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Abstract

In the theory of programming languages, type inference is the process
of inferring the type of an expression automatically, often making use of
information from the context in which the expression appears. Such mecha-
nisms turn out to be extremely useful in the practice of interactive theorem
proving, whereby users interact with a computational proof assistant to con-
struct formal axiomatic derivations of mathematical theorems. This article
explains some of the mechanisms for type inference used by the Mathe-
matical Components project, which is working towards a verification of the
Feit-Thompson theorem.
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1 Introduction
Consider the following mathematical assertions:

• For every x in R, ex =
∑∞

i=0
xi

i! .

• If G and H are groups, f is a homomorphism from G to H, and a and b are
in G, then f (ab) = f (a) f (b).

• If F is a field of nonzero characteristic p, and a and b are in F, then

(a + b)p =

p∑
i=0

(
p
i

)
aibp−i = ap + bp.

There is nothing unusual about these statements, but, on reflection, one notices
that substantial background knowledge and assumptions are needed to parse them
correctly. For example, in the first statement, we take it that the index of the
summation i ranges over natural numbers, or, equivalently, nonnegative integers.
Hence i! is also an integer. Since x is explicitly flagged as a real number, the
expression xi/i! involves division of two different types of objects, taking into
account that any integer can be viewed as a real number. In the second statement,
G and H are groups, which is to say, each is a set of elements equipped with a
group operation and an identity element; so when we write that a and b are in G,
we really mean that a and b are elements of the underlying set. The notation ab
denotes multiplication in G, while the notation f (a) f (b) can only be understood in
terms of the multiplication in H. In the third statement, p is a nonnegative integer
(in fact, a prime number, since nonzero field characteristics are prime). But unlike
the summation symbol in the first statement, here the summation symbol refers
to addition in F. In the third statement,

(
p
i

)
is an integer, while ai and bp−i are

elements of the field. How do we interpret multiplication in that case? One way
is to notice that there is a canonical map from the integers to any ring with a 0 and
a 1. Alternatively, any abelian group can be viewed as a Z-module, which means
that it supports scalar multiplication by integers, with all the expected properties;
and the additive part of a ring is an abelian group.

Inferences like these are used not only to parse basic mathematical expres-
sions, but also to reason about them correctly. For example, some “multiplica-
tions” and “additions” are commutative, and multiplication often distributes over
the corresponding addition. Common manipulations with summations depend on
such facts. Understanding mathematics presupposes the ability to keep track of
the various domains that objects belong to and variables range over, as well as the
relevant operations on those domains and their properties. Our faculties for doing
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this are so ingrained that we are scarcely aware of the background knowledge we
bring to the table when we read an ordinary mathematical text.

The problem is that such background knowledge has to be brought to the fore-
ground when it comes to formalizing mathematics. Broadly speaking, formal
verification is the practice of using formal methods to verify correctness, such as
verifying that a circuit description, an algorithm, or a network or security protocol
meets its specification. In this article, I will be concerned, instead, with the verifi-
cation of mathematical theorems. To be sure, there is no sharp distinction between
verifying mathematical statements and verifying claims about hardware and soft-
ware systems, since the latter are typically expressed in mathematical terms. But
ordinary mathematical theorems have a special character, and raise distinct issues
and challenges.

Specifically, I will focus on interactive theorem proving, which involves work-
ing interactively with a proof assistant to provide enough information for the
system to confirm that the theorem in question has, indeed, a formal proof. In
fact, many systems actually construct a formal proof object, a complex piece of
data that can be verified independently. Systems with substantial mathematical
libraries include Coq [5] (including the Ssreflect extension [21]), HOL [24], HOL
light [28], Isabelle [37], and Mizar [25]. In September 2004, assisted by some stu-
dents at Carnegie Mellon, I verified a proof of the Hadamard/de la Vallée Poussin
prime number theorem [3], using the Isabelle proof assistant. Since then number
of nontrival theorems have been formalized.

, including the four-color theorem [18], the prime number theorem [3, 30],
the Jordan curve theorem [26, 33], Gödel’s first incompleteness theorem [42, 38],
Dirichlet’s theorem on primes in an arithmetic progression [29], the Cartan fixed-
point theorems [9], and various theorems of measure theory [31, 35]. There are,
moreover, some interesting large-scale verification projects underway. Thomas
Hales is heading the Flyspeck project [27], which aims to verify a number of
results in discrete geometry, including the Kepler conjecture. Georges Gonthier
is heading the Mathematical Components project [17, 19], which aims to verify
the Feit-Thompson theorem. Fields medalist Vladimir Voevodsky has launched a
project to develop “univalent foundations” for algebraic topology, providing the
basis for formal verification in a theorem prover like Coq.

Checking the details of a mathematical proof is by no means the most interest-
ing or important part of mathematics, and formal verification is not meant to serve
as a substitute for mathematical creativity and understanding. But it is generally
recognized that the mathematical literature is filled with misstatements, gaps, am-
biguities, overlooked cases, omitted hypotheses, and so on, and that the lack of
reliability is problematic [36]. Moreover, an increasing number of proofs today
rely on extensive calculation, and there are currently no standards to ensure that
mathematical software is sound. Mathematicians always strive for correctness,
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and formal verification is simply a technology that is designed to support that
goal.

Despite the achievements to date, however, formal verification is still not
“ready for prime time.” There is a steep learning curve to working with an in-
teractive theorem prover, and verifying even straightforward mathematical results
can be frustrating and time consuming. We need better libraries, automated meth-
ods, and infrastructure to support verification efforts. This is an exciting time for
a young and rapidly evolving field.

In this article, I will focus on one small aspect of formal verification, namely,
type inference. In the mathematical setting, the challenge of type inference,
roughly speaking, is to keep track of the kinds of objects that appear in a mathe-
matical statement and put that information to good use. What is common to the
previous examples is that in each case the relevant information can be inferred
from context:

• In the expression “a is in G,” the object of the word “in” is expected to be a
set.

• In “ab,” multiplication takes place in the group that a and b are assumed to
be an element of.

• In “xi/i!,” one expects the arguments to be elements of a common structure,
for which a division operation is defined.

Type inference thus involves not only inferring type information, but also inferring
data and facts from type considerations. Of course, type inference is central to the
theory of programming languages [39], and many of the ideas and methods that
have been developed there have been transferred to the mathematical setting. But,
as will become clear, mathematical type inference has a distinct flavor. Here I
will focus primarily on the approach to type inference used in the Mathematical
Components project, which relies on a proof language, Ssreflect, and the Coq
theorem prover.

In Section 2, I will consider what is desired from a mathematical perspective.
In Section 3, I will discuss some of the underlying axiomatic frameworks, and
dependent type theory in particular. In Section 4, I will describe some of the
mechanisms in Coq that are designed to meet the challenges posed in Section 2.
In Section 5, I will describe the way some of these mechanisms are used in the
Mathematical Components library, and in Section 6, I will briefly indicate some
alternative approaches.
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2 Mathematical type inference

One hallmark of modern mathematics is the tendency to identify mathematical
objects as elements of algebraically characterized structures. Such structures, and
classes of such structures, can be related in various ways:

• Structures in one class may be viewed as elements of a broader one. For
example, every abelian group is, more generally, a group, and every group
is, more generally, a monoid. Sometimes the inclusions are obtained by
taking reducts, which is to say, ignoring parts of the structure. For example,
the additive part of a ring is an abelian group, while the multiplicative part
is a monoid.

• A particular structure or a structure in one class can often be embedded in
a larger structure. For example, the integers can be embedded in the reals,
and every integral domain can be embedded in its field of fractions.

• Uniform constructions can be used to build elements of one class of struc-
tures from elements of another. For example, the units in any ring form a
group, under the associated multiplication; the set of automorphisms of a
field (or those fixing some chosen subfield) form a group under composi-
tion; any metric space gives rise to a topological space determined by the
metric; the field of fractions of any integral domain is a field; and the quo-
tient of a group by a normal subgroup is again a group.

What makes this perspective useful is that it allows one to transfer insights and
results gained from one domain to another, and apply background knowledge and
expertise uniformly in different settings. The challenge for interactive proof assis-
tants is to reap these benefits.

There are various ways that algebraic methods promote efficiency:

• They allow us to reuse notation. For example, one may wish to use the
symbols 0 and + with respect to the integers, the reals, and arbitrary rings.

• They allow us to reuse constructions. For example, summation
∑

i∈I ai in
the integers, reals, and an arbitrary ring can be viewed as instances of the
same construction, namely an iteration of the corresponding addition. In
fact, various “big” operations, including multiplication, logical operations
of conjunction and disjunction, lattice operations of meet and join, and so
on can be viewed as iterations of an associative operation in an arbitrary
monoid.
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• They allow us to reuse facts. Various identities involving big operations can
be viewed as instances of general laws that can be instantiated in the dif-
ferent settings. For example, some identities involving summations presup-
pose that the addition is commutative. Other identities hold in the presence
of a multiplication that distributes over addition. We implicitly recognize
that such facts hold at various degrees of generality, and instantiate them as
appropriate.

Any proof assistant that is designed to formalize contemporary mathematical ar-
guments should support these types of reuse.

In the theory of programming languages, type inference allows users to omit
information that can be inferred from context. For example, if we write f (i) and i
is known to range over the integers, we can infer that f is a function from the inte-
gers to some other domain. Various kinds of “polymorphism” allow one to reuse
symbols and code across different domains. In the context of formally verified
mathematics, there are really two types of information that can be inferred:

• data: for example, the appropriate multiplication in an expression a · b, or
the appropriate summation operation in an expression

∑
i∈A f (i).

• facts: for example, the fact that (a · b) · c is equal to a · (b · c), when the
multiplication in the relevant structure is associative.

In the next section, we will see that in certain formulations of logic, these two can
be understood as instances of a common phenomena. In other words, inferring a
fact can be viewed as inferring a special kind of data, namely “evidence” or “the
fact” that the associated claim is true.

To summarize, in interactive theorem proving, type inference may be invoked
when the system parses an expression, but also when the user applies a lemma,
or searches for a lemma to apply. The goal of type inference is to allow the user
to omit information systematically when such information can be inferred from
context. Not only does this save time and energy and reduce tedium, but it also
ensures that the expressions we type look like the mathematics we are familiar
with, lending support to the claim that our formalizations adequately “capture”
informal mathematical practice.

3 Dependent type theory
In order to verify mathematical proofs in a given domain, one has to first choose
a formal axiomatic framework that is flexible enough to model arguments in that
domain. Experience from the last century has shown that the Zermelo-Fraenkel
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axioms of set theory provides a remarkably robust foundation for mathematics.
Indeed, the Mizar system [25], which has perhaps the most extensive mathemat-
ical library, is based on an extension of ZF known as Tarski-Groethendieck set
theory.

But, in set theory, every object is a set, meaning that the axiomatic framework
does not distinguish between numbers, functions, structures, and other objects.
For the purposes of type inference, it is often useful to have such distinctions built
into the underlying formal system. A number of proof assistants today, including
HOL [24], HOL light [28], and Isabelle [37], are based on formulations of higher-
order logic like Church’s simple type theory [8]. One starts with basic types,
such as a type nat of natural numbers and a type bool of boolean truth values,
and adds constructors for forming new types. The most important of these are
function types: whenever A and B are types, so is A → B, intended to denote the
type of functions from A to B. One can also allow, for example, product types
A × B, denoting the type of ordered pairs from A and B. Most proof systems have
additional mechanisms to support the definition of common mathematical data
types and structures, and allow “polymorphic” variables ranging over types.

The problem with simple type theory, however, is that it is too simple, since
ordinary mathematical structures often depend on parameters. For example, for
each n, Rn is a vector space, and for every n ≥ 1, the integers modulo n form a
ring. Thus one may wish to have types

• list A n, denoting sequences of objects of type A, with length n; and

• Zmod n, denoting the ring of integers modulo n.

In dependent type theory, types can depend on parameters in this way. Notice that
such a move tends to blur the distinction between types and terms. For example,
in list A n, the first argument is supposed to denote a type, whereas the second
argument is supposed to be a term of type nat. In some presentations of type
theory, this is achieved by having special types, called universes, whose terms
are also construed as types (see, for example, the presentation of Martin-Löf type
theory in [47, Section 7.1]). Contemporary presentations more often take types
to be inhabitants of a third level of syntactic objects, known as “sorts” or “kinds”
(see [4]). The specific details need not concern us here; only the fact that terms as
well as types can depend on parameters that are again terms or types.

In dependent type theory, the type A→ B of functions which take an argument
in A and return a value in B can be generalized to a dependent product

∏
x:A B(x),

where B(x) is a type that can depend on x. Intuitively, elements of this type are
functions that map an element a of A to an element of B(a). When B does not
depend on x, the result is just A → B. Similarly, product types A × B can be
generalized to dependent sums

∑
x:A B(x). Intuitively, elements of this type are
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pairs (a, b), where a is an element of A and b is an element of B(a). When B
does not depend on x, this is just A × B.

In the next section, we will consider one particular theorem prover, Coq. Coq’s
underlying logic is a dependent type theory known as the calculus of inductive
constructions, or CIC [12], which extends the original calculus of constructions
due to Coquand and Huet [11]. The calculus of inductive constructions has four
distinguishing features:

• It is a powerful and expressive dependent type theory.

• It incorporates the “propositions as types” correspondence.

• It is constructive, in that every expression in the system has a computational
interpretation.

• The computational interpretation of terms is used in type checking.

• Type checking is decidable.

These features are not to everyone’s taste, and we will see in Section 6 that other
proof assistants can reject any or all of them. I will elaborate on each, in turn.

One striking feature of the Calculus of Inductive Constructions is that there
are only two basic type-forming operations: dependent products and inductive
types. We have already discussed dependent products. Inductive types allow one
to define structures that can be characterized as the closure of a set under some
basic operations, like the natural numbers, or lists and trees over a type. But, in
the CIC, the construction is general enough to include dependent sums, as well
as to interpret basic logical notions, like conjunction, disjunction, universal and
existential quantification, and equality. In fact, the system has the logical strength
of strong systems of set theory [49].

In order to interpret logical operations in terms of type-theoretic constructions,
the CIC relies on what has come to be known as the Curry-Howard “propositions
as types” correspondence. The point is that logical operations look a lot like
operations on datatypes. For example, in propositional logic, from A and B one
can conclude A ∧ B. One can read this as saying that given a proof a of A and a
proof b of B of B one can “pair” them to obtain a proof (a, b) of A ∧ B; or given
the “fact” a that A holds, and the fact b that B holds, one obtains the fact (a, b)
that A ∧ B holds. Moreover, from the fact that A ∧ B holds, one can extract the
fact that A holds, and, similarly, B. If you replace A ∧ B by A × B, this is nothing
more than a characterization of the product type. In other words, if we posit a new
collection Prop of types and take the product constructor to map elements A :
Prop and B : Prop to A × B : Prop, the rules governing products for elements
of Prop are exactly the desired logical rules for conjunction.
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Under this correspondence, implications A→ B are just instances of function
types, and bounded universal quantifiers ∀x : A. B(x) are just instances of the
dependent product construction. In other words, a proof of ∀x : A. B(x) can
be viewed as a procedure which, given any object a : A returns a proof of
B(a). This explains Coq’s notation forall x : A, B x for dependent prod-
ucts. Similarly, the logical construction ∃x : A. B(x) is just an instance of the
dependent sum. Using inductively defined types, given any type A one can form
IA(x,y) : Prop which, intuitively, denotes the proposition that x is equal to y
as elements of A.

One can take the propositions-as-types as expressing a deep insight into the
nature and meaning of logical operations [34, 48]. But one can just as well view
it as a notational convenience which, moreover, allows a proof assistant to treat
logical and mathematical operations uniformly. For example, one can take the
transitivity of inequality on the natural numbers, leq_trans, to be a term of type

∀x:nat, y:nat, z:nat, x ≤ y→ y ≤ z→ x ≤ z.

This last expression, in turn, it a term of type Prop. One can view leq_trans not
just as the fact that less-than-or-equal is transitive, but also as a function which,
given elements x, y, and z in the natural numbers as well as the facts that x ≤ y and
y ≤ z, return the fact that x ≤ z. Thus, given a : nat, b : nat, and c : nat,
the term leq_trans a b c denotes the implication a ≤ b → b ≤ c → a ≤ c.
Moreover, we can express that H is the fact that a ≤ b by writing H : a ≤ b, in
which case leq_trans a b c H denotes the implication b ≤ c→ a ≤ c.

The propositions-as-types correspondence is particularly popular as a founda-
tion for constructive mathematics, where assertions are expected to have direct
computational significance. Every term in Coq can be viewed as a computational
object, subject to evaluation. For example, if π0 and π1 denote the two projections
from a product type A × B, the a term π0(a, b) can be “reduced” or “evaluated”
to a. In fact, every term in Coq can, at least in principle, be reduced to a canonical
normal form. In particular, if t is a closed term of type nat, then t reduces to
a numeral. Coq, moreover, makes use of this computational interpretation when
checking types. For example, If C(x) is a type that depends on a value x of type
A, the system can recognize that C(π0(a, b)) is the same type as C(a).

The decidability of type checking amounts to the fact that given a term, t, and
a type, T, the type-checker can, deterministically, decide whether or not t has type
T. This is clearly a useful property to have, though we will see, in Section 6, that
it imposes strong restrictions. Under the propositions-as-types correspondence,
the decidability of type checking takes on additional significance. Suppose P is a
term of type Prop, expressing, for example, Fermat’s last theorem. Then a term t
of type P is a proof that P is true. Proving Fermat’s last theorem thus amounts to
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constructing a term of type P, and the decidability of type checking implies that
such a term can be recognized, algorithmically, as a valid proof.

4 Type inference in Coq

Now that we have a sense of Coq’s axiomatic framework, let us explore some of
the mechanisms the system offers to address the challenges raised in Section 2.
Generally speaking, type inference is triggered when the system is called on to
determine the type of a term, or to check that a term has an appropriate type,
when some information has been left implicit. But because dependent types de-
pend on the values of their parameters, inferring a type can entail inferring such
values. Recall that in Section 2 we distinguished between two types of informa-
tion that can be inferred, namely, data and facts. With the propositions-as-types
correspondence in place, inferring a fact—such as the fact that multiplication is
associative—is a matter of inferring a value of a type P, which is in turn of type
Prop, where P expresses the expected associativity property.

We will consider three principal mechanisms. Implicit arguments allow users
to systematically leave information out of an expression when this information
can be inferred from context. Coercions allow users to cast, implicitly, objects of
one type to objects of another. Finally, canonical structures let the user register
certain objects as components of a larger structure, providing useful information
to the type inference process.1

It will be helpful to illustrate these with a running example. The following
definition declares a new type, group:

Record group : Type := Group
{
carrier : Type;
mulg : carrier -> carrier -> carrier;
oneg : carrier;
invg : carrier -> carrier;
mulgA : forall x y z : carrier,
mulg x (mulg y z) = mulg (mulg x y) z;

...
}.

1For more detail than is provided below, see Coq’s online reference manual. All three mech-
anisms were initially introduced to Coq by Amokrane Saïbi [32, 40, 41], who credits the idea of
using implicit arguments in the theorem proving context to Peter Aczel. Implicit arguments were
further extended by Hugo Herbelin and Matthieu Sozeau. Canonical structures received little at-
tention until they were revived and used aggressively by Gonthier; see, for example, [17].
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According to this type declaration, group is a record type, consisting of a carrier,
a multiplication, an identity, and an inverse. These are assumed to satisfy the
requisite axioms, such as the associativity of multiplication. If G has type group,
that is, G : group, then the components of G are carrier G, mulg G, oneg G,
and so on. Conversely, given elements my_carrier, my_mul, my_one and so on
of the right type, the term Group my_carrier my_mul my_one ... denotes
the corresponding group.

Notice that we are relying on dependent type theory here. The type group
is a classic example of a dependent sum, since, for example, the type of the
second component, carrier -> carrier -> carrier, depends on the value
carrier of the first component. The arguments of the corresponding projec-
tions bear the associated dependences. For example, the term mulg, which picks
out the the second component, has type forall G : group, carrier G ->
carrier G -> carrier G, a dependent product.

Notice also that the proposition-as-types correspondence is being put to good
use. For example, the type of the fifth component, mulgA, is the proposition that
mulg is associative. Assuming G : group, the term mulgA G has type

forall x y z : carrier G,
mulg G x (mulg G y z) = mulg G (mulg G x y) z

which is itself a term of type Prop. Thus mulgA G denotes the fact that multipli-
cation in mulg G is associative, a fact that can be applied to elements of the carrier
of G just as in the example of leq_trans above. In this way, the propositions-
as-types correspondence provides a natural and convenient way to think of the
group structure as including not only the relevant data—the carrier of the group
and group operations—but also the relevant properties.

In a context where we have G : group, g : carrier G, and h : carrier
G, the term mulg G g h represents the product of g and h under the multiplica-
tion operation of G. The implicit arguments mechanism in Coq allows us to write
mulg _ g h, replacing the first argument by an underscore. Doing so means that
we expect the type inference algorithm to infer the value of that argument from
context, by finding a solution to the constraints imposed by the fact that the re-
sulting term should be well typed. The algorithm proceeds by instantiating the
first element with a variable, ?. The term mulg ? then has type carrier ? ->
carrier ? -> carrier ?. Since this term is applied to g : carrier G, to
get the types to work out the system has to solve a simple unification problem,
namely, instantiating ? to unify carrier ? with carrier G. Thus ? is instanti-
ated to G, and the algorithm has inferred the relevant parameter. With this in mind,
one can introduce a new notation:

Notation "g * h" := (mulg _ g h).
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This enables one to write g * h for multiplication in any group, allowing the
group in question to be inferred from the type of g.

In this example, the implicit argument mechanism was used to infer a param-
eter in the application of a function, mulg. But the mechanism can be used just as
well to infer parameters during the application of a lemma. For example, recall the
transitivity lemma leq_trans from the last section. This takes five arguments—
three natural numbers, x, y, z, and the facts x ≤ y and y ≤ z—and returns the fact
x ≤ z. Suppose we declare the first three arguments to be implicit. Then given H1
: a ≤ b and H2 : b ≤ c, the term leq_trans H1 H2 has type a ≤ c. Moreover,
when we are building a proof interactively in Coq, if we apply leq_trans H1 to
a subgoal a ≤ c, type inference similarly infers the missing arguments and leaves
the us with the goal b ≤ c.

Coercions are commonly used in programming languages, for example, when
adding a real and an integer triggers the coercion of the integer to a real. In the
context of mathematical theorem proving, coercions have other uses as well. In
our running example, one would ordinarily write g : carrier G to specify that
g is an element of the carrier of G. Writing g : G instead yields an error, because
the system expects something of type Type on the right side of the colon, and G
has type group. But declaring

Coercion carrier : group >-> Type.

informs Coq that the function carrier can always be used to coerce a group to
a type. If one then enters g : G, the algorithm finds itself facing a group on the
right side of the colon but expecting a type, and readily inserts the coercion.

The last feature that we will discuss, canonical structures, provides an inverse
to coercion, of sorts. In the example above, we used the carrier function to
coerce a record structure to one of its projections. Canonical structures makes
it possible for the type inference algorithm to pass in the other direction, and
recognize a particular object as the projection of a larger structure. To illustrate,
suppose we define

IntGroup := Group int addi zeroi negi addiA ...

thereby declaring the integers with addition to be an instance of a group. Some-
what perversely, this will allow us to write mulg IntGroup i j instead of i +
j, when we have i j : int. Less perversely, this will allow us to apply general
theorems about groups to this particular instance. But what happens now when we
write i * j? This expression is shorthand for mulg _ i j. After instantiating
the first argument to a variable, ?, the type inference algorithm is faced with the
unification problem carrier ? = int, and gets stuck. Declaring

Canonical Structure IntGroup.
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registers the fact carrier IntGroup = int with the system for use in type in-
ference. One can view this as a “hint” to the unification process [2]. Now when
the type inference algorithm gets stuck as above, it can appeal to a table of such
hints, and use the relevant one to recognize that the integers can be viewed as the
carrier of the IntGroup structure. The algorithm then replaces int by carrier
IntGroup and solves the unification problem.

The mechanisms just described are not exceedingly complicated, but we will
see in the next section that they are remarkably robust with respect to the chal-
lenges posed in Section 2. Canonical structures can, moreover, be used in clever
ways to trick the type inference algorithm into carrying out various kinds of useful
automation [23].

To summarize, type checking is triggered when the user enters an expression
or applies a lemma, possibly leaving some arguments and facts implicit. Coq’s
type inference engine has four resources at its disposal to fill in the remaining
information:

1. unification can be used to infer implicit arguments;

2. coercions can be inserted to resolve a type mismatch;

3. the unification algorithm can refer to a database of unification hints to solve
unification problems involving a projection of a canonical structure; and

4. when all else fails, the algorithm can simplify terms or unfold definitions
according to the CIC’s computational interpretation of terms, and then retry
the previous steps.

Generally speaking, implicit arguments can trigger arbitrary instances of higher-
order unification, which is known to be undecidable [14]. So, at best, type in-
ference can only aim to search a reasonable fragment of the space of possible
instantiations for an implicit argument. And even within decidable fragments,
unpacking definitions and unfolding terms can easily lead to combinatorial explo-
sion. Nonetheless, Coq’s type inference algorithm consists, essentially, of iter-
ating the steps above, relying on heuristics to limit the possibilities in the fourth
step.

5 The mathematical components library
This section provides a brief indication of some of the ways that the mechanisms
for type inference discussed in Section 4 have been used towards Gonthier’s for-
malization of the Feit-Thompson theorem [15], which asserts that finite groups of
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odd order are solvable. These examples only scratch the surface; for more detail,
see [6, 17, 18, 21, 22].

Recall that Coq’s logic is constructive. In contrast, many principles and meth-
ods that are commonly used in contemporary mathematics are not constructively
valid. For example, constructively, one cannot assume the law of the excluded
middle, or prove the existence of an x satisfying a property P by assuming there
is no such x and deriving a contradiction. Extensionality fails: one cannot, in
general, prove that two functions f and g from A to B are equal by proving that
f (x) = g(x) for every x. Choice fails as well: even if one has proved that for every
x in A there is a y in B such that some property holds, one cannot assume that
there is a function f that picks out such a y for every x.

On the other hand, these properties generally hold in finite domains. Since the
Feit-Thompson theorem is an extended exploration of properties of finite groups,
one would like to take advantage of these features when they are available. Thus,
in the Ssreflect library, there are general structures for types with a decidable
equality relation (that is, ones where the relation can be computed by a function
returning a boolean value of “true” or “false,” ensuring that it satisfies the law of
the excluded middle); finite structures; and structures that can be equipped with
choice functions. For example, one can define a structure for types with decidable
equality as follows:

Record eqType : Type := EqType
{
carrier : Type;
rel : carrier -> carrier -> bool;
ax : forall x y, (x = y) = (rel x y)

}.

In the last line of the record, the expression rel x y of type bool is coerced to the
proposition that the value of this expression is equal to true. In other words, ax
is the proposition that rel x y holds if and only if x = y. Declaring carrier to
be a coercion allows one to write x : Twhenever we have T : eqType. Implicit
arguments allow one to use the notation x == y in place of rel T x y whenever
x and y are elements of the carrier of such a T. Finally, canonical structures allow
one to associate the relevant boolean equality relation with the natural numbers,
so that one can write x == y when we have x y : nat, as well. (This is a slight
simplification of the implementation in the Ssreflect library [17].)

Section 2 noted that “big operations” such as
∑

,
∏

,
⋂

,
⋃

,
∧

,
∨

can all be
viewed as instances of iterations of an associative binary operation. But such op-
erations come in many different flavors: one can sum over a list, a numeric range,
or a finite set, and these summations will satisfy different properties depending
on whether the underlying structure is a semigroup, an abelian semigroup, or a



100 100

100 100

BEATCS no 106 THE EATCS COLUMNS

92

ring. Ssreflect comes with an overarching “bigop” library, and once again type
inference plays a key role in making it work [6].

Type inference is also used to manage algebraic class inclusions (between
rings, commutative rings, fields, and son on) and algebraic constructions: for ex-
ample, the set of n by n matrices over a ring forms a ring when n > 0, and the set
of polynomials over a commutative ring again forms a commutative ring. Type
inference ensures that the relevant algebraic facts are readily available, and allows
a uniform use of notation [17, 20]. Definitions in the Ssreflect library have been
carefully chosen so that if G and H are groups of the same type (more precisely,
subgroups of some ambient group type), then the quotient notation G / H makes
sense; but when H is in fact a normal subgroup of G, as in the usual construction
of a quotient group, G / H is a group with all the expected properties [22]. For
another example, when a group G happens to be abelian, it is often treated as a Z-
module and written additively. So, for example, one can write g *+ n for scalar
multiplication of g by n whenver g is an element of the group and n is a natu-
ral number. Type inference is used to mediate between these two “views” of an
abelian group.

Type inference also helps with mundane mathematical conventions. For ex-
ample, Section 2 noted the conflation of groups with sets. If G and H are subgroups
of an ambient finite group, and A is a subset of that group, then G∩ H and C_G(A)
(the centralizer of A in G) are both groups. But they are also just sets with the
ambient group operation; an element x is in G ∩ H if and only if it is in G and
H, and x is in C_G(A) if and only if x is in G and commutes with every element
of A. Type inference mediates between these two views of a construction—that
is, of yielding both a group and a set—allowing one to apply lemmas involving
groups in some instances and lemmas involving sets in others. For another exam-
ple, a homomorphism between groups G and H is a function between G and H
equipped (using a record type) with additional properties. Coercion allows one
to use ordinary function notation with morphisms, such as f x and f ◦ g. In the
other direction, canonical structures automatically infer the fact that f ◦ g is a ho-
momorphism when f and g are, giving f◦g a similarly dual status as function and
morphism.

Canonical structures can even be used to make sense of mildly abusive mathe-
matical notation. For example, if U and W are subspaces of a vector space V , it is
common to write U + W for set {u + w | u ∈ U,w ∈ W}. Mathematicians will often
say “U + W is a direct sum” when U and W have trivial intersection, ignoring the
fact that this is a property of the pair (U,W) which is impossible to read off from
the U + W alone. Gonthier has shown, however, that canonical structures provide
a convenient way of supporting this abuse of language [20].



101 101

101 101

The Bulletin of the EATCS

93

6 Limitations and other approaches
The mechanisms supporting type inference that were described in Section 4 are
not the only ones available in Coq. In particular, Coq now has a “type class”
mechanism [44]. Type classes and canonical structures serve similar purposes, but
whereas canonical structures are handled within the type inference loop described
at the end of Section 4, the type class mechanism collects constraints that are
passed to a separate inference engine at the end of the process. Spitters and van der
Weegen [45] have experimented with type classes in the context of mathematical
type inference, with positive results.

But one may wish to stray even further from Coq’s mindset. Recall some of
the key features of that proof assistant:

• An elaborate type theory is built in to the underlying axiomatic framework.

• Using the propositions-as-types correspondence, data and facts are handled
in the same way, so theorems can be applied to arguments and hypotheses
just as functions are applied to arguments.

• The underlying logic is constructive, and every term has computational sig-
nificance.

• Type checking makes use of the computational interpretation of terms.

• Type checking is decidable.

These are very strong constraints, which interact with each other in subtle ways
and place strong restrictions on the way mathematics is represented and carried
out. Not every proof assistant adopts such a framework. In fact, most reject the
third, allowing classical reasoning that is ubiquitous in contemporary mathemat-
ics. Similarly, the propositions-as-types correspondence is usually linked to con-
structive theories, though there is no reason that it cannot be adopted in classical
frameworks as well.

Although the mechanisms for type inference described in this article scale rea-
sonably well, their use in real mathematical settings can be complex and delicate.
Moreover, when an expression fails to typecheck, error messages from the sys-
tem are often uninformative, and it can be frustrating and difficult to diagnose
the problem. There are, moreover, rigid limitations to dependent type theory that
stem from the commitment to keep type checking decidable. This is so because
type checking algorithms are constrained to focus on syntactic structure, without
incorporating background knowledge. For example, if list A n denotes the type
of vectors of elements of A of length n, and we have t : list A (0 + n), then,
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in Coq, t also typechecks as an element of list A n. In other words, Coq rec-
ognizes these two types as being the same. But entering t : list A (n + 0)
yields a type error; Coq refuses to recognize that list A (n + 0) is the same as
list A n. What is going on is that addition in Coq is defined by recursion on the
first argument, so that the the term 0 + n reduces to n under the computational
interpretation. But the fact that n + 0 is equal to 0 is a mathematical fact, and
there is no general way to incorporate arbitrary mathematical information in type
checking while maintaining decidability.

Still, some have explored ways of making type judgments more flexible while
maintaining decidability [1, 7, 46]. An alternative is to give up the decidability
of type checking, and accept the fact that some type judgments will require proof
from the user. This is the path chosen by NuPrl [10] and PVS [43]. Yet another
alternative is to jettison type theory altogether, and move to an axiomatic sys-
tem like set theory, which offers maximum flexibility while relinquishing all the
benefits of types; and then try to recapture some of those benefits by adding an
extra layer of automation to register and manage domain information outside the
axiomatic theory. Such “soft typing” mechanisms can be found, for example, in
Mizar [25].

This article has focused on the modeling of mathematical language from the
point of view of contemporary interactive theorem provers. Others [13, 16] have
come at the problem from the perspective of natural language processing. In the
long run, it seems likely that the various approaches will converge.

Inferring domain information is essential to modeling mathematical language
and reasoning. Gonthier’s work on the Feit-Thompson theorem shows that it is
possible to model full-blown algebraic reasoning in an interactive proof systems.
But other approaches should also be explored, and continued experimentation and
innovation is needed to develop better support for verifying ordinary mathematical
proofs.
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