message delays compared to consistent broadcast but requires the ordering algo-
rithm to have additional complexity to handle possibly inconsistent DAGs. We
first present Cordial Miners [17], and then cover Mysticeti [4].

5.1 Cordial Miners
As with the certified DAG, the uncertified DAG is also divided into a number of
integer-valued rounds. In each round, a source replica attempts to add a vertex to
the DAG, where each vertex contains n− f edges to vertices in the previous round.
However, since replicas do not consistently broadcast vertices, it is possible for a
Byzantine replica to equivocate and have multiple vertices in a given round.

DAG Structure. Cordial Miners logically groups every three rounds in the DAG
into a wave. For example, rounds 0, 1, and 2 are in wave 1 rounds 3, 4, and 5 are
in wave 2, etc. In the first round of a wave there is a pre-defined leader, and its
associated vertex is the anchor. Note that if the leader is Byzantine, there may be
multiple anchors due to equivocation. The second round in the wave is a voting
round, where a vote is a vertex in round r + 1 which has an edge to an anchor in
round r. The third round of the wave is the final voting round, where if enough
votes are observed an anchor is committed.

Adding vertices to the DAG. When a replica wants to add a vertex to the DAG
it sends a Propose message containing this vertex to all replicas. Upon receiving
a Propose message with a new vertex, a replica adds the vertex to its local DAG
only if it has received the entire causal history of the vertex. If replicas do not wait
to have the entire causal history, then it is possible for a vertex to be committed
without any correct replica having the entire causal history for that vertex. This
violates the data availability property, which compromises liveness. If a replica
is missing the causal history locally, it can ask the source replica to send over
the missing vertices. Note that correct replicas may receive equivocating vertices.
Although this is proof of Byzantine behavior, correct replicas still need to add
these vertices to their DAGs because it is possible one of these vertices may be
committed.

Advancing DAG rounds. As with certified DAGs, correct replicas must use
timeouts in each DAG round to ensure liveness. Upon entering a new DAG round,
replicas start a timer, and wait to receive at least n− f vertices in the current round.
Then, a replica checks whether the following conditions hold. If a replica is in the
first round of a wave, it advances if it received an anchor or times out. If a replica
is in the second round of a wave, it advances if it received a quorum of n− f votes



for an anchor or times out. Finally, if a replica is in the third round of a wave, it
advances if it commits an anchor or times out.

Totally Ordering the DAG. As with the certified DAG family of protocols,
the ordering algorithm agrees on a hash chain of anchors. Once this sequence of
anchors is committed, the causal history of each anchor can be committed in some
deterministic order. To maintain safety, the commit rule must satisfy the extension
invariant, which ensures that if an anchor is committed, then any future anchor in
the hash chain must extend it.

Commit Rule. An anchor, A, in round r can be safely committed if there are
n − f votes in round r + 2 that have edge to a certificate for A. A certificate
for A consists of n − f votes in round r + 1 for A. The certificate ensures non-
equivocation in that at most one anchor in a wave can receive n − f votes (by
quorum intersection). The commit rule satisfies the extension invariant because
any vertex in round r+3 must have an edge to one of the certificate votes in round
r + 2 (by quorum intersection). Since any future anchor must be in round r + 3 or
have a vertex in round r + 3 in its causal history, the extension invariant holds.

Final Total Order. Like in certified DAGs, given an anchor, the full hash chain
of anchors is defined by recursively computing the parent anchor. The parent, Ap,
of an anchor, A, is the latest anchor (highest round) in A’s causal history such that
there is a vertex which references a certificate of Ap. A vertex which references
a a certificate is when there is a vertex in A’s causal history that has n − f votes
for Ap. Once an anchor is committed, the hash chain sequence of anchors is also
committed. A replica will then iterate through each anchor in sequence order and
execute the causal history of each anchor in some deterministic order.

5.2 Mysticeti
Mysticeti [4] uses the core Cordial Miners [17] protocol but adds aggressive
pipelining similar to Shoal++ [3]. In each round, there are k proposer slots, which
are totally ordered. A proposer slot runs an instance of a single-shot Cordial Min-
ers. For a single-shot instance for a proposer replica i in round r, the first anchor is
initialized to be a vertex from replica i in round r. Once a commit or skip decision
is reached for this anchor, the single-shot instance terminates. Before a proposer
slot is executed, a replica must wait for all prior proposer slots (in earlier rounds
or smaller ranked slots in the same round) to either be committed or skipped. A
replica then iterates through all committed slots in order and executes the causal
history of each committed vertex in some determinsitic order.



5.3 Discussion

A benefit of Cordial Miners and Mysticeti is that they require fewer signatures
compared to certified DAG protocols. This is because they do not require forming
certificates containing n − f signatures for each vertex. A single signature is
effectively shared as a certifying vote for several vertices.

Data Synchronization. A drawback of Cordial Miners and Mysticeti is that
replicas must fetch the entire causal history of a vertex before adding it to the
DAG. Otherwise, replicas may commit a vertex v, where no correct replica has
some vertex, v′, in v’s casual history. This can happen if Byzantine replicas do
not send their vertices to all replicas. Unlike with certified DAGs, this data syn-
chronization step must occur on the critical path of consensus. In the worst case,
correct replicas may have to synchronize on an arbitrary large amount of data,
which can trigger timeouts even under benign network conditions. Furthermore,
this synchronization step increases the communication complexity to O(n4), as
each correct replica may have to send a causal history of O(n) vertices of size
O(n) to O(n) replicas.

Latency. For latency, Cordial Miners requires 3 DAG rounds to commit an an-
chor, where a DAG round has δ latency. Non-anchor vertices in the first round of
a wave require 6 DAG rounds to commit since they must wait for the next anchor
to be committed. Vertices in the second and third round of a wave require 5 and
4 DAG rounds respectively as they must also wait for the next anchor to be com-
mitted. In total, the commit latency is 5δ. Since vertices are proposed every δ, the
expected consensus latency is 5.5δ.

Mysticeti aggressively pipelines so that each vertex has the same commit la-
tency as the anchor latency (3δ). Unfortunately, even with good-case conditions
it is not guaranteed that the k slots in a round will all be committed. This requires
the n− f replicas who voted for the first slot in a round to also vote for all the other
slots. When this condition does hold, Mysticeti has a consensus latency of 3.5δ
(3δ commit latency and 0.5δ queuing delay). Note, though, that not every mes-
sage delay is created equal. Each message delay in Cordial Miners and Mysticeti
requires sending a full data proposal which in practice can take longer to transmit
than consensus metadata messages. In contrast, with certified DAGs only the first
message of consistent broadcast requires sending the full data proposal.



6 Hybrid DAG
Hybrid DAG protocols combine a DAG-based data dissemination layer with a
traditional leader-based BFT consensus protocol to get the best of both worlds.
Instead of relying on a commit rule that counts the number of edges that reference
a particular vertex, hybrid DAG protocols use a traditional BFT consensus proto-
col to commit vertices. A traditional BFT consensus protocol commits vertices
with low latency, while the DAG layer ensures high throughput by parallelizing
data dissemination across all replicas. We first describe the Autobahn [12] system,
and then cover Star [8] and BBCA-Chain [19].

6.1 Autobahn

In Autobahn [12], replicas construct a DAG of data proposals. This DAG has a
simpler structure compared to the other DAG protocols, since the DAG edges are
not used for consensus. Periodically, the consensus protocol will commit snap-
shots of the DAG. Once a snapshot has been committed, replicas must fetch the
data proposals of the snapshot using a data synchronization protocol. Finally,
replicas can execute all the vertices in the snapshot in any common deterministic
order. We first describe how the DAG layer works, followed by the consensus
layer, and then finally the data synchronization protocol.

DAG Layer. Unlike prior DAG protocols, a valid vertex from a source replica
i has only one edge to the previous vertex from replica i. The resulting DAG
consists of n parallel hash chains, one per replica.

Autobahn uses weak consistent broadcast to disseminate vertices. Weak con-
sistent broadcast follows the same protocol as consistent broadcast but instead of
a certificate containing n − f Vote messages, it contains f + 1 Vote messages.
Certificates in weak consistent broadcast do not protect against equivocation. In-
stead, they prove that at least one correct replica has stored the corresponding data
proposal for the vertex. This ensures that if a correct replica commits a vertex, the
corresponding data proposal is guaranteed to be retrievable.

A replica can propose a new vertex as soon as its last vertex was delivered
through weak consistent broadcast. Unlike prior DAG protocols, replicas do not
proceed in synchronized rounds or wait for timeouts. Replicas propose vertices at
their own pace as soon as their own vertices have been delivered. Vertices can be
pipelined to further reduce latency.

Consensus Layer. Replicas may have diverging DAGs due to equivocation or
asynchrony. The consensus layer reconciles these differences by ensuring that



replicas agree on common snapshots of the DAG. A snapshot consists of the latest
vertex from each source replica (n certificates), representing the frontier of the
DAG. To ensure that snapshots cover new vertices, correct replicas must propose
snapshots that satisfy a coverage parameter. This coverage parameter indicates the
number of hash chains that have at least one new vertex since the previous snap-
shot. It is typically set to n− f (since at most f are faulty). The specific consensus
protocol used is a slightly modified version of PBFT. However, in principle any
consensus protocol can be used. Once a particular snapshot is committed, replicas
fetch the causal history of all n vertices that represent the snapshot and commit
them in some common deterministic order.

Data Synchronization. Autobahn takes advantage of the simpler DAG structure
to have a faster data synchronization protocol. In Autobahn, a replica only votes
for a vertex in weak consistent broadcast from a source replica once it has already
voted for all prior vertices in that source replica’s hash chain (causal history).
Since replicas vote for vertices in order, if a vertex has f + 1 votes, then at least
one correct replica from this set of f +1 has stored the entire causal history. Thus,
a replica can get the entire causal history of a vertex in just a single round-trip
from asking the set of f +1 replicas that voted for the vertex. This is in contrast to
certified DAG protocols which must recursively synchronize, incurring multiple
round-trips to fetch the entire causal history.

6.2 Star

Star [8] has a similar DAG layer and consensus layer, where the DAG layer con-
sists of n parallel hash chains and the consensus layer uses a traditional BFT pro-
tocol like PBFT. The DAG layer also uses weak consistent broadcast to deliver
vertices, but unlike Autobahn it does proceed in synchronized rounds. A replica
can only proceed to the next round and propose a new vertex upon delivering
n− f vertices in the current round. The consensus layer runs a consensus instance
per round, which agrees upon a set of at least n − f vertices to output. Replicas
can then order the committed vertices in some deterministic way. The DAG and
consensus layers can also be pipelined to reduce latency.

6.3 BBCA-Chain

BBCA-Chain [20] uses an uncertified DAG but differs from Cordial Miners and
Mysticeti in that it does not use a DAG-based commit rule for ordering. Instead,
it leverages a traditional leader-based BFT protocol, BBCA, similar to PBFT, to



agree on a hash chain of leader vertices. BBCA messages can be piggybacked
onto the messages to construct the DAG, so that it has minimal overhead.

Leader and non-leader vertices both have n− f edges to vertices in the previous
DAG round; however, they differ in how they are disseminated. Non-leader ver-
tices are proposed in every DAG round using best-effort broadcast, while leader
vertices are proposed every time BBCA outputs a valid ticket. This ticket is typ-
ically a commit certificate for the previous leader vertex, but can also be a set
of timeout messages that indicate a quorum of replicas have not committed the
previous leader vertex. The ticket is necessary so that the extension property is
satisfied. If a leader vertex v is committed, then any future leader vertex must
have a ticket which extends v.

6.4 Discussion
Communication Complexity. The simplified DAG structure reduces the com-
munication complexity of the data layer to O(n2) for Autobahn and Star since
each vertex only has a single edge instead of n − f . While consensus inputs are
of size O(n), using a traditional BFT consensus protocol still retains O(n2) com-
munication complexity. Autobahn’s fast data synchronization may incur O(n3) in
the worst case, as O(n) replicas may need to synchronize with O(n) replicas on
O(n) tips. BBCA-Chain still retains the uncertified DAG structure of Sailfish and
Mysticeti, so its communication complexity is also O(n4).

Latency. Autobahn’s consensus latency is 4.5δ applying aggressive pipelining
and an optimization for consensus to propose uncertified vertices. This includes
δ for a vertex to be disseminated, 0.5δ to be included in a consensus proposal,
and another 3δ for the consensus protocol to commit the vertex. Star’s consensus
latency (including pipelining) includes 0.5δ for a request to be included in a vertex,
2δ for the vertex to be added to the DAG (weak consistent broadcast), and 3δ for
consensus to terminate. For BBCA-Chain, vertices are proposed every δ, so on
average the queuing delay is 0.5δ for a request to be included in a vertex. Leader
vertices experience a latency of 3δ using BBCA. Non-leader vertices take δ to
be disseminated by best-effort broadcast, 1.5δ to be included by the next leader
vertex, and 3δ for BBCA to commit that vertex.

Chain Quality. Star achieves chain quality by ensuring that each consensus in-
stance decides at least n − f vertices, of which at least n − 2 f are from correct
replicas (≥ 1

2 of total replicas). Autobahn does not cap the amount of vertices that
can be committed from a particular consensus instance, so it is possible that a ma-
jority of committed vertices are from Byzantine vertices. Autobahn thus sacrifices



chain quality to provide each replica the same opportunity for progress.

Seamlessness. A core contribution of Autobahn is defining a property called
seamlessness. Seamlessness is a property that attempts to capture the robustness
of a partially synchronous protocol. In a truly robust system, a synchronous period
should not be affected by asynchrony that occurred before. Specifically, seamless-
ness states that after a period of asynchrony there should not be a performance
degradation that lasts once synchrony returns.

Traditional BFT protocols are not seamless since during asynchrony they may
fail to make any progress causing a backlog of uncommitted requests to form. The
following synchronous period must work off this entire backlog, causing latency
to spike until this backlog is worked off completely. Certified DAG protocols
are almost seamless, but not quite. During an asynchronous period, consensus
may stall but vertices are continually added to the DAG. Once synchrony returns,
and consensus commits a new vertex, these uncommitted vertices from the asyn-
chronous period are also committed as part of the causal history. As a result,
latency does not spike due to a large backlog. However, the data synchronization
process to fetch the causal history of a committed vertex can take many round-
trips, leading to a latency increase.

Uncertified DAGs (including BBCA-Chain) are not seamless, since data syn-
chronization must occur on the critical path of consensus. After an asynchronous
period, there could be a large amount of data to synchronize on, which can cause
timeouts to fire, increasing latency. Star is also not seamless because during asyn-
chrony a consensus instance is started per DAG round. Once synchrony returns,
all these consensus instances need to terminate before new requests can be exe-
cuted.

Autobahn is seamless since the DAG grows during asynchrony. Then, once
a synchronous period returns the first consensus instance commits the entire sub-
DAG that formed during asynchrony. The fast data synchronization protocol en-
sures that fetching the entire sub-DAG takes just a single round-trip.

7 Conclusion
This survey covered state-of-the-art results in partially synchronous DAG BFT.
Significant progress has been made in reducing communication complexity and
latency. However, recent results have not quite achieved optimal latency [2, 6].
Progress has also been made on practical issues such as improving fairness, cen-
sorship resistance, and data synchronization. One challenge in particular is achiev-
ing censorship resistance without committing duplicate transactions. Mir-BFT [25]
proposed a solution, but further improvements would be interesting future work.
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