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This month, the Distributed Computing Column is featuring Robin Vacus,
winner of the 2024 Principles of Distributed Computing Doctoral Dissertation
Award. His thesis on “Algorithmic Perspectives to Collective Natural Phenom-
ena” explores how distributed computing techniques can help to understand bio-
logical processes found in the real world. It examines a variety of different phe-
nomena, including problems in synchronization (i.e., agreement), problems in task
selection, and problems in cooperative behavior. Quoting from the award citation:
“Dr. Vacus’ thesis provides an inspiring overview of the questions studied, and
employs a wide range of tools and techniques, involving probabilistic analysis,
control theory, statistics and game theory, and computer simulations.”

This column focuses on the question of “bit dissemination,” a basic agree-
ment problem in which a single source wants to disseminate one bit information
to all the agents in the system. Specifically, it discusses several different self-
stabilizing protocols for achieving dissemination based only on passive commu-
nication, and it explores issues of limited memory and limited communication
(i.e., sample size).

The Distributed Computing Column is particularly interested in contributions that propose inter-
esting new directions and summarize important open problems in areas of interest. If you would
like to write such a column, please contact me.



Minimal Requirements for Bit-Dissemination
with Passive Communication

Robin Vacus

Multi-agent systems often face two closely related challenges: achieving con-
sensus among agents (i.e., making sure they take consistent decisions), and aggre-
gating local information about their environment. Indeed, reaching approximate
agreement is often a prerequisite of collective decision-making, while the overall
performance of the group depends on how effectively local information is pro-
cessed. For example, consider a group of ants carrying a heavy load. In the
first place, in order to prevent forces from canceling each-other and successfully
move the object, almost all ants in the group must push in the same direction –
which requires a degree of consensus. In addition, information about an optimal
route to the nest, which may be distributed unevenly among the ants, must be
processed in order to enable the group to reach its destination quickly [11, 8].
These tasks become especially difficult when the system is susceptible to faults
or when interactions between agents are noisy and constrained. This is particu-
larly evident in biological ensembles, where individuals may have a wide range of
internal computational abilities, but often limited communication capacity. Ad-
dressing these challenges and limitations in a biologically relevant way necessi-
tates specific modeling approaches, which is why the bit-dissemination problem
was introduced [4].

1 The Bit-Dissemination Problem
Problem definition. We consider a discrete time process over a fully-connected
network of n agents. In round t, each agent i holds an opinion X(i)

t ∈ {0, 1}. In
each execution, one of these opinions is called correct and denoted z. The group
contains one source agent i? which knows which opinion is correct, and must
always remain with it: for every t, X(i?)

t = z.
We adopt the basic PULL model of communication: each time a non-source

agent is activated, it obtains a random vector S ∈ {0, 1}`, in which every element
is equal to 1 with probability xt := 1

n

∑
i X(i)

t (the proportion of agents with opin-
ion 1 in that round) and 0 otherwise. This is equivalent to sampling the opinions
of ` other agents taken uniformly at random. Typically, the sample size ` shall



be negligible compared to the size of the group n. After receiving S and depend-
ing on the protocol, the activated agent may decide to update its opinion X(i)

t and
memory state. We distinguish between two different activation settings: the par-
allel setting, where all agents are activated simultaneously in every round, and the
sequential setting, where only one non-source agent selected uniformly at random
is activated.

Relying only on the passive presence of the source, the goal of non-source
agents is to reach a consensus on the correct opinion as fast as possible, and remain
with it forever. Moreover, we restrict attention to self-stabilizing protocols, able to
converge fast regardless of the initial configuration of the system. Specifically, a
protocol is considered correct if, starting from any initial distribution of opinions
(including the correct opinion z) and any initial memory states of the agents, it
reaches a configuration where all X(i)

t are equal to z within poly-logarithmic time,
with high probability.

Key quantities. Our objective is to pinpoint the minimal requirements for solv-
ing the bit-dissemination problem. We focus on the two following resources:

• The memory of the agents, i.e., the amount of information about past ob-
servations (measured in bits) that they are allowed to use in order to make a
decision.

• The sample size `. Intuitively, the larger ` is, the more accurately the agents
can estimate xt (the proportion of 1-opinions in the population).

For convenience, we express the convergence time of protocols in both activation
settings using parallel rounds. One parallel round corresponds to n activations,
which equals 1 round in the parallel setting and n rounds in the sequential setting.
Keep in mind that while this allows for qualitative comparisons, the two settings
are not directly equivalent.

Hardness induced by self-stabilization. By definition of self-stabilization, pro-
tocols cannot specify the initialization of the memory of the agents, which should
be thought of as being set up by an adversary. As a consequence, agents cannot
rely on having a shared clock modulo-T from the beginning of execution, or even
distinct identifiers. Instead, a protocol must be able to create and maintain such
objects from any arbitrary state in order to use them.

Hardness induced by passive communications. The fact that sampling hap-
pens over the opinions of other agents is often referred to as passive communica-
tion. This assumption is inspired by natural scenario where information can be



gained only by observing the behavior of other agents, which, in principle, may
not even intend to communicate [5]. Not only does it restrict each observation to a
single bit in our model, but it also leaves the agents essentially unable to commu-
nicate when it comes to reaching consensus, since they are then forced to display
the correct opinion z.

In contrast, a distributed system is said to exhibit active communications if
the opinion X(i)

t of each agent i differs from the 1-bit message displayed to other
agents. Consensus would then be defined over the opinion X(i)

t , while sampling
would occur separately, based on the arbitrary 1-bit message. Results from [1],
allowing agents to synchronize a clock in a self-stabilizing way, can be used to
solve the bit-dissemination problem with active communications. Moreover, a
solution to an equivalent problem (called “bit-broadcast”) was identified for pop-
ulation protocols [7]. However, neither of these algorithms can be adapted to the
framework of passive communications, which appears to be significantly weaker.
These considerations are discussed in more detail in [9, Section 1.4].

2 Fast Dissemination with Memory
In this section, we investigate what happens when agents are allowed to use a
moderate amount of memory. We describe a simple algorithm, called Follow the
Trend (FtT), that efficiently solves the bit-dissemination problem while being self-
stabilizing.

The protocol is based on letting agents estimate the current tendency direction
of the dynamics, and then adapt to the emerging trend. Informally, each non-
source agent compares the number of 1-opinions that it observes in the current
round, with the number observed in the previous round. If more 1’s are observed
now, then the agent adopts the opinion 1, and similarly, if more 0’s are observed
now, then it adopts the opinion 0. If the same number of 1’s is observed in both
rounds, then the agent does not change its opinion. Formally, our algorithm is
defined as Algorithm 1 (the number of 1-opinions observed in the last round is
stored in a variable named σt).

As illustrated on Figure 1, this behaviour creates a persistent movement of the
average opinion of non-source agents towards either 0 or 1, which “bounces” back
when hitting the wrong opinion.

Up to modifying it slightly (to account for technical difficulties), we can show
that Algorithm 1 solves the bit-dissemination problem efficiently when all agents
are activated simultaneously, as long as the sample size ` is at least poly-logarithmic
in n.

Theorem 1 (Theorem 1 in [9]). There exists a protocol based on Algorithm 1
that solves the bit-dissemination problem in the parallel setting in O(log5/2 n)



Algorithm 1: Follow the Trend (sketch)

1 Input: Current opinion X(i)
t ∈ {0, 1}, memory state σt ∈ {0, . . . , `}, opinion

sample S ∈ {0, 1}`

2 σt+1 ← number of 1-opinions in S ;
3 if σt+1 > σt then X(i)

t+1 ← 1 ;
4 else if σt+1 < σt then X(i)

t+1 ← 0 ;
5 else X(i)

t+1 ← X(i)
t ;
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Figure 1: One execution of Algorithm 1 in the parallel setting, with n = 105

and ` = 34. The graph shows the number of agents holding the correct opinion as
a function of the round number.



parallel rounds with high probability, while relying on ` = Θ(log n) samples
and Θ(log log n) bits of memory.

To prove the correctness of a self-stabilizing algorithm, there are generally
2 methods. Ideally, one is able to exhibit a scalar quantity (a “potential”) that
contains enough relevant information about the system, while being simpler to
analyze. For example, if this quantity is simultaneously decreasing at a fast rate
and bounded from below, then it directly implies an upper bound on the conver-
gence time of the algorithm. Another, more tedious approach is to partition the
configuration space into as many subsets as necessary, and then characterize the
algorithm’s behavior on each of the subsets. Unfortunately, our proof of Theo-
rem 1 belongs to the latter category. When Algorithm 1 is used, each configura-
tion is fully characterized by the proportion of 1-opinions in the previous round
and in the current round, i.e., by the couple (xt, xt+1). The resulting 2-dimensional
configuration space is depicted in Figure 2, together with the partition used in the
proof of Theorem 1.

(a)
(b)

Figure 2: (a) Sketch of the proof of Theorem 1. Self-loops indicate the number
of rounds spent by the process in corresponding areas. (b) An illustration of the
areas (see [9, Section 2.1] for an exact definition).

Although Theorem 1 only holds in the parallel setting, it seems that the “Fol-
low the Trend” strategy can be adapted to the sequential setting (where only one
random agents is activated at a time). The trick is to let agents execute one step
of Algorithm 1 every log n activations. This technique essentially limits the num-
ber of time that an agent i can be executed between two activations of another



agent j, at the cost of slowing down the process by a logarithmic factor. While the
resulting protocol was never rigorously analyzed, a detailed description and some
empirical evidence about its correctness can be found in [2, Section 5].

3 The Need for Memory in the Sequential Setting
In this section, we restrict attention to memory-less algorithms, in order to further
characterize the requirements of the problem. More specifically, we consider up-
date rules that only depend on the agent’s current opinion X(i)

t , and on the last sam-
ple S . In particular, this assumption precludes the possibility to maintain clocks
and counters, or to estimate the tendency of the dynamics as in Algorithm 1.

Since agents having the same opinion are indistinguishable in absence of
memory, the configuration of the system in round t is fully described by the pro-
portion xt of agents with opinion 1. Moreover, the distribution of xt+1 depends
only on xt, and hence the process is always a Markov chain on {0, 1

n , . . . ,
n−1

n , 1}.
In the sequential setting, the number of agents with opinion 1 may only vary by at
most one unit in every round. The Markov chain is even simpler in this case, as its
underlying graph is just a path of length n + 1. These are known as “birth-death”
chains [10, Section 2.5]. The exact transition probabilities of the birth-death chain
induced by a given protocol P does not only depend on P, but also on the opinion
of the source (which is not running the protocol). For example, the state xt = 0,
corresponding to a consensus on opinion 0, cannot be reached when the source has
opinion 1. However, since the source itself is sampled with probability only 1/n
by other agents, its impact on most of the transition probabilities is expected to be
quite limited.

In summary, a protocol P solving the bit-dissemination problem in the se-
quential setting implies the existence of two nearly identical birth-death chains C1

and C0 (corresponding to the case that the correct opinion is 1 or 0 respectively).
Due to their similarity, any tendency of C1 to move towards state 1 (a consensus
on opinion 1) implies an almost equivalent tendency of C0 to move away from
state 0 (a consensus on opinion 0). This observation can be leveraged to obtain
the following lower-bound, which interestingly, holds regardless of the sample
size.

Theorem 2 (Theorem 3 in [2]). The expected convergence time of any memory-
less dynamics for the bit-dissemination problem in the sequential setting is at
least Ω(n) parallel rounds, or equivalently Ω(n2) activations, even when ` ≥ n.

The same reasoning implies that the lower bound is reached when the induced
birth-death chains are unbiased random walks. The corresponding algorithm turns
out to be the voter dynamics (Algorithm 2), in which activated agents simply copy



the opinion of another agent chosen uniformly at random. Indeed, an upper bound
based on Algorithm 2 and almost matching Theorem 2 follows from classical
arguments.

Algorithm 2: Voter dynamics (` = 1)

1 Input: Opinion sample S ∈ {0, 1}

2 X(i)
t+1 ← S ;

Theorem 3 (Theorem 4 in [2]). The voter dynamics solves the bit-dissemination
problem in the sequential setting in O(n log n) parallel rounds in expectation.

Since the voter dynamics only uses ` = 1, we conclude that the sample size is
of no importance in the sequential setting. On the other hand, together with the
insights from Section 2, our results imply that memory is a critical requirement.

4 The Minority Dynamics
In contrast to the sequential setting, memory-less dynamics in the parallel setting
may jump from any configuration to any other in just one round – albeit with
extremely small probability. Therefore, the ideas behind Theorem 2 are not ap-
plicable, which suggests that the lower bound could be beaten. In this section,
we show that fast convergence is indeed possible, by considering the minority dy-
namics (Algorithm 3). Introduced by Amos Korman, this fascinating protocol has
its own interest beyond the bit-dissemination problem.

The minority rule is defined as follows: if an agent sees unanimity among the `
elements of the sample S , it adopts this unanimous opinion; otherwise, it adopts
the opinion corresponding to fewer samples.

Algorithm 3: Minority dynamics

1 Input: Opinion sample S ∈ {0, 1}`

2 if all opinions in S are equal to x then
3 X(i)

t+1 ← x ;
4 else
5 X(i)

t+1 ← minority opinion in S (breaking ties randomly) ;

When all non-source agents follow Algorithm 3, the proportion of agents with
opinion 1 exhibits chaotic oscillations with no apparent pattern, as illustrated on



Figure 3. As long as the sample size is large enough, the oscillations eventually
stop abruptly and the group reaches consensus in just a few rounds. However,
when ` is too small compared to n, simulations depict seemingly endless oscilla-
tions. Identifying the value of ` required for the rapid convergence of the dynamics
is a challenging task, as the chaotic nature of the process complicates the analysis.
To this day, the only existing upper bound on the convergence time relies on a
relatively large sample size (` ≥

√
n).

Theorem 4 (Theorem 1.3 in [3]). If ` = Ω(
√

n log n), then the minority dynamics
solves the bit-dissemination problem in the parallel setting in O(log n) parallel
rounds in expectation.

Under the minority dynamics, the configuration of the system in round t is
fully characterized by the number mt of agents holding the minority opinion, and
hence the configuration space is simply {0, . . . , bn/2c}. As for Theorem 1, the
proof of Theorem 4 proceeds by partitioning this one-dimensional space into sev-
eral areas, in which the dynamics’ behavior is easier to predict. It then consists
in bounding the probability that the process remains stuck in the same area for a
long time, and in showing that it eventually reaches the “green” area leading to
consensus with constant probability (see Figure 4 for an illustration).
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Figure 3: One execution of the minority dynamics in the parallel setting, with n =

104 and ` = 36. The graph shows the number of agents holding the correct opinion
as a function of the round number.

5 Open Questions
We conclude by listing the most interesting open problems arising from this line
of works. We leave aside natural generalizations of the results described above,
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Figure 4: Partition of the configuration space into 6 areas used in the proof of
Theorem 4. The black line indicates how the random variable mt, corresponding
to the number of agents with the minority opinion, is expected to vary in the next
round.

such as the case where agents have access to more than 2 opinions, or the case
where the communication network is not fully connected.

Q1) What is the smallest sample size `? allowing the minority dynamics to con-
verge fast in the parallel setting?

This question is interesting even in the absence of a source agent. It is pos-
sible to show that the convergence time of the minority dynamics is Ω(en)
when ` = O(1), which together with Theorem 4, implies that `? must satisfy
1 � `? ≤

√
n log n – leaving a huge gap for future works.

Q2) Is there a memory-less algorithm solving the bit-dissemination with fewer
samples than the minority dynamics in the parallel setting?

As a first step towards answering this question, a general lower bound is
given in [6]. More specifically, it is shown that when ` = O(1), any memory-
less dynamics needs almost linear time to solve the bit-dissemination prob-
lem, that is, at least Ω(n1−ε) rounds for every ε > 0. However, the arguments
therein are not applicable even when ` is only Ω(log n).

Q3) Is there an algorithm solving the bit-dissemination problem when ` = O(1)?

Because of the aforementioned lower bound in [6], such algorithm would
necessarily rely on memory. A promising candidate, called “BSF”, is men-
tioned in [12, Chapter 10], but was never successfully analyzed.
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