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Abstract

Given an undirected graph G = (V, E), it is a difficult problem (complete
for #P) to determine the total number of vertex covers C ⊆ V of G. In
contrast, deciding whether most C cover a graph (meaning, at least half of
all possible C ⊆ V are covers) turns out to be tractable. Intriguingly, this
can be proved in very different ways, namely using search trees from fpt
theory, using backdoor sets from sat solving, using randomized sampling
in conjunction with gaps in probability spectra, using algorithmic meta-
theorems, using forbidden minors from graph minor theory, using forbidden
subgraphs in conjunction with bounded tree-depth, and using the construction
of algorithmically simple well-quasi-orderings. The present paper explains
and celebrates how this diverse crowd of approaches, ideas, and methods,
which Theoretical Computer Science has developed over the last fifty years,
can be applied to solve a basic problem like “decide whether most vertex sets
cover a given graph,” but also to solve many (at least superficially) harder
counting–threshold problems.

1 Introduction
One of the central endeavours of Theoretical Computer Science in general, and
of Algorithmics and Complexity Theory in particular, is to find different and ever
better ways of solving computational problems. For some fundamental problems,
such as matrix multiplication or sorting, there are impressive and seemingly endless
(and not-yet-dried-up) streams of results in the literature that offer incremental run-
time improvements in theory or in practice or both. Besides improving algorithms,
one can also analyze problems from different viewpoints: For instance, the vertex
cover problem and the clique problem are both NP-complete via extremely weak
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reductions (and thus, in a sense, just “different encodings of the same question”),
but these problems differ strongly when viewed from other viewpoints: The vertex
cover problem is easily 2-approximated (just take all vertices in a maximal match-
ing) while the clique problem does not even permit an n1−ε-approximation (unless
P = NP, see [35]), the vertex cover problem is fixed-parameter tractable [10], while
the clique problem is W[1]-hard [9]. Studying computational problems using the
different analytic tools developed by computer scientists over last fifty years, rather
than focusing on a single algorithm for a problem, resembles exploring a landscape
by hiking to different viewpoints and taking in the different views, rather than
looking at a pixelated photo.

The landscape that we will explore in the present paper is centered on the
following problem: “Given an undirected graph G = (V, E), is it true that at least
half of all possible vertex subsets C ⊆ V are covers of G, meaning that each edge
{u, v} ∈ E intersects C?” For example, triangles (also known as K3) have this
property: The empty set and the three one-element sets ( , , and ) are no covers
of the triangle, while the three two-element subsets ( , , and ) as well as the
complete set ( ) are covers. So, four out of eight subsets are covers and, thus, at
least half. Similarly, 4-vertex paths (also known as P4) have this property and
so does any star like or (known as K1,k in general), while a 4-vertex cycle
(also known as C4) does not, since out of the 16 possible subsets only seven are
covers.

At first glance and from afar, this problem appears to be a rather hard problem
since counting vertex covers is a hard problem in general: It is complete [33] for
the class #P, which is high up in the polynomial hierarchy. Of course, our task is
not actually to determine the number #vc(G) of vertex covers of an arbitrary graph
G = (V, E), but “just” to determine whether #vc(G) ≥ 2|V |/2 or #vc(G) < 2|V |/2
holds. Nevertheless, it seems, at least at first glance, that in order to determine
whether this very fine and precise distinction holds, we need to compute #vc(G).

When we approach the problem more closely, we suddenly see that it is very
much tractable: Indeed, in the earlier spirit of looking at a problem from different
viewpoints, seven different ways will be explored of proving that the problem can
be solved efficiently.

Before we have a closer look, some more rigorous definitions will be useful:
As already indicated, an undirected graph G is a pair (V, E) of a vertex set V and
an edge set E consisting of subsets of V of size 1 or 2 (so we allow loops, but
no “empty edges”). A (vertex) cover of G is a set C ⊆ V with C ∩ e , ∅ for all
e ∈ E. Let #vc(G) be the size of the set {C ⊆ V | C is a cover of G}, so #vc( ) = 4
and #vc( ) = 7, and let Prvc[G] := #vc(G)/2|V | be the fraction of subsets that are
covers (or, equivalently, the probability that a randomly chosen subset is a cover),
so Prvc[ ] = 1

2 and Prvc[ ] = 7
16 . Then the graph problem whose complexity we

study in this paper is:



Definition 1.1 (Majority of Vertex Covers Problem). maj-vc := {G | Prvc[G] ≥ 1
2 }.

The fact that covers C ⊆ V intersect all edges of a graph clearly means that
the remaining vertices I = V \ C must form an independent set. Thus, maj-vc is
the same problem (not just a different encoding, but literally the same problem)
as asking whether at least half of all possible vertex sets are independent sets in a
given graph.

A different way of looking at maj-vc is to think of the vertices of G as propo-
sitional variables and to think of a set C ⊆ V as an assignment β that makes the
variables in C true and all other variables false (formally, let B = {false, true}
contain the two possible truth values and define β : V → B by β(v) = true for
v ∈ C and β(v) = false for v < C). Then the “cover property,” by which C ∩ e , ∅
must hold for all e ∈ E, means that for each {u, v} ∈ E we must have β(u) = true
or β(v) = true. In other words, if we form a propositional formula φG that is
a conjunction, taken over all {u, v} ∈ E, of the clauses (u ∨ v), then β must be
a satisfying assignment of φG. For example, the graph is the formal tuple
G = ({v1, v2, v3, v4}, {{v1, v2}, {v2, v3}, {v1, v3}, {v3, v4}}) and it corresponds to the for-
mula φG = (v1 ∨ v2)∧ (v2 ∨ v3)∧ (v1 ∨ v3)∧ (v3 ∨ v4). Note that φG is in conjunctive
normal form with at most two literals per clause and without negations; and also
note that for any formula φ of this form there is a graph G such that φ = φG. Phrased
differently, maj-vc can be seen as the problem of telling for a 2cnf formula φ with-
out negations (a monotone formula) whether at least half of all assignments are
satisfying. In the notation of [30], maj-vc would be written as mon-2sat-pr≥1/2.

Instead of switching to logic in order to generalize maj-vc, we can also stay
in the context of graph theory, but consider hypergraphs. A k-hypergraph is a
pair H = (V, E) where V is still a vertex set and each e ∈ E is a subset of V of
size at most k. Thus, undirected graphs are 2-hypergraphs in this sense (ignoring
the possibility of an empty edge e = ∅, which are allowed in hypergraphs, but
forbidden in normal graphs). The generalization of vertex covers are hitting sets,
which are sets X ⊆ V such that e∩X , ∅ holds for all e ∈ E. The problem of telling
whether at least half of all vertex subsets of a, say, 3-hypergraph are hitting sets is
then the problem maj-3hs. Note that this is the same problem as mon-3sat-pr≥1/2,
so, once more, we can recast these graph problems as sat problems.

Contributions of This Paper. As already mentioned, maj-vc, the problem of
telling whether most vertex sets are covers of a graph, is a tractable problem –
and readers are invited to try to come up with a polynomial-time algorithm at
this point, if they have not already done so (it is not too hard, but certainly not
trivial). The central contribution of the present paper is not showing that maj-vc ∈ P
holds: This follows easily from the work of Akmal and Williams [2], who show
not only maj-vc = mon-2sat-pr≥1/2 ∈ P, but even the much more general statement



ksat-pr≥p ∈ P for all k ≥ 1 and all rational p ∈ [0, 1], by which tractability still
holds if we allow negated literals, if we allow clauses of any fixed size k > 2, if we
allow other thresholds p , 1/2, and if we allow any combination thereof.

Rather, the present paper is about presenting seven different ways of proving
the tractability of maj-vc (or, equivalently, of mon-2sat-pr≥1/2). We focus on this
problem (and not on more general problems like the aforementioned ksat-pr≥p)
to keep the presentation simple (the analysis of ksat-pr≥p in [2] and also in [30]
quickly becomes extremely technical), but also because some of the ideas presented
in the following only work for monotone clauses or for size-2 clauses or both.
Nevertheless, in each case we will have a look at how the presented ideas generalize
(or do not).

The first way is quite straight(forward): Apply the search tree technique [10]
from fpt theory. However, we need a small “twist” as our problem is not really a
parameterized problem: Build a search tree by finding an arbitrary edge {u, v} ∈ E
in the graph and then add three numbers, namely the number of G’s covers C with
C∩{u, v} = {u}, with C∩{u, v} = {v}, and with C∩{u, v} = {u, v}, which are obtained
recursively. In a normal search tree, we end the recursion at a parameter-dependent
depth since, when this depth is reached, “no solution” can exist; in our case, we
end it with the answer “no majority of covers” when depth 3 is reached. We will
show that this answer is, then, correct.

The second way is based on a technique from sat solving: Backdoor sets [34].
We will see that whenever most vertex sets are covers, we can always find a
backdoor set of size 4 into 1cnfs and this will allow us to compute the number of
covers quite easily.

The third way of solving the problem is through randomization and is cer-
tainly the easiest to state in full: On input G, randomly sample 2,250 subsets
C1, . . . ,C2,250 ⊆ V and claim “G ∈ maj-vc” if at least 1,089 of them are covers.
While easy to state, deep insights into the spectra of satisfaction probabilities of
2cnf formulas will be needed to show that this algorithm gives a correct answer
with probability at least 2/3, placing the problem in BPP, the randomized version
of polynomial time (which will also count as “tractable”).

The fourth way leaves the solid path of concrete algorithmics and turns to
algorithmic meta theorems. We will show that we can apply Courcelle’s The-
orem [8] as follows: If the tree-width of G is at most 4, apply (a counting ver-
sion of) Courcelle’s Theorem to the free second-order variable C in the formula
∀x∀y

(
x ∼ y→ (C(x) ∨C(y))

)
; and if the tree-width is larger, output “no majority

of vertex covers.” While this application is superficially simple (at least for meta-
theorem enthusiasts), intriguingly, it sadly does not generalize to, say, maj-3hs,
meaning that we do not get a (much) simpler tractability result for that problem
compared to the complex analysis in [2, 30].

The fifth way, which arguably leads us into an even more “abstract” landscape,



is to apply the famous graph minor theorem of Robertson and Seymour. By this
theorem, if a property is “closed under taking minors” (a classical example is the
class of planar graphs), then it can be characterized by a finite set of graphs that are
“forbidden as minors” (in the case of planar graphs, by Kuratowski’s Theorem [19]
the set is { , }, consisting of the 5-clique K5 and the complete bipartite graph
K3,3). It is simple (but not trivial) to show that the property “most vertex sets are
covers” is closed under taking minors and, hence, it can be characterized by a finite
set of forbidden minors. Even better, we can explicitly state this set: It is { , ,
, , , , }.
The sixth way replaces the powerful minors by forbidden induced subgraphs.

This has the advantage of allowing us to generalize the approach (while the property
“most vertex sets are covers” is closed under taking minors, this is no longer true for
interesting variations), but has the disadvantage that the analogue of the Robertson–
Seymour Theorem (“there is a finite set of forbidden induced subgraphs”) is not
generally true. Nevertheless, we will see that for maj-vc we can restrict attention
to tree-depth 5 and use this to solve maj-vc via a finite set of forbidden induced
subgraphs.

The seventh way starts where the fifth and sixth way meet: We define a well-
quasi-ordering on graphs (the graph minor relation is also a well-quasi-ordering)
that is easy to decide and relative to which the property “most vertex sets are covers”
is closed. The theory of well-quasi-orderings will then provide us with a set of
forbidden elements that characterizes the property. In contrast to the subgraph
relation and to the graph minor relation, the presented ordering is, on the one hand,
a well-quasi-ordering and, on the other hand, lends itself to generalizations for
problems like ksat-pr≥p.

Related Work. As already indicated, maj-vc is a special case of counting–
threshold problems for propositional formulas in conjunctive normal form (cnf
formulas). These more general problems have, of course, attracted a lot of atten-
tion since already the basic problem sat (“Is the number of satisfying assignments
of φ at least 1?”) is NP-complete by the Cook–Levin Theorem [7, 20]. It remains
NP-complete when the clauses are required to have size at most 3 (resulting in the
3sat problem) and becomes NL-complete when the clause size is at most 2 (the
2sat problem). The problem becomes trivial, of course, when no negations are
allowed as, then, setting all variables to true is always a satisfying assignment.

When it comes to thresholds larger than 1 for the number of vertex covers
of a graph or the number of satisfying assignments of a formula, the complexity
landscape gets even more interesting. The mapping #: cnfs → N that maps cnf
formulas φ to the number of their satisfying assignments is a classical #P-complete
problem [33] and, hence, believed to be very hard. Furthermore, it remains



complete when we only allow only 3cnfs as input; and it still remains #P-complete
when we only allow 2cnfs and even still when only monotone 2cnfs are allowed,
see [33]. In other words, the function #vc(·) considered in the present paper, which
maps graphs to the number of their vertex covers, is a #P-complete function and so
is Prvc[·] since it is just a rescaled version.

When it comes to the “at most” or “majority” version, that is, to maj-vc or
more generally ksat-pr≥1/2 or even sat-pr≥1/2, an astounding thing happens: While
sat-pr≥1/2 is complete for PP (basically “a decision version of #P” that is high up
in the polynomial hierarchy by Toda’s Theorem [31]), Akmal and Williams [2]
showed that ksat-pr≥1/2 ∈ P holds for all k ≥ 1 (see also [30] for a simpler
proof) and, thus, maj-vc ∈ P. It is noteworthy that Akmal and Williams start their
discussion of ksat-pr≥1/2 with the case k = 2 as an introductory example and one
of the “ways” presented in the present paper (namely the use of backdoor sets) is
also sketched in their paper.

The basics of the theoretical backgrounds for the seven ways of proving the
tractability of maj-vc will be sketched in the main text, but for readers interested
in more details, here are some possible entry points to the literature: Concerning
fixed-parameter tractability theory, two classical textbooks are [10, 13]; for a
gentle introduction to algorithmic meta-theorems, see for instance [29]; for more
background on well-quasi-orderings, see [18]. Concerning the ubiquitous technique
of randomization, finding an “entry point” to the literature seems hopeless, but
in the particular case of finding satisfying assignments for kcnf formulas, readers
should have a look at Schöning’s ingenious use [28] of randomization to solve the
ksat problem at some point (although [23] shows that randomization is not actually
necessary).

Organization of This Paper. The paper will take you on a tour via seven ways,
each of which is described in one of the following sections, through a fascinating
landscape of complexity and algorithms. Each section starts with a bit of “scenery
description,” followed by background on the method or tools employed (like search
trees or well-quasi-orderings and so on), followed by a theorem stating and a
proof showing the tractability of maj-vc. Each section then finishes with some
observations concerning whether or not the way can be generalized.

2 The First Way: Via Search Trees
As you start your tour through the complexity landscape surrounding maj-vc, the
first thing you notice is, of course, that there are lots of trees: Computer Science in
general, and Theoretical Computer Science in particular, is a land of lush forests
filled with trees of all kinds. The first way soon leads you to a fenced-off area with



majestic trees growing in it. Next to an inviting entrance gate, a gardener greets
you: “Welcome to the Search Tree Nursery. We grow – and sell – all kinds of
Quaerere arbore! Can I interest you in any of our trees? And, of course, it would
be helpful to know a bit about your budget.” You respond that you need a tree
for a counting–threshold problem and that your budget is polynomially bounded.
The gardener seems a bit at a loss upon hearing about your budget (apparently,
polynomial time is considered a very tight budget in the Search Tree Nursery),
but then her eyes light up: “That is an uncommon request, I dare say, but I like
a challenge. You see, most people use search trees for, well, searching, not for
counting and certainly not for counting–threshold frivolities. And your budget is
restricted. But do not fear, I think I have just the right tree for you.” She leads you
to a part of the nursery where a sign says “Bonsai and assorted O∗(1)” and then
hands you a small, but beautiful specimen of Quaerere arbore.

We will examine this particular specimen more closely in a moment, but let us
first have a brief closer look at the vertex cover problem.

Background on the Vertex Cover Problem in FPT Theory. The vertex cover
problem is the poster child of fpt theory, the theory of fixed-parameter tractability,
as the core ideas of this theory (search trees and kernelization, in particular) work
spectacularly well for it (see [15] for a recent record). However, the parameterized
problem p-vc (or, in full, p-vertex-cover) studied in this theory is fundamentally
different from the counting–threshold problem maj-vc we study in the present
paper: For p-vc the input is a pair (G, k) of an undirected graph G and a natural
number k ∈ N (the parameter in fpt parlance) and the question is whether there
is a cover C of G of size |C| ≤ k. The problems are connected, nevertheless as,
intuitively, if a graph has “many” covers, there must be some “small” covers among
them. The following lemma shows that this intuition is very much correct:

Lemma 2.1. Let G = (V, E) be a graph with Prvc[G] ≥ 1/2. Then all matchings
in G have size at most 2 and G has a vertex cover of size at most 4.

Proof. Suppose G contains a matching of size 3 ( = M3) as a subgraph, that
is, there are six different vertices v1, . . . , v6 ∈ V with {{v1, v2}, {v3, v4}, {v5, v6}} ⊆ E.
Then the probability that a random subset C ⊆ V covers the edge {v1, v2} is 3/4 and
the same is true for the other edges. Since these probabilities are independent, the
probability that all three edges are covered is at most ( 3

4)3 = 27
64 < 1/2. Hence, the

probability Prvc[G] that all edges of G are covered is less than 1/2. For the second
claim, consider a maximal matching M ⊆ E. Then |M| ≤ 2 and the at most 4
vertices in M (that is, in

⋃
M) form a (vertex) cover of G since, otherwise, there

would be an uncovered edge in E and the matching would not be maximal. �



The reverse direction of the lemma’s statement is not true: A graph consisting
of two large stars (like ) can be covered by just two vertices ( ), but just a
little more than one quarter of all vertex sets are covers. This means that we will
have to put forward some extra ideas to make the search tree technique, which
works so well for the p-vc problem, also work for maj-vc.

Background on the Search Tree Method. Suppose we are given a pair (G, k)
and wish to determine whether there is a cover C ⊆ V of G of size |C| ≤ k. If
k = 0, the answer is obviously “no” unless E = ∅. The other way round, if E = ∅,
the answer is always “yes.” The interesting case is k > 0 and E , ∅. Then there
must be an edge {u, v} ∈ E. The key insight behind the search tree method is that
for every cover C of G we must have u ∈ C or v ∈ C. Admittedly, when written
down like this, the insight feels utterly trivial, but fear not: Theoretician have found
ways to complicate the idea beyond all recognition. Anyway, in the case u ∈ C,
the vertex u will cover all edges e ∈ E that contain u, but C \ {u} must then cover
“the rest” of the edges, that is, the edges in E \ {e ∈ E | u ∈ e}. (The situation
for the second case is symmetric, with u and v exchanged.) In particular, we can
only cover G with a size-k cover, if we can cover either G \ {u} or G \ {v} with a
size-(k − 1) cover (here, G \ X := (V \ X, E ∩ {{u, v} | u, v ∈ V \ X}) results from G
by removing all vertices in X together with any adjacent edges) – and we can then,
of course, try to answer these questions recursively, see Figure 1 for an example.
The resulting recursion tree is called the search tree, hence the name of the method.
Note that its depth is at most k (we stopped the recursion at k = 0) and we have two
recursive calls in the algorithm, resulting in two children at each inner node of the
search tree. All told, the search tree has size 2k and the runtime of the algorithm
will be something like O(2k|E|), depending a bit on which data structures we use
for representing E.

An advanced version of this idea, which will be useful in our counting–
threshold setting in a moment, is that instead of branching to the two cases “C con-
tains u” and “C contains v”, we cleverly choose the edge {u, v} ∈ E and then branch
to three cases, namely “C contains u, but not v” and “C contains v, but not u”
and “C contains both u and v.” The insight is that in the branch that looks for
covers that “contain u, but not v,” we know that when v is not part of a cover, all
neighbors of v must be part of the cover, allowing us to remove all edges adjacent
to these neighbors and to look for a much smaller cover for the rest, see Figure 2
for an example. By choosing the edge {u, v} ∈ E to maximize the number of
these neighbors, we can ensure that while there will always be three branches,
the subtrees will have only half the depth, leading to a better overall runtime. Of
course, we can try to take this idea further and cleverly choose more than a single
edge and branch more broadly to get even more shallow trees. A small cottage
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Figure 1: A binary search tree for finding a vertex cover of size k in an undirected
graph G = (V, E): At each node of the tree, starting with the graph itself at the root,
shown left, an edge {u, v} ∈ E is selected (shown in red). Then any vertex cover C
of G must contain either u, resulting in the graph G \ {u} shown above (with u no
longer being a vertex of the graph), or v, resulting in G \ {v}. Note how, in either
case, we have identified one vertex of the cover, meaning that the rest of the graph
must be covered with k − 1 vertices.

industry has sprung up around this method, resulting in improved search tree sizes
(and, hence, improved runtimes [15]) for the vertex cover problem and related
problems, but for our purposes the “branching to {u, v} ∩C = {u}, {u, v} ∩C = {v},
and {u, v} ∩C = {u, v}” will suffice.

Applying the Search Tree Method. Adapting the search tree method so that
we count the number of vertex covers of a graph, is not very hard: Instead of
just answering “yes” or “no,” we let the algorithm output the number of vertex
covers it has found. For instance, when E = ∅ holds, instead of just answering
“yes,” we answer “2|V |,” which is the number of vertex covers that an empty graph
on |V | vertices has. Crucially, when we recursively branch for the three cases
{u, v} ∩C = {u}, {u, v} ∩C = {v}, and {u, v} ∩C = {u, v}, the total number of covers
will be the sum of the three numbers computed – and note that in this three-way
branching we do not double-count any covers (which we would, if we just branched
to the cases u ∈ C and v ∈ C).

What about the depth of the search tree? Usually, we stop the search and get a
leaf node in the tree when we know that “any cover below this node” (meaning, any
cover satisfying all the requirements imposed by the nodes on the path from the
root) will have size greater than k. In our case, however, we clearly cannot ignore
these covers as most covers will be large. The trick is to use Lemma 2.1: Each
time we recurse, the chosen edge will be completely disjoint from the previously
chosen edges. By the lemma, if we still find an edge at recursion depth 3, we can
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u ∈ C, v < C
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Figure 2: A ternary search tree for counting the number of vertex covers of an
undirected graph G = (V, E). In contrast to the recursion in Figure 1, at each node
we classify the possible covers C of G according to whether C ∩ {u, v} = {u, v}
holds (top case) or C ∩ {u, v} = {u} or C ∩ {u, v} = {v} (the other two cases). In the
lower cases, u < C (or v < C) forces the neighbours of u (or v) to be part of the
cover. Crucially, the number of covers that the graphs in the branches have (39 for
the top graph, 12 for the middle graph, 6 for the lower graph) add up to the number
of covers the root graph has (57 out of 512 possible vertex sets).



break off the whole computation.

Algorithm 1: An algorithm based on search trees for deciding whether an undirected
input graph G = (V, E) is an element of maj-vc. In the algorithm, N[u] := N(u)∪{u}
is the closed neighbourhood of u and N(u) = {w ∈ V | {u,w} ∈ E} is the (open)
neighbourhood. For the correctness of the algorithm, see the proof of Theorem 2.2.

1 input G
2 if count-vc(G, 0) ≥ 2|V |/2 then output ‘‘G ∈ maj-vc’’ else output ‘‘G < maj-vc’’
3

4 function count-vc(G = (V, E), d) // d is the size of an already found matching
5 if E = ∅ then return 2|V | // every subset is a cover
6 if d ≥ 2 then output ‘‘G < maj-vc’’ and halt // see the proof for the correctness
7 if {v} ∈ E for some v ∈ V then // self-loop at v
8 return count-vc(G \ {v}, d + 1)
9 else

10 {u, v} ← an arbitrary element of E
11 c1 ← count-vc(G \ N[u], d + 1)
12 c2 ← count-vc(G \ N[v], d + 1)
13 c3 ← count-vc(G \ {u, v}, d + 1)
14 return c1 + c2 + c3

Theorem 2.2. Algorithm 1 decides maj-vc in time O(|E|).

Proof. The algorithm is a simple recursion, in which the function count-vc(G, d)
returns the number of vertex covers of G and the number d is the size of an already
found matching (and also the depth of the recursion). Clearly, if we can show
that the implementation correctly computes this function, the overall algorithm is
correct.

If E = ∅ holds in line 5, every subset C ⊆ V is a cover of G, so 2|V | is the
correct return value. If this is not the case, there must be an edge in E. However, if
d ≥ 2 holds, we know that this edge would constitute the third edge in a matching
in E and by Lemma 2.1 we correctly output “G < maj-vc” in this case (and halt the
whole computation, not just this branch of the recursion). Otherwise, we check
whether there is a vertex v with a loop, in which case every cover must contain v,
so the total number of covers of G equals the number of covers of G \ {v}, which
results from G by removing v and all edges containing v. In other words, the value
returned in line 8 is correct.

Finally, we consider a size-2 edge {u, v} ∈ E. The three values c1, c2, and c3 are
now exactly the number of covers C of G such that C∩{u, v} = {v}, C∩{u, v} = {u},
and C ∩ {u, v} = {u, v}, respectively. To see this, just note that C ∩ {u, v} = {v}
means that u is not in the cover and, hence, all neighbours of u must be in the cover.



In other words, for every cover C′ of G \ N[u], the set C′ ∪ N(u) = C ∪ {w ∈ V |
{u,w} ∈ E} is a cover C of G with C ∩ {u, v} = {v}. By a similar argument, we get
that the numbers c2 and c3 are correct, meaning that the final output c1 + c2 + c3 is
also correct.

For the runtime, just observe that because of the cap on the recursion depth, the
search tree has size at most 32 = 9. All other computations take time linear in |E|
assuming appropriate data structures. �

Extensions. Given that the search tree method is a rather powerful and generic
tool, it should come as no big surprise that we can use it to solve not only maj-vc,
but also more general problems:

• The threshold “1/2” used in the definition of maj-vc for the fraction of vertex
sets that must be covers is both natural and a bit arbitrary (why not “1/3”
or “3/4”?). If we change the threshold from 1/2 to a different number
p ∈ [0, 1], we get the problem mon-2sat-pr≥p (see the introduction). Having
a look at the proof of Lemma 2.1, we see immediately that the following
generalization holds:

Lemma 2.3. Let G be a graph with Prvc[G] ≥ p > 0. Then all matchings
in G have size at most log3/4 p and G has a vertex cover of size at most
2 log3/4 p.

This means that Theorem 2.2 still works if we replace “count-vc(G, 0) ≥
2|V |/2” by “count-vc(G, 0) ≥ 2|V | · p” in line 2 and “d ≥ 2” by “d ≥ log3/4 p”
in line 6. Observe that while the size of the search tree is constant for any
fixed p, for arbitrary p, the size of the search tree and hence also the runtime
is 3log4/3(1/p) and hence exponential in the number of bits of d1/pe – and this
is no coincidence: A polynomial dependence of the runtime on the number
of bits of d1/pe would allow us to compute Prvc[G] and hence also #vc(G) in
polynomial time using binary search, but #vc(·) is a #P-complete function.

• We can modify the test from line 2 further and check whether we have
“count-vc(G, 0) > 2|V | · p” (rather than “. . . ≥ . . .”) and get an algorithm for
solving mon-2sat-pr>p in polynomial time. The difference may seem slight,
but as first observed by Akmal and Williams in [2] and then studied in more
detail in [30], for counting–threshold problems it can make a huge difference
whether “≥ p” or “> p” is considered.

• It is not too hard – but no longer a trivial code modification – to extend
Algorithm 1 to work for the more general 2sat-pr≥p problem, where negated
literals are allowed. It will, however, be more natural to look at this problem
in the context of backdoor sets, which we do in the next section.



• Concerning the even more general problem maj-3hs = mon-3sat-pr≥1/2, let
alone ksat-pr≥p for arbitrary k > 2 and p, the search tree method (at least, as
presented) simply fails: It is not hard to construct 3-hypergraphs for which
there is no way to “stop early in line 6”. For instance, the hypergraph H with
the edges {a, x1, y1}, {a, x2, y2}, . . . , {a, xm, ym} is covered by every vertex set
containing a (so Pr3hs[H] > 1/2), but the search tree would have depth m.

3 The Second Way: Via Backdoor Sets
Leaving the Search Tree Nursery behind you, you continue on your journey through
the landscape on a second way that leads you further through hills and forests.
Just as you exit a small valley, an impressive vista opens before you and reveals
a view of a huge mountain in the distance. It takes you quite a while to get to its
foot, where you meet a courteous hobbit who seems to be waiting for someone.
He immediately addresses you: “Well met, Master Traveller. What brings you
to the Lonely Mountain? The treasures inside, I would venture. Well, I, for one,
am waiting for a group of dwarves and a wizard, but they seem to be quite late, I
must say.” You are about to inquire about the treasures, but the hobbit just keeps
talking: “I, for one, really do not agree with the dragon that the gold is the real
treasure. He really should get out more, I keep telling him. Anyway, in this
gentlehobbit’s opinion, the real treasure is the machinery! All these wonderful
devices for counting the gold and what-have-you.” Your interest sparks at this,
but before you can squeeze in a question about counting machinery, the oration
continues relentlessly: “Of course, getting in is out of the question, this mountain
is a real fortress: As you can see, the old dwarven entrance here is very securely
locked down. And, of course, all the little windows further up and the tunnels on
the sides are barred by large iron grilles. I guess, one might be able to use one
of the chimneys that come out at the mountain top, but you would have to be an
exceptionally skilled climber just to get up there, let alone then getting down them.
So, getting in is totally out of the question. Unless, of course. . . ” Now the hobbit
stops talking, obviously expecting you to ask him to elaborate. Since you would
very much like to get into the mountain, preferably avoiding the dragon, you coax
him to continue, which he happily does: “You see, I happen to have this map with
a secret backdoor marked on it. A bit difficult to read, if I may say so, but I can
lend you my moonshine lamp. I was going to give the map to the dwarves, but as I
told you, they are quite late. So, here, you take it and go inside and have a look
around!”

As we will see in the following, the backdoor does, indeed, grant us access
to maj-vc.

Recall that maj-vc is a special case of the problem 2sat-pr≥1/2, where the input



is a propositional formula φ in conjunctive normal form with at most two literals
per clause (a 2cnf formula) and the question is whether at least half of all possible
assignments β : vars(φ) → B satisfy φ (with vars(φ) of course denoting the set
of variables in φ and B = {false, true} denoting the two possible truth values):
Covering all edges {u, v} ∈ E corresponds exactly to satisfying all clauses of the
form (u ∨ v). For example, the number of vertex covers of G = is exactly the
number of satisfying assignments of φG = (v1∨v2)∧(v1∨v3)∧(v2∨v3)∧(v3∨v4). It
is, thus, no surprise that the tools that have been developed for solving sat problems
also apply to maj-vc. One such tool are backdoor sets [34].

Background on Backdoor Sets. The paramount goal of sat solving is to deter-
mine on input of a formula φ in conjunctive normal form whether it has a satisfying
assignment. Since sat is the NP-complete problem par excellence, we cannot really
hope to devise an efficient algorithm for solving this problem for arbitrary φ, but if
φ has a special form and is sufficiently “simple,” even highly efficient algorithms
are known. For instance, if φ ∈ 2cnfs holds (that is, when φ is in conjunctive
normal form with at most two literals per clause), we can decide whether φ is
satisfiable in polynomial time (more precisely, the 2sat problem is NL-complete),
and this is also true when φ ∈ horn-cnf holds (meaning that there is at most one
positive literal per clause) as horn-sat is P-complete [22].

The idea behind backdoor sets is that while a cnf formula φ may not be
syntactically simple in one of the above senses, it may be “near” to such a formula
as only a small number of variables cause a deviation. For instance, φ < 2cnfs
might hold, but there might be only, say, four variables x1, x2, x3, and x4 (which
will be called a backdoor set in a moment) such that removing them from the
formula would result in an element of 2cnfs. The key observation is that there
actually is a simple way of “removing” variables from any cnf formula φ: Iterate
over all possible assignments to the variables in the backdoor set and then use unit
propagation to remove the variables. These ideas are detailed in the following two
definitions:

Definition 3.1. Let φ be a cnf formula, let X be some variables, and let β : X → B
be a function (a “partial assignment”). Define φ|β as the formula obtained from φ
by

1. removing all clauses from φ containing a literal made true by β, that is,
containing a variable v ∈ X with β(v) = true or containing ¬v for some v ∈ X
with β(v) = false; and

2. removing from the remaining clauses all literals containing a variable from X.

As an example, for φ = (x∨¬y∨a)∧ (¬x∨b∨¬c)∧ (y∨d)∧ (d) and X = {x, y}
and β(x) = true and β(y) = false, we have φ|β = (x ∨ ¬y ∨ a) ∧ (¬x ∨ b ∨ ¬c) ∧



(y ∨ d) ∧ (d) = (b ∨ ¬c) ∧ (d). Note how φ < 2cnfs holds, while φ|β ∈ 2cnfs holds
both for our particular β and also for the three other possible β : X → B.

Definition 3.2. Let Ψ be a set of cnf formulas and let φ be any cnf formula. A
(strong) backdoor set into Ψ for φ is a set X of variables such that for all β : X → B
we have φ|β ∈ Ψ.

To get an intuition for the above definition, consider a formula φ, a fixed set
V ⊇ vars(φ) of variables, and an arbitrary set X ⊆ V . If we restrict an assignment
α : V → B that satisfies φ to just the variables in V \ X, we get a satisfying
assignment α′ of φ|β, where β is the restriction of α to X. The other way round,
we can extend any satisfying assignment α′ of φ|β to one of φ by joining α′ with β.
In particular, if we write #(φ) for the number of satisfying assignments that φ has
relative to V , we get (the division by 2|X| is needed as #(φ|β) is also counted relative
to the original V):

#(φ) =
∑
β:X→B

#(φ|β)
2|X|

. (1)

For instance, for V = {a, b, c, d} and φ = (a ∨ ¬b) ∧ (¬a ∨ b ∨ c) and X = {a},
we have: #(φ) = 10 as φ has ten satisfying assignments α : {a, b, c, d} → B; for
β0(a) = false we have φ|β0 = (¬b) and #(φ|β0) = 8 as (¬b) has eight satisfying
assignments α : {a, b, c, d} → B; for β1(a) = true we have φ|β0 = (b ∨ c) and
#(φ|β1) = 12; and, indeed, 10 = (8 + 12)/2|x| = 20/2.

The crucial property of equation (1) is that φ ∈ sat holds (the left hand side is
positive) iff φ|β ∈ sat holds for at least one β : X → B (at least one summand in the
sum on the right hand side is positive). Now, if X is a small backdoor set into, say,
Ψ = 2cnfs, deciding φ ∈ sat becomes easy: We just have to run 2|X| many test of
the form “Is this 2cnf formula satisfiable?”

Of course, many formulas will not have a small backdoor set and, even when
they do, it may be difficult to find. A rich theory has been developed (see for
instance [11,21] for some recent results) that tries to deal with these and other prob-
lems, but the simple above form of backdoor sets will suffice for solving maj-vc.

Applying Backdoor Sets. Recall from Lemma 2.1 that all G ∈ maj-vc have a
vertex cover of size 4 or less. Let X = {v1, v2, v3, v4} be such a small cover and now
consider what φG|β must look like: Since X is a cover, in each clause (u ∨ v) of φG

at least one of the two variables is present in X and the clause is either completely
removed in φG|β or one of the variables is removed. Thus, all clauses of φG|β have
size at most 1 (see Figure 3 for an example) and it is trivial to compute the number
of satisfying assignments that φG|β has. Equation (1) then tells us how to compute
the total number of satisfying assignments of φ. The details follow.



G

φG = (v1 ∨ v2)
∧ (v1 ∨ v5)
∧ (v1 ∨ v6)
∧ (v2 ∨ v3)
∧ (v2 ∨ v6)
∧ (v3 ∨ v4)
∧ (v3 ∨ v7)
∧ (v3 ∨ v9)
∧ (v4 ∨ v8)

v1
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t
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f φG |β = (v5) ∧ (v6) ∧ (v8) ∧ (v9)

#(φG |β) = 32
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f

t φG |β = (v5) ∧ (v6) ∧ (v7) ∧ (v9)

#(φG |β) = 32
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t

t

t φG |β = (v5) ∧ (v6) ∧ (v9)

#(φG |β) = 64
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f φG |β = (v6) ∧ (v8)

#(φG |β) = 128
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t φG |β = (v6) ∧

#(φG |β) = 256

t

t

t

f φG |β = (v8)

#(φG |β) = 256

t

t

t

t φG |β = true

#(φG |β) = 512

Figure 3: A graph in which X = {v1, . . . , v4} forms a vertex cover and, thus, these
variables form a backdoor set into 1cnfs for φG. Out of the sixteen possible β : X →
B only those are indicated that do not produce an empty clause in φG|β (meaning
that some internal edge of the X-set is not covered). For them, the resulting formula
φG|β is given and #(φG|β) relative to the original size-9 vertex set V = {v1, . . . , v9}.
By equation (1), we get #(φ) = (32 + 32 + 64 + 128 + 256 + 256 + 512)/16 = 80.



Algorithm 2: An algorithm based on backdoor sets for deciding whether an undi-
rected input graph G = (V, E) is an element of maj-vc. Since Lemma 2.1 tells us
such G cannot contain a matching of size 3, there will be at most four vertices in
the backdoor set X in 1cnfs.

1 input G
2

3 M ← greedily compute a matching in G that is maximal or has size 3
4 if |M| > 2 then output ‘‘G < maj-vc’’ and halt // correct by Lemma 2.1
5 X ←

⋃
M // the at most 4 vertices in the matching

6

7 φG ← the 2cnf formula representing G
8 c← 0 // counter for the number of covers
9 foreach β : X → B do // at most 16 possible β

10 ψ← φG |β // a shorthand
11 if ψ contains no empty clause and not both a clause (v) as well as (¬v) then
12 c← c + 2|V |−|vars(ψ)|/2|X|

13

14 if c ≥ 2|V |/2 then output ‘‘G ∈ maj-vc’’ else output ‘‘G < maj-vc’’

Theorem 3.3. Algorithm 2 decides maj-vc in time O(|E|).

Proof. The algorithm first greedily computes a maximal matching M in G, but we
can actually stop this computation early when |M| exceeds 2 since, by Lemma 2.1,
we then know that G < maj-vc holds and stop in line 4. Otherwise, the set X =

⋃
M

of vertices in M can have size at most 4 and is a vertex cover of G. Crucially, this
implies that X is a backdoor set for φG into 1cnfs: The clauses of φG are exactly of
the form (u ∨ v) for {u, v} ∈ E and the fact that X is a cover of G means that in φG|β

every such clause is either missing completely or missing one variable. This means
that by equation (1), the main loop correctly computes #(φG) = #vc(G) provided
that we correctly sum up the values of #(φG|β). However, for a 1cnf formula ψ, the
number of satisfying assignments relative to a fixed size-n set of variables is either
0 (when it is a contradiction, which we rule out by the checks in line 11) or is 2
raised to the number of variables not mentioned in ψ.

All told, the output at the end of the algorithm is correct and can be computed
easily in time linear in |E| assuming appropriate data structures since the main loop
iterates over at most 16 different β. �

Extensions.

• While Algorithm 2 ostensibly solves maj-vc, it is really an algorithm for
deciding 2sat-pr≥1/2 in thinly veiled disguise: Just take a formula φ ∈ 2cnfs



as input instead of constructing it from a graph G and replace the notion of a
“matching” by “a set of variable-disjoint clauses.” The rest of the algorithm
is already stated in a way so that it also works in the presence of negations
(namely in line 11, where we test the presence of contradictory clause pairs
(v) and (¬v), which actually cannot arise when φG contains no negations).

• Just as in Algorithm 1, we can easily adapt the algorithm to work for
2sat-pr≥p for arbitrary p ∈ [0, 1] by replacing the test “M > 2” by “M >
log3/4 p” in line 4 and adapting the final line of the algorithm. An adaption
of the last line is also all that is needed to decide 2sat-pr>p.

• When we try to extend the algorithm to 3cnf formulas φ in order to solve
3sat-pr≥1/2, we get further than we did on the first way via search trees, but
still run into a roadblock: It is not too hard to see that when at least half of all
assignments of φ ∈ 3cnfs are satisfying, there must still be a small backdoor
set, but now into 2cnf formulas rather than 1cnf formulas. Unfortunately,
recall that it is #P-compete to compute the number of satisfying assignments
of 2cnf formulas, so we cannot simply use a recursion in the main loop.

4 The Third Way: Via Random Sampling
You backtrack out of the mountain, return the map and the moonshine lamp to the
hobbit, and thank him once more for showing you the backdoor. Then you are
back to hiking, following a third way. As the Lonely Mountain gets lost in the
distance behind you, on the side of the road you come by two large silos with the
sign Theoretical Foods Inc. prominently displayed on both of them. An agitated
company employee sees your approach and immediately seeks your help: “Can
you please help me? You see, we produce two delicious rice mixtures consisting of
white rice and wild rice (whose grains are black). The mixtures differ only slightly
in the composition: In one there are at least as many black grains as white ones,
while in the other there are less black than white ones. Two deliveries have just
been made, one of each mixture, and we placed them in two silos, each holding one
billion grains. Unfortunately, it is no longer clear which mixture was put in which
silo!” Counting all the grains in either silo is clearly hopeless, but you come up
with a simple test: From the mixture in the first silo, scoop up a handful of grains
(say, a thousand) and count (just) them. Intuitively, if there are much fewer black
grains in your scoop than white ones (say, 400 black to 600 white), it is (highly)
unlikely that the total number of black grains in the silo is larger than that of the
white ones. Unfortunately, in your scoop there are exactly 498 black and 502 white
grains – and you really cannot tell whether this really means that are less black
grains overall than white ones.



The connection to maj-vc is, of course, that while for a large graph G it is
hopeless to examine all vertex subsets of G (there are simply too many of them), if
we “randomly sample a scoop of them” we can easily count the covers (the “black”
grains) and the non-covers (the “white” grains). If there are many more covers
in the sample than non-covers, we can be fairly sure that G ∈ maj-vc holds, and
if there are many more non-covers than covers, then G < maj-vc is very likely.
The tricky part is, as for the rice grains, the case that the numbers are the same or
almost the same in our sample: What does that mean for the “overall mixture of
covers and non-covers”?

You are about to tell the employee that, sadly, your idea does not seem to work,
when they suddenly volunteer additional information: “You know, in our mixture
with less black grains than white grains, we actually put in only at most 46.875%
black grains (rather than 49.999%). Does that help in any way?” You soon realize
that it sure does: In your scoop of 1,000 grains with 498 black ones and 502 white
ones, you are now pretty confident that there are actually at least as many black
grains as white grains overall. Otherwise, you would expect to find only 469 black
grains, but have found 498 – a strong deviation.

The connection to maj-vc is now rather surprising: It turns out that by the
Spectral Well-Ordering Theorem [30] the “mixture of covers and non-covers of
graphs” has the peculiar property that for any graph G, the fraction Prvc[G] of
covers is either at least 1

2 or at most 15
32 = 46.875%, exactly as for the mixtures of

Theoretical Foods Inc. In other words, the spectrum of values that Prvc[G] can
have has a gap in the interval ( 15

32 ,
1
2 ).

In the following, let us have a closer look at the math behind the sampling
technique and these peculiar spectra.

Background on Random Sampling. The mathematical analysis of random
sampling (here in the form of a simple Bernoulli process) dates back hundreds of
years and is among the best-studied topics of statistics and perhaps mathematics
in general. Accordingly, our simple problem of counting how many randomly
chosen vertex subsets are covers, is very well-understood from a statistical point of
view. In detail, given an undirected graph G = (V, E), if we pick C ⊆ V uniformly
at random, then by definition p := Prvc[G] is the probability that C is a cover
of G. Sampling t different C1, . . . ,Ct ⊆ V independently and uniformly at random
and checking for each whether it is a cover of G yields a Bernoulli process for
the probability p. The expected number of Ci that are covers is clearly p · t, and
bounding the probability that we deviate strongly from this value is well-studied:

Fact 4.1 (Chernoff–Hoeffding Bound [16]). Let Z1, . . . , Zt be independent random
variables, each taking value 1 with probability p and 0 with probability 1 − p. Let



ε > 0. Then

Pr
[

1
t

∑t
i=1 Zi ≥ p + ε

]
≤

(( p
p + ε

)p+ε( 1 − p
1 − p − ε

)1−p−ε
)t

, (2)

Pr
[

1
t

∑t
i=1 Zi ≤ p − ε

]
≤

(( p
p − ε

)p−ε( 1 − p
1 − p + ε

)1−p+ε
)t

. (3)

In our setting, Zi = 1 when Ci is a cover of G and Zi = 0 otherwise, so 1
t

∑t
i=1 Zi

is exactly the fraction of Ci that are covers. For, say, p = 1/2 and ε = 1/64, the
theorem tells us that the probability that this fraction deviates from the expected
value 1/2 by more than 1/64 is at most bt for the constant b ≈ 0.9995117584.
While this constant is quite close to 1, it is strictly less than 1 and bt will start to
tend to 0 quickly for larger t. Indeed, for t = 2,250 we have bt < 1/3. Figure 5 on
page 26 visualizes this and similar situations.

Random sampling has also become an indispensable tool in complexity theory,
for instance in the form of the complexity class BPP, which stands for “bounded-
error polynomial time.” A language L lies in this class if there is an algorithm for
deciding L that on input of some x also gets some extra random bits and outputs
the correct answer (namely whether x ∈ L or x < L holds) with probability at
least 2/3 (taken over all possible random bits). The choice of “2/3” is, of course,
somewhat arbitrary, and any number strictly larger than 1/2 can be used instead.
To increase the likelihood of a correct answer of a BPP-algorithm, one can rerun
the algorithm many times and output the majority – and when “many times” means
“a polynomial number of times,” the likelihood of making an error will become
exponentially small. Indeed, it is easy and practical to ensure that even though the
algorithm could output a wrong answer, it is much more likely that the computer
running the algorithm is spontaneously hit by a meteor (or consumed by dragon
fire, for that matter). For this reason, “being in BPP” – and not only “being in P” –
is a “common theoretician’s notion of tractability.”

Background on Spectra. The set of possible values that Prvc[G] can have for
different graphs G is called the spectrum of Prvc[·], and following [30] we will
denote it as vc-pr-spectrum, see Figure 4 for a visualization. Clearly, the spectrum
is a subset of the interval [0, 1] and it is not hard to see that many values are not
part of this spectrum:

• The number 0 is not in the spectrum as every graph has a vertex cover (the
probability that a random vertex set covers the graph is never 0).

• The number 1/3 is not in the spectrum as Prvc[G] is always of the form x/2y

for integers x and y (such numbers are called dyadic and the spectrum only
contains dyadic numbers).



• No number strictly between 3
4 and 1 is in the spectrum: Once there is a single

edge in the graph, at most three quarters of all vertex sets cover this single
edge (and hence, only less sets can cover the whole graph).

• Likewise, no number strictly between 5
8 and 3

4 can be in the spectrum, since
a second edge in G already drops Prvc[G] to at most 5

8 .

So, we see that there are some “gaps” in the spectrum near 1, namely the empty
intervals ( 3

4 , 1) and ( 5
8 ,

3
4). Rephrased in terms for the following definition of the

“spectral gap below p,” we have spectral-gapvc(1) = 1
4 and spectral-gapvc(

3
4 ) = 1

8 :

Definition 4.2. spectral-gapvc(p) := sup{ε ≥ 0 | (p − ε, p) ∩ vc-pr-spectrum = ∅}.

However, these gaps must rapidly get smaller as we get near to 1
2 : Each star

(that is, each K1,k) has Prvc[K1,k] = 1
2(1 + 2−k) as we can cover a star either by

picking the central vertex or by picking all other vertices (which happens with
probability 2−k); so any gaps below different p > 1

2 in the spectrum get smaller and
smaller as p approaches 1

2 . For instance, spectral-gapvc(
1
2 + 2−1000) ≤ 2−1001.

Formally, 1/2 is an accumulation point of vc-pr-spectrum and it is tempting to
assume that the spectrum below 1/2 is simply a dense set as we have reached an
accumulation point. However, something surprising happens: Even though above
1/2 the gaps got smaller and smaller, directly below 1/2 there is a sizable spectral
gap once more!

Lemma 4.3. spectral-gapvc(
1
2 ) ≥ 2−10.

Proof. Recall that Algorithm 2 from the previous section internally precisely
computed the number #vc(G) for graphs G ∈ maj-vc. A closer look at the algorithm
reveals two things:

1. We actually precisely compute #vc(G) for any graph G with Prvc[G] > 27
64

(rather than only for the case “· · · ≥ 1
2”) since all such graphs do not have a

matching of size 3 and, hence, pass the test from line 4.

2. There can be at most nine β : X → B that pass the contradiction test in line 11
(as G restricted to X contains a size-2 matching). So c is the sum of at most
nine powers of two.

To reiterate, for any graph G for which Prvc[G] is “just below 1
2” we have that

c = #vc(G) is the sum of at most nine powers of two. But this means that Prvc[G] =
2−i1 +2−i2 + · · ·+2−i9 (or less summands, but let us focus on this case for a moment)
and in the binary representation of Prvc[G] there are (at most) nine 1s.

All told, for any graph G with 27
64 < p := Prvc[G] < 1

2 , we have p =
0.0b1b2b3b4 · · ·2 where at most nine of the bi are 1 (the first bit after “0.” must be



0 in order to have p < 1
2). But the largest possible number with this property is

p = 0.01111111112 =
1
2 − 2−10 proving the claimed lower bound on the size of the

spectral gap below 1/2. �
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Figure 4: Visualization of vc-pr-spectrum, the set of all values that Prvc[G] can
have for any undirected graph G. Each line represents one possible value, with
some example graphs shown that have this value as their cover probability, and red
lines indicate values that are less than 1

2 while green lines corresponds to values at
least 1

2 . The lower part is just a zoom where the spectral gap between 15
32 and 1

2 is
easier to see. No graph has a cover probability that lies in this interval, as shown in
Lemma 4.3 (for a less tight bound, though).

The bound from the lemma is not necessarily tight as it is not clear whether
there actually is a graph G whose satisfaction probability is below 1/2 and is
exactly the largest possible sum

∑10
i=2 2−i of nine powers of two with this property.

Indeed, it turns out that such a graph does not exist and we will see in the proof
of Theorem 7.12 that the spectral gap is, in fact, spectral-gapvc(

1
2) = 2−5 = 1/32.

So returning to Theoretical Foods Inc. we now see that the extra information
volunteered by the employee, namely that the fraction of black rice grains is either
at least 50% or at most 46.875%, directly corresponds to a spectral gap in the
spectrum of fractions of black grains below 1/2 of size 3.125% = 1

32 and that this
is exactly the spectral gap we have below 1/2 for the fraction of vertex covers of
graphs, see also Figure 4.

The natural next question is, of course, what about other values even smaller
than 1/2? Does the spectrum get dense anywhere further down? It does not! But
this is perhaps now less surprisingly than earlier:

Theorem 4.4. spectral-gapvc(p) > 0 for all p ∈ (0, 1].

Proof. In Lemma 4.3 we argued that in the binary representation of Prvc[G] there
can be at most nine 1s whenever Prvc[G] > 27

64 holds. The reason was that such



a graph cannot contain a matching of size 3 (as this would lower Prvc[G] to at
most 27

64) and at most nine β : X → B can contribute to the sum in equation (1). In
the same way, for any p ∈ (0, 1], there will be a constant c such that ( 3

4)c < p/2
holds, so any graph G with Prvc[G] > p/2 does not contain a matching of size c.
This means that we can write #vc(G) as a sum of at most j := 3c−1 powers of
two and, hence, the binary representation of Prvc[G] contains at most j many 1s.
Consider the binary representation 0.b1b2b3b4 · · ·2 of p such that infinitely many
of the bi ∈ {0, 1} are 1s (for a number like p = 1/3 = 0.01010101 . . .2 this is
automatically the case, but when p is a dyadic number like 3/8, then we have
3/8 = 0.0112 = 0.001111111 · · ·2 and we choose the latter representation). Now
consider any graph G with p/2 < Prvc[G] < p (if there is no such graph, the spectral
gap has size at least p/2 > 0 and we are done). Since the binary representation
of Prvc[G] contains at most j many 1s, the largest number with this property that
is still strictly less than p is the number obtained from p by setting all bits after
the jth 1 to 0. Since this number is strictly smaller than p, there is a spectral gap
below p as claimed. �

The above theorem is the special case of the Spectral Well-Ordering Theorem
from [30] for monotone 2cnf formulas. The curious term “well-ordering” comes
from the fact we can state Theorem 4.4 equivalently as “vc-pr-spectrum is well-
ordered by >,” but this is really just a different way of stating that there are “spectral
gaps below all p”.

Applying Random Sampling. With all the preparations done, it is relatively
straightforward to apply random sampling to solve maj-vc:

Algorithm 3: A random-sampling-based algorithm for deciding maj-vc: We sample
2,250 many subsets of V (“grains”) and count how many of them are covers (“black
grains”). We claim membership in maj-vc whenever the number of covers is at
least 2,250 · 31

64 > 1,089 many. As shown in the proof of Theorem 4.5, this claim is
correct with probability at least 2/3.

1 input G = (V, E)
2 c← 0
3 do 2,250 times:
4 C ← random subset of V
5 if C is a cover of G then
6 c← c + 1
7

8 if c > 1,089 then output ‘‘G ∈ maj-vc’’ else output ‘‘G < maj-vc’’



Theorem 4.5. Algorithm 3 shows maj-vc ∈ BPP.

Proof. By Lemma 4.3 we know that there is a spectral gap of size at least 2−10

below p = 1/2 in the spectrum of the function Prvc[·] and the more detailed analysis
in the proof of Theorem 7.12 shows that the actual size is 1

32 . In particular, for
any graph G the probability is at least 1

2 or at most 15
32 . But, then, plugging the

values p1 =
1
2 and ε = 1

64 into inequality (3) and and p2 =
15
32 and also ε = 1

64
into inequality (2) from the Chernoff–Hoeffding bound for t = 2,250, see Fact 4.1,
we get that when we sample t random vertex sets and then check whether at least
d2,250 · (p2 + ε)e = d2,250 · (p1 − ε)e = 1,090 of them are covers, our output will
be correct with probability at least 2/3. �

Extensions.

• The correctness of Algorithm 3 for deciding maj-vc hinges on the existence
of a spectral gap below 1/2. Since we saw in Theorem 4.4 that spectral gaps
“are all over the place,” the algorithm can be adjusted to mon-2sat-pr≥p for
any p just by changing the number t = 2,250 of trials in accordance with
whatever Fact 4.1 requires for a given p and ε = spectral-gapvc(p)/2 and
changing the number 1,089 to t · (p − ε). The fact that we can adapt the
algorithm so easily also tells us something about the sizes of the spectral
gaps: They must get pretty small as we approach 0 since, otherwise, we
could use the randomized Algorithm 3 in conjunction with binary search
to compute Prvc[G] quickly. (Formally, #P ⊆ FPBPP would hold.) A more
detailed analysis of the sizes of spectral gaps can be found in [30].

• The one place in the algorithm that directly refers to the vertex cover problem
is line 5, where we check whether our sample C is a cover. We could
replace this check by any other sensible check (like “Is C a hitting set
of H?” or “Is β a satisfying assignment of φ?” and so on) and we would still
get a correct algorithm as long as there is a spectral gap in the spectrum
of the function for which we wish to decide a threshold. For instance,
Algorithm 3 could be used to decide, for instance, 4sat-pr≥63/128, as long
as spectral-gap4cnfs(63/128) > 0 holds. By the Spectral Well-Ordering
Theorem [30] this is, indeed, always the case and Algorithm 3 can be used
to show ksat-pr≥p ∈ BPP for all k ≥ 1 and p ∈ [0, 1].

• On the first two ways, it was trivial to adapt the algorithm so that it also
works for mon-2sat-pr>1/2 rather than mon-2sat-pr≥1/2 = maj-vc. Perhaps
surprisingly, trying to adapt our random sampling algorithm fails quite
spectacularly. The reason is that while there was a spectral gap below
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Figure 5: Plots of the probability that we see a certain count c of covers during
a run of Algorithm 3: For a given graph G, the algorithm counts in c how many
out of 2,250 sampled vertex sets are covers of G (for the ith sampled vertex set,
the indicator variable Zi is then 1). For the graph we have Prvc[ ] = 15

32 ,
so if we sample 2,250 random vertex sets, the expected number of covers (the
number

∑2,250
i=1 Zi) will be 15

32 · 2,250 = 1,054.6875. The probability that on a run
of the algorithm we get exactly 1,054 covers is

(
2,250
1,054

)(1
2

)1,054(1 − 1
2

)2,250−1,054 ≈

1.68454%, that we get exactly 1,055 covers is about 1.68501%, and that we get
any c > 1,089 is the integral over all values to the right of the central line at 1,089.
Plugging in the numbers into Fact 4.1 yields that the probability is less than 1/3
(actually, the integral is even less than 8% as the bound from the fact is not tight).
For the green triangle graph, Prvc[ ] = 1

2 , and the probability that for a random
sample of 2,250 vertex sets we have c > 1,089 is the integral over all dark green
probabilities to the right of 1,089. Applying Fact 4.1 for the appropriate values
gives that the probability is at least 2/3, and it is actually even more than 93%. At
the bottom, the spectrum of possible values that Prvc[G] can attain is shown (see
Figure 4 for details) with a prominent spectral gap between 15

32 and 1
2 . Because

of this gap, for all G with Prvc[G] < 1
2 we actually have Prvc[G] ≤ 15

32 (light red
graphs) and c > 1,089 is even less likely than for . For graphs with Prvc[G] ≥ 1

2
(light green graphs), c > 1,089 is even more likely than for .



1/2, there is none above (see Figure 4). Indeed, no matter how many
samples we take, we will never be able to differentiate with high confidence
between the distribution of c-values generated by a triangle (which is not
an element of mon-2sat-pr>1/2) and the distribution generated by K1,k for a
large k (which is an element of mon-2sat-pr>1/2 for all k). It turns out that
this “asymmetry” between the “≥ p” and the “> p” cases is fundamental:
Akmal and Williams [2] show, for instance, that 4sat-pr>1/2 is NP-complete,
while we just saw that 4sat-pr≥1/2 lies in BPP.

5 The Fourth Way: Via Algorithmic Meta-Theorems
The employee of Theoretical Foods Inc. thanks you yet again for your help as you
take your leave. With the silos of grain behind you, you start to explore a fourth
way that quickly leads to a large patch of vegetation that looks nothing like the
orderly Search Tree Nursery of your first stop, but more like a jungle: There are
still lots of trees, but these are now overgrown by ivy, have lianas hanging from
the branches, and you spot mistletoe between the rich leaves. A woman stands
next to the winding path through the jungle, wearing some kind of uniform with
the inscription Courcelle and Partners D&C Counting Corp. and she immediately
offers their services: “Do you need help with examining any of these plants? We
specialize in answering all sorts of counting problems regarding them!”

With the “plants” corresponding to input graphs, it is a good thing that they
need not be trees, but rather can deviate and have additional edges. Formally, we
will classify our input graphs according to how “tree-like” they are, a measure
known as tree-width. Graphs of tree-width 1 are just trees, but already for tree-
width 2 there can be all sorts of interesting out-growth and cycles have, for instance,
tree-width 2. The higher the tree-width, the more complicated the graphs can be.

You politely ask what “all sorts of counting problems” encompasses and
whether it includes, in particular, “counting covers.” Delightedly, she answers:
“Oh, there are really a lot of problems we can solve very efficiently. Counting
covers is actually pretty simple for us, so, yes, we can definitely help you with
that.” Indeed, determining the number of vertex covers of a graph is just one of a
great many of problems that can be solved using divide-and-conquer on graphs of
fixed tree-width.

Just as you are about to commission the Courcelle and Partners D&C Counting
Corp., the employee mentions a caveat: “Please be aware that our services become
exponentially more expensive as the tree-width increases. Is that a problem for
you?” At first, this seems like quite a problem to you since all sorts of graphs can
appear as input, even cliques with very high tree-width. But then you notice that
you do not need the services for graphs of tree-width higher than four: For them,



we always have G < maj-vc.
In the following, we have a closer look at the background of tree-width and

the services offered. Then we show how Courcelle’s Theorem [8] can be used to
decide maj-vc.

Background on Tree-Width. Suppose we wish to apply the divide-and-conquer
method to solve maj-vc. It is not immediately clear how that would work on an
arbitrary graph, so let us start with trees: Suppose the graph T = (V, E) is a tree
(a connected, acyclic, undirected graph). Pick a root r ∈ V and let its children be
c1, . . . , ct ∈ V , each of which is the root of a subtree Ti = (Vi, Ei). Now, knowing
the numbers #vc(Ti) of vertex covers of each Ti, is already helpful for determining
#vc(T ), “but not quite”: The product of these numbers is the number of vertex
covers of T that include the root r, but it does not quite account for those vertex
covers of T that miss r. Of course, for these, all children ci of r must be in the
cover (since all the edges from r to its children must be covered), but we do not
know how many covers have these properties. The trick is to compute two values
for each graph T in a recursion: The number of covers C of T with r ∈ C and the
number of covers with r < C. (By a similar argument as in the section on search
trees, the first number is #vc(T \ {r}) and the second is #vc(T \ N[r]).) It is then not
too hard to devise an algorithm that recursively computes #vc(T ) for any tree by
computing these two numbers for each subtree.

Most graphs are not trees, so we can ask whether and how this idea can be
taken any further. It turns out that there is a generalization of trees, namely graphs
of bounded tree-width, for which a similar idea works: We also do a recursion on a
tree (called the decomposition tree of the graph), but now instead of two values,
we compute 2w+1 values for each node of the graph, where w is the tree-width of
the graph (and which is obviously bounded for graphs of “bounded tree-width”).

A bit more formally, given an undirected graph G = (V, E), a tree decomposition
of G is a tree T = (N, F) (whose vertices will be called nodes to better distinguish
them from the vertices of G) together with a mapping bag : N → {U | U ⊆ V} that
assigns a bag to each node of the tree such that the following conditions hold:

1. Covering condition: For each e ∈ E there is a node n ∈ N such that
e ⊆ bag(n), that is, such that the two endpoints of the edge lie in the bag.

2. Connectedness condition: For each vertex v ∈ V , the set {n ∈ N | v ∈ bag(n)},
which contains all tree nodes whose bags contain v, is connected in T .

The width of a tree decomposition is the maximum size of any bag minus one, that
is, maxn∈N |bag(n)| − 1. The tree-width of a graph G is the minimal width of any
tree decomposition of G, see Figure 6 for an example.
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Figure 6: A graph G together with a tree decomposition T for it of width 2
(maximum bag size minus one). In the visualization, the bags attached to the nodes
of T are just shown directly inside the nodes. Observe how each edge of G, such as
the edge {v1, v6}, is a subset of some bag of T (namely the lower left bag {v1, v2, v6})
and how for each vertex of G, such as v2, the nodes of T containing v2 (namely
those on the path from the root to the lower left node) are connected in T . The
tree-width of G is 2: The depicted tree decomposition T yields an upper bound of 2
and no tree decomposition of G can have width 1 as it is easy to see that a clique
of G, such as {v1, v2, v6}, must be a subset of some bag of any tree decomposition.

Returning to counting covers, given a tree decomposition T = (N, F) of an
input graph G, we can associate with every node n ∈ N an induced subgraph Gn

of G containing all vertices “mentioned in any bag of a node below n in T” (for the
notion of “below n” to make sense, we must pick a root of T , so let us assume that
we have done this). For instance, in Figure 6 for the left child n of the root (the
node whose bag is bag(n) = {v1, v2}), the graph Gn would encompass the nodes
{v1, v2, v5, v6} and have the form . Now, we wish to compute for each node n of
the tree T a vector of 2|bag(n)| ≤ 2w+1 numbers, namely for each possible subset
S ⊆ bag(n) the number of covers C of Gn with C ∩ bag(n) = S . For instance, for
the just-mentioned left child of the root in Figure 6 with bag(n) = {v1, v2}, the four
numbers are how many covers of Gn there are that contain v1 and v2 (the number
is 4), how many contain v1 but not v2 (only 2), how many contain v2 but not v1

(just 1), and how many contain neither v1 nor v2 (the number is 0). It is now possible
to compute the 2w+1 numbers for any node of the tree, if one knows the numbers
for all its children, meaning that we can compute the numbers recursively. This, by
the way, explains why Courcelle and Partners charge extra for larger tree-width:
The cost of keeping track of all these numbers per bag rises exponentially with the
tree-width.

There are, of course, several open questions at this point: How, exactly, does
the recursion work? How do we obtain a tree decomposition in the first place? And
what happens when the tree-width of an input graph is, indeed, large? Fortunately,
it turns out that the first two questions can be side-stepped by delegating the work to
an algorithmic meta-theorem (although the first question is not too hard to answer



directly, see for instance [29], but invoking an algorithmic meta-theorem is way
cooler). The answer to the third question was already hinted at: Graphs with large
tree-width cannot be elements of maj-vc.

Background on Algorithmic Meta-Theorems. Let us get the problem of com-
puting tree decompositions out of the way, first: It is not trivial and quite a bit of
research has been done on that question. One culmination of this research is the
following theorem, whose proof is anything but simple:

Fact 5.1 (Bodlaender’s Theorem [5]). For each tree-width w, there is a linear-time
algorithm bodlaenderw(·) that maps any graph G either to a tree decomposition
of G of width w or to the correct output “no width-w tree decomposition exists.”

There are also parallel variants of this result [3] and also a logspace version [12],
but the above version is more than enough for our purposes.

Let us now have another look at the divide-and-conquer approach that we
sketched to count the number of vertex covers of trees (and which can be gen-
eralized to larger tree-width, but let us focus on trees for a moment): Instead of
counting the number of vertex covers, we could also use the method to count the
number of independent sets – but, of course, that is not very surprising as these
numbers are the same. More interestingly, we can use the same idea to count
the number of, say, dominating sets: Knowing for each child node how many
dominating sets there are that dominate the child and how many there are that
dominate everything but the child, suffices to compute these two numbers for a
parent node, yielding a recursion – and this, too, generalizes to larger tree-width.
Indeed, once one starts investigating this question more closely, literally hundreds
of counting problems turn out to be amenable to applying divide-and-conquer via
tree decompositions. Here is an excerpt from a paper [4] by Bodlaender from 1989:

Theorem 4.4 Each of the following problems is in NC, when restricted to
graphs with tree width ≤ K, for constant K: vertex cover [GT1], dominating
set [GT2], domatic number [GT3], chromatic number [GT4], monochro-
matic triangle [GT5], feedback vertex set [GT7], feedback arc set [GT8],
partial feedback edge set [GT9], minimum mammal matching [GT10], parti-
tion into triangles [GT11], partition into isomorphic subgraphs for fixed H
[GT12],. . .

47 (!) further problems
. . . maximum length-bounded disjoint paths for fixed J [ND41], maximum
fixed-length disjoint paths for fixed J [ND42], chordal graph completion for
fixed k, chromatic index, spanning tree parity problem, distance d chromatic
number for fixed d and k, thickness ≤ k for fixed k, membership for each
class C of graphs, which is closed under minor taking.



Clearly, there must be some property that all (or at least most of) these problems
share: It defies credibility that the same method just happens to work for all of
them without some underlying reason. The honour of identifying this property is
due to Bruno Courcelle, who observed that all of these problems can be described
in monadic second-order logic.

In order not to get (further) side-tracked, no detailed account of how this logic
works will be given (and it will not be important for our algorithms), a few simple
examples will have to suffice (see for instance [29] for a detailed account): The
idea is to interpret graphs as finite logical structures in the sense of predicate logic
with the structure’s universe being the vertices and interpreting the edge relation as
a binary relation ∼. The subsets C ⊆ V for which we wish to check whether they
are covers now correspond to a set variable C. The statement “C is a vertex cover
of G” gets translated to “(the logical structure corresponding to) G is a model of
ηvc(C) = ∀x∀y

(
x ∼ y→ (C(x) ∨C(y))

)
” (we use η for formulas of predicate logic

to avoid confusion with the φ used for propositional logic). As further examples,
the statement “C is an independent set in G” gets translated to “G is a model of
ηis(C) = ∀x∀y

(
x ∼ y→ (¬C(x) ∨ ¬C(y))

)
”; and “C is a dominating set of G” gets

translated to “G is a model of ηds(C) = ∀x∃y
(
C(y) ∧ (x = y ∨ x ∼ y)

)
.”

Fact 5.2 (Courcelle’s Theorem, Counting Version, [1]). Let η(C) be a monadic
second-order formula with a free set variable C. Then for each tree-width w, there
is a polynomial-time algorithm courcelle-countη,w(·, ·) that on input of any graph
G = (V, E) together with a width-w tree decomposition of G outputs the number of
subsets S ⊆ V such that G |= η(S ), that is, such that G is a model of η when S is
assigned to the variable C.

The above theorem is (one of many, many) algorithmic meta-theorems where
the “meta” comes from the fact that for each η(C) we get a new algorithm. Other
meta-theorems differ in the logic used (some allow only less powerful logics like
first-order logic, some allow more powerful ones), in the allowed class of graphs
(some allow only more restricted graphs than graphs of fixed tree-width, other allow
much more general graphs), and in the amount of resources used (some need only
constant time, some need exponential time). It also makes a difference whether
counting problems are considered (like above) or decision problems (“is there an S
with G |= η(S )?”) or construction problems (“find an S with G |= η(S )”).

Applying Algorithmic Meta-Theorems.

Theorem 5.3. Algorithm 4 shows maj-vc ∈ P.

Proof. The algorithm is a straightforward application of Courcelle’s Theorem,
Fact 5.2, and the only thing we have to show that the output in line 4 is correct:



Algorithm 4: Using Courcelle’s Theorem to decide maj-vc: We first compute a tree
decomposition of width 4 of an input graph G using Bodlaender’s algorithm. This
may result in a failure when G actually has a larger tree-width than 4, but, then,
we can output that G < maj-vc holds (see the proof of Theorem 5.3 for why this
is correct). Otherwise, we have a tree decomposition of G of small width and can
apply a counting version of Courcelle’s powerful theorem to obtain the number of
vertex covers of G.

1 input G = (V, E)
2

3 T ← bodlaender4(G) // see Fact 5.1
4 if T is ‘‘no width-4 tree decomposition exists’’ then output ‘‘G < maj-vc’’ and stop
5

6 c← courcelle-count∀x∀y(x∼y→(C(x)∨C(y))),4(G,T ) // see Fact 5.2
7 if c ≥ 2|V |/2 then output ‘‘G ∈ maj-vc’’ else output ‘‘G < maj-vc’’

We must argue that when the tree-width is larger than 4, then G < maj-vc holds;
or, by contraposition, that all G ∈ maj-vc have tree-width at most 4. For this, let
G ∈ maj-vc be given. By Lemma 2.1, G contains no matching of size 3. Then
G cannot contain any paths of length 6 since five edges {u1, u2}, {u2, u3}, {u3, u4},
{u4, u5}, {u5, u6} for six different vertices ui would yield

{
{u1, u2}, {u3, u4}, {u5, u6}

}
as a matching in G. So, all paths in G have length 5 or less. By Lemma 5.4 below,
the tree-width of G is at most 4. �

Lemma 5.4. Let G be a graph in which all paths have length at most l. Then the
tree-width of G is at most l − 1.

Proof. We may assume that G is connected. The tree decomposition T will be a
depth-first search tree of G = (V, E) starting at some arbitrary root vertex r, see
Figure 7 for an example. Assign bags to the nodes n ∈ V of T as follows: Let
bag(n) be the set of vertices on the path from r to n in T . We claim that this yields
a tree-decomposition of width l − 1 of G:

1. The covering condition is satisfied since for any edge {u, v} ∈ E, in any
depth-first search tree, the vertices u and v lie on a path from r to some leaf
of T .

2. The connectedness condition is satisfied since for any vertex v ∈ V , exactly
the nodes in the subtree rooted at n contain v.

3. Concerning the width, note that the depth of T (the longest path from r to
any leaf) is at most l since this longest path is also a path in G. Thus, all
bags have size at most l and the width is l − 1. �



(The lemma actually even shows that the tree-depth of G is at most l, but this
concept will only be introduced and needed on a later way.)
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Figure 7: A graph G, the result of a depth-first search (dfs) starting at v1, and the
resulting tree decomposition T of G where each bag for a vertex/node n contains
all vertices of G that lie on the path from n to the root v1 in the dfs tree. Note
that the width of T is 4 = |{v1, v2, v3, v4, v8}| − 1 and this is “caused” by the path
v1 → v2 → v3 → v4 → v8 in G.

Extensions.

• As for the previous ways, it is easy to generalize the presented ideas to
mon-2sat-pr≥p for arbitrary p: All that needs to be changed is the bound on
the tree-width in line 4. The reason is that when Prvc[G] ≥ p holds, then G
cannot contain large matchings (see Lemma 2.3) and hence no long path and
hence cannot have large tree-width (see Lemma 5.4).

• Generalizing the approach via algorithmic meta-theorems to 2sat-pr≥p and
also to 2sat-pr>p is also pretty easy since, as hinted at, monadic second-
order logic is extremely powerful (we just saw a small part of its power in
the simple examples given) and it is no problem to encode negations and
their behaviours into the formulas and logical structures. The arguments
concerning the tree-width are not changed when negations are introduced.

• When we try to generalize our approach to ksat-pr≥p for k ≥ 3, we run into
a problem already for maj-3hs = mon-3sat-pr≥1/2. The trouble is not the
algorithmic meta-theorem since it is quite simple to adjust the predicate logic
formula η(C) to cover hitting sets for 3-hypergraphs. The problem is that the
tree-width of 3-hypergraphs (more precisely, the tree-width of the Gaifman
graphs of these hypergraphs, but this is nitpicking) that are hit by at least
half of all vertex sets need no longer be bounded: Just take any undirected



graph G = (V, E) of large tree-width and form H = (V ∪{a}, {e∪{a} | e ∈ E})
where a is a fresh vertex. Then at least half of all subsets of V ∪ {a} are
hitting sets of H (namely all that contain a), but the tree-width of H is that
of G plus one and, thus, large.

6 The Fifth Way: Via Graph Minors
Having politely thanked Courcelle and Partners for their services and having
written a 5-star online review in which you praised their modest fee for tree-
width 4, you continue on a fifth way. After some time you draw nearer to a building
of such gigantic proportions that it seems to try to rival the Lonely Mountain. It is
a tower that stretches all the way up into the clouds and perhaps beyond, apparently
made from ivory. At the base of the tower you see colorful tents with people
milling about who seem to prepare to actually scale the tower and, indeed, you spot
climbers going up the tower on the outside, each clearly trying to reach a different
location. Sometimes, climbers enter the tower through one of the many windows
and then come out at the base some time later, smiling broadly. The climbers use
oddly formed protrusions on the outside of the tower to help them get from one
floor up to the next.

A young man approaches you and poses a somewhat puzzling question: “Hi, I
am Alex. Are you also on Team Non-Planar?” Sensing your overall bewilderment,
he starts explaining: “Ah, just arrived? Welcome to the Minor Tower.” You remark
that the tower is anything but “minor,” which is answered by a chuckle. “Good
one! This refers to the ‘minor relation,’ which allows us climbers to get from one
of the protrusions (we call them graphs) on a floor to some graph on the next floor.
You see those two guys there? That’s Neil and Paul and they give you a target
graph and a window that you should reach. Then you start climbing (only upwards)
towards that graph. The tricky part is that for each team there are certain waypoint
graphs, at least one of which you have to touch first before going up to your final
target. Do you see those two graphs on the fifteenth floor that looks a bit like a
pentagram ( ) and like a crown ( )?” You can, indeed, spot them. “We on Team
Non-Planar have to touch them first. So, if you are not on our team, what team
would you like to join? As you can see, there any many, many teams out there!”

It turns out that there is, indeed, a team than you should join (if you feel
comfortable scaling towers of Babylonic proportions): Team Minority VC.

Background on Graph Minors. Given an undirected graph G = (V, E), Robert-
son and Seymour [26] have proposed three simple ways of making the graph, well,
simpler:



1. Remove an edge.

2. Remove an isolated vertex.

3. Contract an edge.

Here, contracting an edge {u, v} ∈ E means removing both u and v from the graph
together with all adjacent edges, but then adding a new vertex w and joining w to
all former neighbours of u and v. If we start with a graph G and apply the above
three operations repeatedly and end up with a graph H, we say that H is a minor
of G and write H � G, Figure 8 depicts a typical example. (To be perfectly precise,
we also say that H is a minor of G if some graph that is isomorphic to H is a minor
of G, so we do not care about the names of the vertices.)

� � � � �∗ � � �

Figure 8: A series of modifications of a graph according to the three possible
simplifications allowed by the minor relation: From the first graph to the second
graph, the edge indicated in red is removed. Next, the vertex indicated in red
is removed. Next, the edge indicated in red is contracted, that is, replaced by a
vertex at the center of the former edge and all former neighbors of the endpoints
are attached to the new vertex. In this way, we can simplify the graph further and
further until only a single vertex remains. Any of the graphs in the sequence is
a minor of all graphs to the left of it. Note that, in particular, any graph has the
triangle as a minor iff it contains a cycle.

Many classes C of graphs have the property that they are “closed under taking
minors,” meaning that when a graph is in the class, so is any minor of the graph:

Definition 6.1. C is closed under taking minors if H � G ∈ C implies H ∈ C.

For instance, the class planar of planar graphs is closed under taking minors:
If you manage to draw a graph in a plane, removing edges or vertices clearly does
not change this fact, and contracting an edge can also be done in such a way that
the embedding into the plane is not destroyed. Another obvious example is the
class forests of all forests. Perhaps a bit less obvious, the classes tree-width-w of
graphs of tree-width at most w is closed for each w: The key insight is that if you
have a width-w tree decomposition of G and apply one of the three simplifications,
the tree decomposition is still valid for the simplified graph after possibly renaming
some vertices in the bags. Some counterexamples are the class max-degree-d of
graphs of maximum degree d (as contracting an edge can raise the degree a lot) or
connected (as removing an edge can disconnect a graph).

The great importance of the minor relation lies in the following seminal result:



Fact 6.2 (Robertson–Seymour Theorem [27], Forbidden Minor Formulation). For
every class C that is closed under taking minors, there is a finite set {H1, . . . ,Hs}

of graphs, called forbidden minors, such that: G ∈ C iff for all i ∈ {1, . . . , s} we
have Hi � G.

By this theorem, there must be finitely many graphs such that G ∈ planar
holds iff none of these graphs is a minor of G. Such a set does, indeed, exists: By
Kuratowski’s Theorem [19] it is the set { , }. The forests are characterized by
an even simpler set of forbidden minors: { , }. In contrast, graphs of tree-width 3
are characterized [6] by the already much more complex set

{
, , ,

}
.

The connection to the climbers of Team Non-Planar is as follows: On the
outside of the Minor Tower, the graphs are arranged in floors so that climbers can
get from one graph G to a graph G′ on a higher floor if G ≺ G′. Then if a climber
wants to reach a graph G, but must first go via or , they can only do so if G is
non-planar.

Of course, the results on graph minors presented up to now are purely graph
theoretic – we still need a link to algorithmics. This link is provided by the fact that
it is possible to efficiently check for a fixed graph H whether for another graph G
we have H � G:

Fact 6.3 ([17]). For each H there is a quadratic-time algorithm for deciding on
input G whether H � G.

In the parlance of fixed-parameter tractability theory, the minor relation is fixed
parameter tractable when the left relation side is the parameter. In parlance of the
Minor Tower, we can decide in quadratic time whether one can climb from a fixed
waypoint graph to a graph anywhere higher up (and, hence, can also find a path for
the climber in polynomial time).

Joining the Robertson–Seymour Theorem and the fixed-parameter tractability
of the graph minor relation, we see that we can check in polynomial time whether
a graph G is, say, planar simply by testing whether or is a minor of G; and
likewise for any other graph class that is closed under taking minors.

Applying Graph Minors. It should have become clear by now that we can
apply the (really, really) powerful machinery of the Robertson–Seymour Theorem
whenever a class of graphs is closed under taking minors. The obvious question is,
then, what about maj-vc? With all the effort and preparations, it is hardly surprising
that we will prove in a moment that maj-vc is, indeed, closed under taking minors,
see Corollary 6.5. Figure 9 depicts how this translates into “Team Minority VC
climbing the minor tower.” The corollary follows directly from the following
stronger result:
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Figure 9: The Minor Tower with the first five floors shown completely (except
for graphs having self-loops, to keep it simple). Climbers can get from graphs H
on one floor to graphs G on the next floor (or sometimes also one higher up) if
these are “in reach” as indicated by arrows. When a climber can get from H to G
via several floors, H � G holds, that is, H is a minor of G. The graphs in green
are in maj-vc, the red ones are not. Note how maj-vc is “downward closed”: Once
you have climbed out of it, you cannot get back into it by climbing up. Some red
graphs have a red circle around them: They have the special property that every
red graph can be reached from one of them, see Theorem 6.6.



Lemma 6.4. Let G′ � G. Then Prvc[G′] ≥ Prvc[G].

Proof. We show the claim just for the case that G′ = (V ′, E′) results from G =
(V, E) by a single application of one of the simplification rules, the general statement
then follows by induction on the number of simplifications needed (which is always
finite). Clearly, removing an edge can only increase the number of vertex covers
and removing an isolated vertex does not change the number at all. Thus, let
G′ result from G through the contraction of an edge {u, v}. Rather than adding
a new vertex after removing u and v, we can also think of such a contraction as
disconnecting v from all its neighbors and then making u a neighbor of this former
neighborhood:

G

u v contracts to

G′

u v

We claim that there is an injective mapping of covers C of G = (V, E) to covers of
G′ = (V, E′): If C is also a cover of G′, map it to itself:

G

u v maps identically to

G′

u v

Otherwise, u < C and v ∈ C must hold and there must be some x < C ∪ {u, v} with
{x, v} ∈ E. Map C to C′ = (C ∪ {u}) \ {v}.

G

u v

x

maps via a switch to

G′

u v

x

To see that the whole mapping is injective, note that C′ was not a cover of G since
it does not cover {x, v} ∈ E. �

Corollary 6.5. maj-vc is closed under taking minors.

Theorem 6.6. Algorithm 5 decides maj-vc in quadratic time.



Algorithm 5: Any graph property that is closed under taking minors, see Defini-
tion 6.1, can be decided in quadratic time with the following algorithm, provided
the set of forbidden graph minors in line 3 is replaced appropriately. It is shown in
the proof of Theorem 6.6 that this particular set characterizes maj-vc.

1 input G = (V, E)
2

3 foreach H ∈ { , , , , , , } do
4 if H is a minor of G then // use Fact 6.3 for this check
5 output ‘‘G < maj-vc’’ and halt
6

7 output ‘‘G ∈ maj-vc’’

Proof. We know by Corollary 6.5 in conjunction with the Robertson–Seymour
Theorem, Fact 6.2, that there must be some finite set F = {H1, . . . ,Hs} of forbidden
minors for the class maj-vc. Thus, if we use that set F in line 3, we get a correct
decision procedure for maj-vc that runs in quadratic time by Fact 6.3. It remains
to argue that the particular set { , , , , , , } is the sought set F. To
see this, first note that for all graphs H ∈ F we have Prvc[H] < 1

2 as Prvc[ ] =
1
4 , Prvc[ ] = 3

8 , Prvc[ ] = 15
32 , Prvc[ ] = 7

16 , Prvc[ ] = 7
16 , Prvc[ ] = 15

32 ,
and Prvc[ ] = 27

64 . We must now argue that for any graph G with Prvc[G] < 1
2 we

have H � G for one of the H ∈ F. For this, let us go over the possible cases:

1. Suppose G contains a loop at some vertex v. Then it must contain at least
one further edge (otherwise Prvc[G] = Prvc[ ] = 1

2 would hold, contradicting
the assumption Prvc[G] < 1

2). If the extra edge is the only other edge and if
one endpoint is v, then G = and we would also have Prvc[G] = 1

2 . Thus,
the extra edge must be {u,w} for u , v and w , v. But then one of the two
H ∈ { , } ⊆ F is a minor of G.

2. Suppose G contains a triangle {a, b, c}. Then it must once more contain at
least one further edge. If this edge is attached to a or b or c, then � G.
Otherwise, the edge must be separate from the triangle. Removing one edge
from the triangle yields a path of length 2, showing that � G.

3. Suppose G contains a cycle of length 4 or longer. Then � G.

4. Suppose G is a forest with at least three trees (each having at least one edge).
Then � G.

5. Suppose G is a forest with two trees (each having at least one edge). If both
are just an edge, then G = and Prvc[ ] = 9

16 ≥
1
2 . Otherwise, � G.



6. Suppose G is a tree with at least one edge. If G contains a path of length at
least four edges, then � G. Otherwise, G must be a star where at at most
one leaf we have added an edge. If G is a star without such an added edge,
Prvc[G] > 1

2 . If G is a star with up to two leaves and an edge added to one of
them, then G is a triangle or a path of at most three edges and Prvc[G] ≥ 1

2 .
The only remaining case is that G is a star with at least three leaves, to one
of which an edge is added. But, then, � G or � G.

All told, whenever Prvc[G] < 1
2 , either G contains a cycle and, then, by the first

items H � G for some H ∈ F, or G is a forest and then, by the last items, we also
have H � G for some H ∈ F.

For future reference, observe that in all items, except for item 3, we obtain
H as a minor of G purely through deleting edges and vertices, we do not need
contractions (which we only need to contract long cycles in item 3). �

Extensions.

• Using graph minors algorithmically is a very powerful method, provided the
graph classes that we try to decide are closed under taking minors. We saw
in Corollary 6.5 that maj-vc has this closure property since by Lemma 6.4
the minor relation is (anti)monotone with respect to covering probabilities.
This implies, immediately, that for any p ∈ [0, 1] the sets mon-2sat-pr≥p are
also closed and, hence, have a forbidden minor characterization.

• Perhaps more intriguingly, the sets mon-2sat-pr>p are also closed under
taking minors and for the same reason. Thus, the graph minor method
naturally also applies to these sets.

• Unlike all methods presented earlier, there is no obvious way to extend the
approach to also cover 2sat-pr≥1/2, that is, to handle negations. It is clear that
we cannot just ignore the negations, but would have to come up with some
sort of gadget constructions to turn formulas into graphs. However, it seems
that contractions are anathema to satisfaction probabilities: Consider a set of
2cnf clauses that express that a large cycle of even length is 2-colorable. But,
now, contracting (perhaps the representation of) a clause results in a formula
expressing that a large cycle of odd length is 2-colorable (which is not the
case). Contracting another clause yields a statement about even cycles once
more, meaning that the satisfaction probabilities of the graphs representing
the formulas seem to fluctuate wildly when we apply contractions.

• Another indication why it is unlikely that we can extend the method to decide,
say 4sat-pr≥1/2, is that if we could map all 4cnf formulas φ to graphs Gφ



such that Gφ � Gψ implies Pr[φ] ≥ Pr[ψ], then our approach would not
only work for 4sat-pr≥1/2, but also for 4sat-pr>1/2, which is known to be an
NP-complete problem.

• Whether or not we can use the method to solve maj-3hs or, more generally,
mon-ksat-pr≥p, is open.

7 The Sixth Way: Via Forbidden Subgraphs
As you embark on a sixth way, you leave the mighty Minor Tower and the bustling
crowd of climbers behind you. The way leads you through some beautiful theory
meadows and then towards what can only be called a fairy tale castle with a lot of
spires of different sizes. Indeed, you soon loose track of how many spires there
are. At the gate of the castle, which comes with a moat and a drawbridge, a guard
challenges you: “Well met, stranger. What is thy quest?” A bit unsure, you respond
that you wish to solve maj-vc, to which the guard proclaims: “A most noble quest!
Be welcome to the Castle of Thousand Spires and enter. In the Spire of Most
Shallow Depths thou shalt prevail.” You thank the guard and enter.

After a bit of searching you find the Spire of Most Shallow Depths. Inside, a
festive crowd of twelve dwarves makes quite a ruckus as they try to climb the spire
from the inside, seldom getting very far and soon dropping back to the floor, much
to the merriment of the rest. In the middle, an exasperated wizard futilely tries to
impose some kind of order: “No, no, no! You must climb to before you go on
to , not the other way round!” As he sees your approach, he stops berating the
dwarves and addresses you instead: “Well met, Master Theoretician!” You politely
ask what is going on, to which the wizard answers: “These fine dwarves have set
it upon themselves to train for the Climb of the Minor Tower, which itself is just
training for climbing the Lonely Mountain. As you can see, in each spire of the
Castle of Thousand Spires one can safely train climbing as getting from one graph
to one on the next floor is much easier than on the Minor Tower. Once you have
mastered a spire you can go to another one, they get bigger and bigger with more
and more graphs in them (the ones in the Spire of Most Shallow Depths are, well,
shallow). Otherwise, it is the same as with the Minor Tower: Go to the waypoints
first, then to your target. Speaking of which: No, no, no, you have to touch ,
not !” You get a feeling that the dwarves will need to practice a lot, before they
can ever scale the Minor Tower, let alone the Lonely Mountain. So, you casually
ask why they do not use the backdoor that the hobbit showed you. Your remark is
met by stunned silence, followed by a cry along the lines of “The hobbit has found
the secret backdoor! It cannot be! But what, if it true? We must meet him at once!”,
followed by twelve dwarves rushing out of the Spire of Most Shallow Depths. The



wizard seems deeply lost in thought, but you think you hear him mumbling: “The
hobbit must have used a ring to find the backdoor. Perhaps even the nilpotent ring?
I must study this!”

Let us now have a look what a “simpler way of scaling the Minor Tower” might
look like and why we need many spires instead of a single tower.

Background on Induced Subgraphs. Recall from the previous section that a
graph H is a minor of a graph G if we can obtain H from G by deleting edges,
deleting isolated vertices, and contracting edges (and renaming vertices). If we
only allow deleting edges and deleting isolated vertices, but no longer allow the
contraction of edges, then H is (isomorphic to a) subgraph of G, written H ⊆ G. If
we do not even allow deleting edges, but just allow deleting (no longer necessarily
isolated) vertices, H is (isomorphic to an) induced subgraph of G, written H v G
in the following. For isomorphic graphs H and G, we have H ⊆ G ⊆ H v G v H.
For concrete examples, v and thus also ⊆ and � . In contrast,
@ , but ⊆ and thus � . Finally, @ and * , but still
� .

Checking for a fixed H whether H v G holds, is easy enough, as the following
analogue of Fact 6.3 shows:

Lemma 7.1. For each H = (VH, EH) there is an algorithm that on input G = (V, E)
decides both H v G and H ⊆ G, and that runs in time O

(
|E| · |V ||VH |

)
= |V |O(1).

Proof. Iterate over all size-|VH | vertex set of G and check for each whether it
induces H (or a supergraph of H for ⊆). �

Intuitively, it feels much easier to check whether H v G holds than to check
H � G. But Fact 6.3 tells us that the test H � G is fixed-parameter tractable with
respect to the parameter H, while testing H v G is easily seen to be W[1]-hard with
respect to the same parameter (as setting H = Kk to size-k cliques shows that the
problem is at least as hard as the parameterized clique problem). So, the intuition
is wrong.

Nevertheless, working with induced subgraphs or just subgraphs instead of
minors has a big advantage: Results on the subgraph relation will generalize
naturally to 2cnf and partly even to kcnf formulas. For instance, H ⊆ G trivially
implies Prvc[H] ≥ Prvc[G] (less edges can only mean more covers), so we have:

Lemma 7.2. maj-vc is downward closed with respect to v and ⊆.

Crucially, we likewise have that if every clause of a kcnf formula φ is also a
clause of another cnf formula ψ (after possible variable renaming), then Pr[φ] ≥
Pr[ψ]. In other words, it is easy to come up with generalizations of the above



lemma for cnf formulas instead of graphs. In contrast, while by Lemma 6.4 we also
had that H � G implies Prvc[H] ≥ Prvc[G], that implication immediately breaks
down when we try to add negations.

Background on Forbidden Induced Subgraphs. In order to “switch” from the
minor relation to the induced subgraph relation for solving maj-vc, we need an
analogue of the Robertson–Seymour Theorem. That is, we need a theorem telling
us something like this: “Whenever a graph class C is downward closed under v,
then there is a finite set F of graphs such that G ∈ C iff H @ G holds for all H ∈ F.”
This statement, however, is false, as the class C of all graphs that do not contain
any graph in the following set I as an induced subgraph shows (note how no graph
in the infinite I is a subgraph of any other):

I = { , , , , . . . }. (4)

Fortunately, Nešetřil and Ossona de Mendez [24] came up with a way to save
the idea: We need to restrict attention only to graphs with constant tree-depth, as
in the Spire of Most Shallow Depths, which is defined as follows:

Definition 7.3. The tree-depth of a graph G = (V, E) is as follows: When G is the
empty graph, it is 0. When G is unconnected, it is the maximum tree-depth of G’s
components. When G is connected, it is 1 plus the minimum tree-depth of G \ {v}
taken over all v ∈ V .

Since the definition is in terms of recursively eliminating vertices and results
in an elimination tree, the tree-depth is sometimes also known as (recursive)
elimination depth. It is closely related to concepts we saw earlier, namely dfs trees
and tree-width, see Figure 10.

Let spiret = {G | G has tree-depth at most t}. Figure 10 shows an example of a
graph G ∈ spire4 as the depth of the depicted elimination tree is 4. Nešetřil and Os-
sona de Mendez [24] proved an analogue of the Robertson–Seymour Theorem for
the graphs in each spiret and for the induced subgraph relation v, see Theorem 7.4
below. Since we wish to generalize the underlying ideas on the seventh and final
way, let us have a closer look at the proof of the theorem.

Theorem 7.4 ([24]). Let C ⊆ spiret be a graph class that is downward closed
under v. Then there is a finite set F of graphs such that for all G ∈ spiret we have:
G ∈ C holds iff H @ G for all H ∈ F.

Proof. We start with a definition:

Definition 7.5. A sequence (G0,G1,G2, . . . ) of graphs, also written as just (Gi), is
good, if Gi v G j holds for some indices i, j ∈ N with i < j; otherwise it is bad.
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Figure 10: The graph G from Figure 7 on page 33 together with an elimination
tree: When we remove the vertex v1, we get two connected components (one with
just v5 and the other with the remaining vertices). Then, removing v3 from the
large component leaves us with four components ({v2, v6}, {v4, v8}, {v7}, {v9}). Note
that the depicted elimination tree is not a dfs tree (there is no edge between v1

and v3 is G), but every dfs tree like the one from Figure 7 is an elimination tree
(elimination trees of a graph can be more shallow than any dfs trees for the graph).
Just as for dfs trees, every elimination tree provides us with a tree decomposition
of the graph by putting all vertices along the paths from the root to a node into the
node’s bag.
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Figure 11: The three spires spire1, spire2, and spire5 depicted as in Figure 9, so
green graphs are in maj-vc while red graphs are not, but now an arrow from H
to G means that H v G, that is, H is an induced subgraph of G (and not only a
minor). In the first spire, for tree-depth 1, there are only edge-less graphs. In the
second, the graphs are forests of stars. Both spires miss elements of maj-vc like the
triangle. In spire5, we have maj-vc ⊆ spire5. As in Figure 9, minimal elements of
the complement of maj-vc are indicated by a red circle (but now minimality is with
respect to v rather than the minor relation �).



The importance of this definition lies in the following claim:

Claim 7.6. If every sequence (Gi) with Gi ∈ spiret is good, then there is a finite
set F such that for all G ∈ spiret we have: G < C holds iff H v G for some H ∈ F.

Proof. Let F contain all H ∈ spiret \ C for which there is no H′ v H with
H′ ∈ spiret \ C and H @ H′. Consider any G ∈ spiret. Clearly, if G ∈ C, no H ∈ F
exists with H v G as C is downward closed. So suppose G < C. If G ∈ F, then
there is an H ∈ F (namely G) with H v G. Otherwise, there is a G′ v G with
G′ ∈ spiret \ C and G @ G′. If G′ ∈ F, then there is an H ∈ F (namely G′) with
H v G. Otherwise, there is a G′′ v G with G′′ ∈ spiret \ C and G′′ @ G′; and
G′′ ∈ F once more implies that there is an H ∈ F with H v G. We need to repeat
this argument only a finite number of times since, otherwise, (G,G′,G′′,G′′′, . . . )
would form a bad sequence. �

By the claim, in order to prove the theorem, it suffices to show that every
sequence in spiret is good – and this is exactly Claim 7.11 below. To prove it
by induction on t, we need a slight strengthening: Let us generalize the concepts
to colored graphs G = (V, E, c), where there is a fixed set C of colors and the
function c : V → C assigns a color to each vertex. A colored graph H is an induced
subgraph of a colored graph G if we still can obtain H (with the correct vertex
colors and with, possibly, some vertex renamings) from G by deleting vertices. We
can now reach our goal through a sequence of smaller claims:

Claim 7.7. Suppose every sequence (Gi) of connected colored graphs Gi ∈ spiret

is good. Then for every such sequence there is an infinite sequence (i0, i1, i2, . . . ) of
strictly increasing indices such that Gi0 v Gi1 v Gi2 v · · · .

Proof. Suppose no such subsequence exists for (Gi). Then starting at G = G0 there
must be a subsequence G v G′ v G′′ v · · · v G∗0 of maximal length. If we remove
the initial segment up to G∗0 from (Gi), then starting at the new first graph G, there
is once more a subsequence G v G′ v G′′ v · · · v G∗1 of maximal length. By once
more removing the initial segment up to G∗1 and repeating the argument indefinitely,
we get an infinite subsequence (G∗i ). But since this sequence is good, G∗i v G∗j for
some i < j, contradicting that the sequence ending at G∗i had maximal length. �

Claim 7.8. Let (Gi) be a sequence of colored graphs, where each Gi has just one
vertex. Then (Gi) is good.

Proof. After at most |C| steps we see the same colored graph once more. �

Claim 7.9. Suppose every sequence (Hi) of connected colored graphs Hi ∈ spiret

is good. Then so is any sequence (Gi) of (possibly unconnected) colored graphs
Gi ∈ spiret.



Proof. If there are any bad sequences (Gi) of colored graphs in spiret, consider
those for which G0 has a minimal number of connected components, and then
among those for which G1 has a minimal number of connected components, then
among those for which G2 has a minimal number, and so on. No Gi can be empty
(as Gi v Gi+1 would follow and show that the sequence is good), so each Gi is the
disjoint union of a connected Hi and some rest graph Ri, both of which lie in spiret.
By assumption, (Hi) is good and by Claim 7.7 we have Hi0 v Hi1 v Hi2 v · · · for
some indices i0 < i1 < i2 < · · · . Consider the sequence

(G0,G1, . . . ,Gi0−1,Ri0 ,Ri1 ,Ri2 , . . . ).

Since Ri0 has one connected component less than Gi0 , this sequence cannot be bad
as we would have picked it at the beginning. But then either for one of the initial
Gi we have Gi v Ri j and then also Gi v Gi j with i < i j, or we have Ri j v Rik for
i j < ik and then also Gi j v Gik . In either case, (Gi) was not bad. �

G : v1

v2

r

v4

v5

v6

v7

v8

v9

elimination tree T
r

v2

v1

v5 v6 v9

v4

v8

v7

G′ : v1

v2 v4

v5

v6

v7

v8

v9

components’
elimination trees

v2

v1

v5 v6 v9

v4

v8

v7

Figure 12: The graph G from Figure 10 but with a different elimination tree (which
happens to also be a dfs tree, but this is not relevant). The tree’s depth is 4 and
hence G ∈ spire4. An example coloring for C = {red, green, blue} is shown. If we
remove r from G, we get a new graph G′ with three components, each of which
has an elimination tree of depth 3, showing G′ ∈ spire3. In the construction of
Claim 7.10, the color of r (blue in the example) is added as a second color ring to
all neighbors of r, so the color of v4 in G′ is the formal pair (red, blue) and of v7 is
(blue, blue), while the color of v5 in G′ is the pair (green,⊥).

Claim 7.10. Suppose every sequence (Hi) of colored graphs Hi ∈ spiret is good.
Then so is any sequence (Gi) of connected colored graphs Gi ∈ spiret+1.



Proof. Let C be the set of colors and let (Gi) be a sequence of connected colored
graphs Gi ∈ spiret+1. By definition, each Gi has an elimination tree (see Figure 10)
of depth t + 1, rooted at some root vertex r. Build a new colored graph G′i with
the new set of colors C × (C ∪ {⊥}) as follows: Remove r from Gi = (Vi, Ei) and
each vertex v ∈ Vi \ {r} with the old color c(v) gets the new color

(
c(v), c(r)

)
if

{v, r} ∈ Ei and otherwise gets the color (c(v),⊥), see Figure 12 for an example. In
other words, we mark the vertices of G′i by whether they were connected to r and,
if so, with r’s color. The two crucial observations are that (1) if G′i v G′j, then
Gi v G j, see Figure 13 for an example; and (2) that each G′i is an element of spiret.
Then by assumption, (G′i) is good and hence also (Gi). �

r v r @ r

v @

Figure 13: For the upper three graphs, the first is an induced subgraph of the
second, while they are not induced subgraphs of the third as the color of r is wrong.
The lower three graphs, which result from the construction from Claim 7.10 and
which are in a smaller spire, reflect these induced subgraph relations.

Putting the claims together, we get:

Claim 7.11. For each t, every sequence of colored graphs in spiret is good.

Proof. By induction on t. For t = 1, Claim 7.8 gives the statement for sequences
of connected graphs in spire1 and Claim 7.9 then also for unconnected graphs in
spire1. For the inductive step from t to t + 1, Claim 7.10 gives the statement for
connected graphs in spiret+1 and Claim 7.9 once more generalizes it to all graphs
in spiret+1. �

This concludes the proof of the analogue of the Robertson–Seymour Theorem
for forbidden induced subgraphs and graphs of bounded tree-depth. �



Applying Forbidden Subgraphs. Although Theorem 7.4 and the whole dis-
cussion up to now was about induced subgraphs, for our algorithms it is more
convenient to use subgraphs. (However, we could easily reformulate the algorithms
to use induced subgraphs, by adding to the set in line 6 all graphs that can be
obtained by adding edges.)

Algorithm 6: The algorithm is similar Algorithm 5, but needs a new check (line 3)
and the main check “if H is a minor of G” is replaced by “if H is a subgraph of G.”
As shown in Theorem 7.12, the set in line 6 is the correct finite set of forbidden
subgraphs to check to decide maj-vc.

1 input G = (V, E)
2

3 if G < spire5 then
4 output ‘‘G < maj-vc’’ and halt
5

6 foreach H ∈ { , , , , , , } do
7 if H ⊆ G then // use Lemma 7.1 to check this in time O(n6)
8 output ‘‘G < maj-vc’’ and halt
9

10 output ‘‘G ∈ maj-vc’’

Theorem 7.12. Algorithm 6 decides maj-vc in polynomial time.

Proof. A quick comparison reveals that there are only two deviations in Algo-
rithm 6 from Algorithm 5: First, in line 3 we check whether G < spire5 holds
(which is easy to do in time O(n5) by recursively checking all possible ways to
pick elimination vertices) and, if so, claim “G < maj-vc”. This output is correct
since by the remark following Lemma 5.4, the tree-depth of all graphs in maj-vc
is at most 5, so maj-vc ⊆ spire5. The second deviation is that the minor relation
got replaced by the subgraph relation. In the proof of Theorem 6.6 we use the
Robertson–Seymour Theorem to obtain a set of forbidden minors; now we use
Theorem 7.4 to obtain some finite set F of forbidden subgraphs that we can iterate
over in line 6 to correctly decide maj-vc. It remains to argue that the particular
set F = { , , , , , , } is once more the right one. To see this, recall
from the proof of Theorem 6.6, where we did that argument already for the minor
relation, that we explicitly pointed out that the argument showed that Prvc[G] < 1

2
always implies not only H � G for some H ∈ F, but even H ⊆ G for some H ∈ F;
except for item 3 in the proof, where it was argued that if a graph G contains a
cycle of length 4 or longer, then � G. However, when G contains a cycle of
length 5 or longer, then ⊆ G and ∈ F. �



Extensions.

• As was already pointed out in the introduction of this section, the whole
point of switching from the minor relation to the subgraph relation in the
context of counting–thresholds, was the fact that if (after renaming) the
clauses of a cnf formula φ are a subset of the clauses of another formula ψ,
then Pr[φ] ≥ Pr[ψ]. This allows one to generalize the ideas from the present
section to 2sat-pr≥p and 2sat-pr>p with (relative) ease.

• However, generalizing the method to maj-3hs = mon-3sat-pr≥1/2, let alone
ksat-pr≥p, fails almost immediately as it is easy to construct 3-hypergraphs
with “many covers and very long paths” as the following set of size-3
hyperedges shows:

{
{a, xi, x j} | 1 ≤ i < j ≤ n

}
is hit (“covered”) by any set

containing a, but we can “walk n steps around the xi.” This is, of course, not
a formal proof that the method cannot work, but it is the kind of problems
one quickly runs into.

8 The Seventh Way: Via Well-Quasi-Orderings
You leave the Castle of Thousand Spires and embark on a last journey. The seventh
way leads you deeper and deeper into a jungle. After some time, you start to hear
two male voices that seem to be having a bit of an argument: “No, this is definitely
not an old Khmer temple!” “Just look at the collection of edifices, Junior, does
that not ring a bell?” “Do not call me Junior!” “Well then, Dr. Jones, what is
your professional archaeological opinion?” “I am not sure, but it is definitely not
Khmer.” “That is the most unscientific answer I have heard in a long time, Junior.
It’s that upstart faculty of yours, I have no idea how any of your colleagues ever got
tenure.” “Do not call me Junior!” The bickering just continues as you draw nearer,
till you are suddenly besides the two men and can see what they are discussing: It
is a giant sprawl of temple-like spires and towers of all kinds and heights, all of
which are richly decorated with symbols on the outside. An enormous number of
ropes and vines connect many of the spires with one another, leading from symbols
on one to other symbols on other spires. The older of the two gentlemen, who has
a quite distinguished, if old-fashioned, demeanor, is about to address you, but the
younger man, who is dressed in practical brown clothes and wears a fedora, beats
him to it: “Great. Another archaeologist! Ah, well, perhaps you can shed some
light on what all of that means. We have clearly established that this is not an old
Khmer temple. But Dr. Jones here, and admittedly also myself, cannot make any
sense of these symbols. Nor why there are so many ropes.”

You take a closer look at the symbols and then inform the gentlemen that you
do not know about the ropes, but you have seen them quite recently in the Castle of



Thousand Spires on the insides of the walls there. The two men exclaim in unison
“Of course! The Castle of Thousand Spires!” and the younger Dr. Jones informs
you that “I must find out what these ropes are for!” and then rushes off to scale the
temple spires and from time to time climbs one of the ropes to get to another spire.
The older Dr. Jones just shakes his head and yells to his son: “That all looks very
exciting and adventurous, Junior, but do you really need to shimmy along these
ropes?” As we will see in the following, the ropes are, indeed, useful as they turn
the isolated spires into one great well-quasi-ordering of all graphs that is the basis
for proving not only that maj-vc is tractable, but also generalizations.

Background on Well-Quasi-Orderings. Algorithms 5 and 6 were almost iden-
tical: On input of a graph G, we checked for a finite set F of graphs whether for
some H ∈ F we had H � G (Algorithm 5) or H ⊆ G (Algorithm 6) and, if so,
knew G < maj-vc. The reason this worked were the Robertson–Seymour Theorem
(for the minor relation �) and Theorem 7.4 (for the induced subgraph relation v
and hence also for the subgraph relation ⊆). Hardly surprisingly, these sets F do
not just “happen” to exist for the relations �, ⊆, and v. Rather, there is a deeper
reason: These relations are well-quasi-orderings of graphs.

Well-quasi-orderings are a fundamental concept from order theory. In this
theory, instead of relations between just graphs, we study pairs (S ,≤) consisting
of an arbitrary sets S together with a binary relation ≤ on S , meaning ≤ ⊆ S × S .
Most readers will be familiar with, for instance, total orderings (S ,≤), where ≤ is
transitive (a ≤ b and b ≤ c implies a ≤ c for all a, b, c ∈ S ), reflexive (a ≤ a for
all a ∈ S ), and total (exactly one of a ≤ b or b ≤ a or a = b holds for all a, b ∈ S ).
A more general kind are quasi-orderings (S ,≤), where we just require ≤ to be
transitive and reflexive – so for two different elements a, b ∈ S both a ≤ b and
b ≤ a can be true (this peculiarity is emphasized by “quasi”). An example from
the world of graphs is (graphs,�) and note that for any two isomorphic graphs G
and G′ we have G � G′ and G′ � G. Even (graphs,⊆) is “just” a quasi-ordering as
we defined G ⊆ G′ to mean that some isomorphic copy of G is a subgraph of G′.

Definition 8.1. A well-quasi-ordering (S ,≤) is a quasi-ordering such that for all
sequences (s0, s1, s2, . . . ) with si ∈ S for all i, there are indices i, j ∈ N with i < j
and si ≤ s j.

The definition is, admittedly, peculiar, but astute readers will notice that a
very similar notion was introduced in the proof of Theorem 7.4 in the form of
“good sequences.” That is, of course, no coincidence: That proof generalizes from
the special case of “the induced subgraph relation on graphs with constant tree-
depth” to all well-quasi-orderings. Indeed, very astute readers may have noticed
that the proof was phrased subtly in such a way that the proofs of the following



generalizations can be copied almost verbatim from there (and, thus, will not be
given in the following).

• Definition 7.5 of good sequences generalizes easily: Let (S ,≤) be a quasi-
ordering. A sequence (si) with si ∈ S for all i is good if si ≤ s j holds for some
indices i < j. With this terminology, the “well” in “well-quasi-ordering” just
means that every sequence is good.

• The crucial Claim 7.6, by which a set F of forbidden graphs exists when all
sequences are good, generalizes as follows:

Lemma 8.2. Let (S ,≤) be a well-quasi-ordering and let C ⊆ S be downward
closed under ≤, that is, r ≤ s ∈ S implies r ∈ S . Then there is a finite set
F ⊆ S such that for all s ∈ S , we have s ∈ C iff r 6≤ s for all r ∈ F.

This lemma tells us that we will always find sets of forbidden graphs and will
always be able to run an analogue to Algorithms 5 and 6, when (graphs,≤)
is a well-quasi-ordering.

• Claim 7.7 generalizes to the statement: Every infinite sequence (si) in a
well-quasi-ordering (S ,≤) has an infinite subsequence si1 ≤ si2 ≤ si3 ≤ · · · .
In other words, sequences in well-quasi-orderings are not only “good” in
the sense “at some point, si1 ≤ si2 will hold,” but “perfect” in the sense that
“there will be si1 ≤ si2 ≤ si3 ≤ · · · .”

• Claim 7.9, by which the general goodness of sequences of connected colored
graphs extends to unconnected colored graphs, is just a special case of
Higman’s Lemma (since finite unconnected graphs can be seen as finite
sequences of connected graphs):

Fact 8.3 (Higman’s Lemma, [14]). Let (S ,≤) be a well-quasi-ordering. Let
S ∗ be the set of finite sequences of elements of S ; and for a1 . . . an ∈ S ∗

and b1 . . . bm ∈ S ∗ we define a1 . . . an ≤
∗ b1 . . . bm if there are indices i1 <

i2 < · · · < in with a1 ≤ bi1 , a2 ≤ bi2 , . . . , an ≤ bin . Then (S ∗,≤∗) is a
well-quasi-ordering.

• Finally, Claim 7.11, by which every sequence of graphs in a spire is good,
translates to the following (and this is how Theorem 7.4 is actually stated in
the original papers):

Fact 8.4 ([24]). (spiret,v) is a well-quasi-ordering for all t.

With all these preparations, it should come as no surprise that the Robertson–
Seymour Theorem can also be rephrased very briefly:



Fact 8.5 ([27]). (graphs,�) is a well-quasi-ordering.

Note that, in contrast, (graph,v) is not a well-quasi-ordering as the bad se-
quence implicit in equation (4) shows. It is really just each individual (spiret,v)
that is well-quasi-ordered, not the infinite union.

Background on Algorithmic Aspects of Well-Quasi-Orderings. As stated ear-
lier, the theory of well-quasi-orderings is purely order-theoretic and not concerned
with questions of tractability. However, the existence of finite sets of forbidden
elements for closed sets gives us analogues of Algorithms 5 and 6. The following
theorem turns this into a formal statement, where P is the class of problems solvable
in polynomial time and XP is the class of relations ≤ such that for each fixed r ∈ S
there is a polynomial-time algorithm for deciding on input s ∈ S whether r ≤ s
holds (in fpt parlance, the left-hand side of the relation is the parameter):

Algorithm 7: Abstract version of Algorithms 5 and 6 for well-quasi-orderings
(S ,≤) with S ∈ P and ≤ ∈ XP and a set C ⊆ S that is downward closed with respect
to ≤. The set F is a set of forbidden elements, see Lemma 8.2, with respect to
(S ,≤) and C.

1 input s
2

3 if s < S then
4 output ‘‘s < C’’ and halt
5

6 foreach r ∈ F do
7 if r ≤ s then
8 output ‘‘s < C’’ and halt
9

10 output ‘‘s ∈ C’’

Theorem 8.6. Let (S ,≤) be a well-quasi-ordering with S ∈ P and ≤ ∈ XP. Let
C ⊆ S be downward closed with respect to ≤. Then C ∈ P.

Proof. By Lemma 8.2, there is a finite set F ⊆ S such that for each s ∈ S we
can decide whether we also have s ∈ C by checking whether for all r ∈ F we
have r 6≤ s. Consider Algorithm 7 for this particular F. On input s, we first check
whether s ∈ S holds in line 3 (which can be done in polynomial time because of
the assumption S ∈ P) and, if not, know that s < C ⊆ S . Otherwise we check
whether any r ∈ F has the property r ≤ s (which can also be done in polynomial
time because of the assumption ≤ ∈ XP) and, if so, again know s < C. If s passes
all these tests, we correctly assert that s ∈ C must hold. �



A classical way of instantiating Theorem 8.6 is for the well-quasi-ordering
(graphs,�) and C = planar: S = graphs ∈ P holds trivially, � ∈ FPT ⊆ XP follows
from Fact 6.3, and the class of planar graphs is clearly closed under taking minors.
Thus, planar ∈ P. For our purposes, we of course use (graphs,�) and C = maj-vc,
which is closed under taking minors by Corollary 6.5, to get maj-vc ∈ P in the form
of Theorem 6.6. Alternatively, we can instantiate Theorem 8.6 for (spire5,⊆) and
C = maj-vc to get Theorem 7.12.

Applying Well-Quasi-Orderings. While it is certainly elegant to restate our pre-
vious results in the abstract framework of well-quasi-orderings, does this actually
give us any new insights? In other words, a weary traveller might sigh: Why did I
bother to walk this way?

To answer this, let us rephrase the discussions of possible extensions at the
end of the fifth and sixth way in terms of well-quasi-orderings: (graphs,�) is a
well-quasi-ordering for which maj-vc is downward closed, but when we try to go
from graphs to 2cnf, the set 2sat-pr≥1/2 does not seem closed under any sensible
version of the minor relation. In contrast, the (induced or not) subgraph relation is
more robust and allows generalizations, but neither (graphs,v) nor (graphs,⊆) are
well-quasi-orderings. Rather, only (spiret,⊆) was. What we really need is a single

“robust” well-quasi-ordering on all graphs that is anti-monotone with respect
to Prvc[·]. Fortunately, this can be achieved by adding ropes (an idea borrowed
from Rado [25]):

Definition 8.7. For each constant c, define a relation vc as follows: Let H vc G
hold if

1. H v G, that is, H is an induced subgraph of G, or

2. G contains a matching of size c · nH where nH is the number of vertices in H.

The idea behind this definition is that in addition to the induced subgraph
relation, we add new ways to get from a graph H to a graph G (the “ropes”) that do
not respect the induced subgraph relation at all. Nevertheless, the resulting relation
has all the desirable properties we need:

Lemma 8.8. For each c, (graphs,vc) is a well-quasi-ordering.

Proof. Consider any sequence (Gi) of graphs. If there is a t such that Gi ∈ spiret

holds for all i, we know that Gi v G j holds for some i < j by Fact 8.4 and hence
also Gi v

c G j. Otherwise, the depth of the elimination trees of the Gi grows beyond
all bounds; so some G j with j > 0 has an elimination tree of depth 2c · |V0| where
G0 = (V0, E0). Then this G j contains a path of length 2c · |V0| (recall the remark
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Figure 14: The well-quasi-ordering (graphs,v3). As in Figure 13, the graphs are
grouped according to tree-depth, but while in the spires of Figure 13 the graphs
from a smaller spire got repeated, each graph is now present only once and we only
use the tree-depth for visual grouping. Also as in that figure, green graphs lie in
maj-vc while red graphs do not, and the circled red graphs are minimal elements
of the complement of maj-vc with respect to v3. A normal arrow ( ) still just
indicates that H v G holds (H is an induced subgraph of G). The new “ropes”
( ) indicate that H v3 G holds (only) by item 2 in Definition 8.7: The number
of vertices in H (5 on the fifth floor and 6 on the sixth floor) is at most a third of the
size of a matching in G (15 for graphs containing the 15-edge matching M15 and
18 for those containing M18). Note that these ropes do not respect the subgraph
relation at all, but they do respect Prvc[·] by Lemma 8.10.



after Lemma 5.4) and, hence, also a matching of size c · |V0|. Thus, Gi v
c G j for

0 = i < j. �

Lemma 8.9. For each c, we have vc ∈ XP.

Proof. Fix a graph H and let nH be the number of its vertices. To decide on input H
whether H vc G holds, we have to test whether either H v G holds, which can
be done in polynomial time by Lemma 7.1, or whether G contains a matching of
size c · nH, which can also easily be checked in polynomial time (note that nH is a
constant parameter). �

Lemma 8.10. H v3 G implies Prvc[H] ≥ Prvc[G].

Proof. If H v G, then Prvc[H] ≥ Prvc[G]. So assume that G contains a matching M
of size 3nH where nH is the number of vertices of H. Since H has at least one cover,
we have Prvc[H] ≥ 2−nH . On the other hand, Prvc[M], the probability of covering a
size c · nH matching, is ( 3

4)3nH = (27
64)nH < 2−nH . Thus Prvc[H] ≥ 2−nH > Prvc[M] ≥

Prvc[G]. �

In particular, maj-vc is downward closed with respect to v3. Putting it all
together, we get:

Theorem 8.11. Algorithm 7 decides maj-vc in polynomial time when instantiated
for (graphs,v3) and C = maj-vc.

Extensions.

• Just as not only maj-vc is closed with respect to taking minors, but all
mon-2sat-pr≥p and even all mon-2sat-pr>p are for any p ∈ [0, 1], so are they
all with respect to v3. In other words, like the minor relation, we get the
tractability of mon-2sat-pr≥p and mon-2sat-pr>p “alongside” that of maj-vc
“for free.”

• Unlike the minor relation, but like the induced subgraph relation, it is not
hard (but also not quite trivial) to extend the definition to 2cnf formulas
with negations. This allows us to give well-quasi-ordering-based proofs of
2sat-pr≥p ∈ P and 2sat-pr>p ∈ P.

• Unlike the induced subgraph relation, one can extend the idea to 3cnf
formulas and beyond (the details are beyond the already too-large scope
of this paper and will be discussed at some future time). That is, for each
k it is possible to define a well-quasi-ordering ≤ of all kcnf formulas such
that φ ≤ ψ implies Pr[φ] ≥ Pr[ψ], meaning that sets such as 4sat-pr>1/2 are
closed with respect to this ordering. However, as 4sat-pr>1/2 is known to be
NP-complete, we cannot hope to have ≤ ∈ XP, but only ≤ ∈ XNP.



9 Conclusion
It has been quite a long journey through the complexity landscape – just to visit
the problem maj-vc, which is neither particularly difficult nor particularly relevant
to solve in practice. Hopefully however, the journey was the reward, with some
new (in)sights gained along the way. At many vantage points we glimpsed in the
distance how the presented ideas applied to more general problems like 2sat-pr≥p,
maj-3hs, or ksat-pr≥p. Experienced travellers of the complexity landscape may even
have spotted applications to constraint satisfaction problems and homomorphism
counting near the horizon, which are even more general than satisfiability problems,
but to which many of the presented ideas still apply.

Readers who are still not yet tired may wonder how many ways of showing
the tractability of maj-vc there are in total. On the one hand, one could argue that
the last three ways presented in this paper are actually just one way as they are all
variations of using well-quasi-orderings to solve maj-vc; just at different levels of
abstraction. So, perhaps this paper only really presented five ways. On the other
hand, there is at least one more way, presented in detail in [30], where kernels are
used to solve ksat-pr≥p. For the special case of maj-vc, this amounts to “as long
as there is a star of size six, remove one ray.” However, the correctness of this
idea hinges on the Spectral Well-Ordering Theorem [30] just as that of the random
sampling method from the third way, so perhaps this is not another way after all.

Conversely, it is also interesting to see which ways do not seem to lead to
solving maj-vc efficiently. For instance, it is not clear how linear programming
could be used to decide maj-vc naturally – despite the fact that linear programming
is one of the most powerful tools we have to prove the tractability of problems.

In the end, many, but not all paths lead to the tractability of maj-vc and readers
are very much invited to discover new ways and to share them with their fellow
travellers in the theory landscape.
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