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Abstract

Traditionally, models of fault-tolerant distributed coutjmg assume that
failures are “uniform”™ processes are equally probableaib dnd a fail-
ure of one process does ndiext reliability of the others. In real systems,
however, processes may not be equally reliable. Moreocaiurés may be
correlated because of software or hardware features shgredbsets of
processes. In this paper, we survey recent results adagetss question of
what can and what cannot be computed in systems with nonigdéand
non-independent failures.

L’égalité sera peut-étre un droit,
mais aucune puissance humaine ne
saura le convertir en fait.

Honoré de Balzac

1 Introduction

A distributed system is a collection of computing units,|l@dlprocesses The
principal challenge of distributed computing is to devisetpcols that correctly
operate in the presence of failures of processes and agymchh failure model
describes the assumptions on where and when failures might.orhe classical
“uniform” failure model assumes that processes fail witbhiagrobabilities, in-
dependently of each other. This enables reasoning aboutdikanal number of
processes that may, with a non-negligible probability,ifaany given execution
of the system. It is natural to ask questions of the kind: vgrablems can be
solvedt-resiliently, i.e., assuming that at masprocesses may fail. In particular,

1Equality may perhaps be a right, but no human power can exittinto a fact.
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thewait-free((n—1)-resilient, whera is the number of processes) model assumes
that any subset of processes may fail.

However, in real systems, processes do not always fail irutlil®rm man-
ner. Processes may be unequally reliable and prone to atmdefailures. A
software bug makes all processes using the same build albliegeia router’s fail-
ure may makes all processes behind it unavailable, a sdatessicious attack
on a given process increases the chances to compromisespesceinning the
same software, etc. Thus, understanding how to deal witkhunéiorm failures is
crucial.

Adversaries. Consider a system of three procesggs, andr. Suppose thap
is very unlikely to fail, and otherwise, all failure pattsrare allowed. Since we
only exclude executions in whighfails, the set of correct processes in any given
execution must belong t®, pg, pr, pqr}2.

Now we give an example of correlated failures. Suppose phetdqg share
a software component, p andr share a software compongntandq andr are
built atop the same hardware platfom{Figure 1). Further, lek, y, andz be
prone to failures, but suppose that it is very unlikely tha failures occur in the
same execution. Hence, the possible sets of correct pex@ssur system are

{par, p.q,ri.
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Figure 1. A system modeled by the adversgogr, p,q,r}: p andq share com-
ponentx, p andr share component, andg andr run atop the same hardware
platformz.

The notion of a generiadversaryintroduced by Delporte et al. [9] intends
to model such scenarios. An adversayis defined as a set of possible correct
process subsets. E.g., theesilientadversaryA; s in a system o processes
consists of all sets ofi — t or more processes. We say that an executiafi-s
compliantif the set of processes that are correct in that executioonigsl toA.
Thus, an adversarst describes a model consisting.@fcompliant executions.

2For brevity, we simply writepgr when referring to the sép, g, r}.
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The formalism of adversaries [9] assumes that procesdesfgiby crashing,
and adversaries only specify thetsof processes that may be correct in an execu-
tion, regardless of the timing of failures. Of course, tligts out many kinds of
possible adversarial behavior, such as malicious attackeing failures. How-
ever, it is probably the simplest model that still capturepartant features of
non-uniform failures.

Distributed tasks. In this paper, we focus on a class of distributed-computing
problems calledasks A task can be seen as a distributed variant of a function
from classical (centralized) computing: given a distrédzlinput (annput vector
specifying one input value for every process) the proceasesequired to pro-
duce a distributed output (avutput vectoy specifying one output value for every
process), such that the input and output vectors satisfyitleatask specification

The classical theory of computational complexity theorggarizes functions
based on their inherentfilculty (e.g., with respect to solving them on a Turing
machine). In the distributed setting, thefdiulty in solving a task also depends
on the adversary we are willing to consider. There are taskisdan be trivially
solved on a Turing machine, but are not solvable in the prsen some dis-
tributed adversaries. For example, the fundamental taslom$ensusin which
the processes must agree on one of the input values, canisotussl assuming
the 1-resilient adversarfl; s [11, 28]. More generally, the task é&fset con-
sensus [8], where every correct process is required to batpinput value so
that at mostk different values are output, cannot be solved in the presence of
ﬂk-res [211 301 4]-

Most of this paper deals wittolorlesstasks (also called convergence tasks [5]).
Informally, colorless tasks allow every process to adopingut or output value
from any other participating process. Colorless tasksiofeconsensus [11§;set
consensus [8] and simplex agreement [22].

The relative power of an adversary. This paper primarily addresses the fol-
lowing question. Given a task and an adversaryl, is T solvable in the presence
of A?

Intuitively, the more sets an adversary comprises, the mageutions our sys-
tem may expose, and, thus, the more powerful is the advensddjsorienting”
the processes. In this sense, thait-free adversaryAys = An_1.res IS the most
powerful adversary, since it describes the satlbpossible executions.

In contrast, a “singleton” adversarfl = {S} that consists of only one set
S C P is very weak. For example, we can use any process as the “leader”
that never fail. This allows us to solve consensus or implegraay sequential
data type [18].
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But in general, there are exponentially many adversariésetefor n pro-
cesses that are not related by containment. Thereforediiffisult to say a priori
which of two given adversaries is stronger.

Superset-closed adversaries. We start with recalling the model afependent
failures proposed by Junqueira and Marzullo [25], defined in termsooésand

survivor sets In brief, a survivor set is a minimal subset of processes d¢ha

be the set of correct processes in some execution, and ascamminimal set of
processes that do not all fail in any execution.

We show that, in fact, the formalism of [25] describes a slestass osuperset-
closedadversaries: every superset of an element of such an adyefisia also
an element ofA. The minimal elements afi (no subset of which are i) are
the survivor sets of the resulting model.

It turns out that the power of a superset-closed adverganysolving colorless
tasks is precisely characterized by the size of its minima¢ ci.e., the minimal-
cardinality set of processes that cannot all fail in afisacompliant execution. A
superset-closed adversary with minimal core sialows for solving a colorless
taskT if and only if T can be solvedd— 1)-resiliently. In particular, it = 1,
then any task can be solved in the presencé adind ifc = n, thenA only allows
for solving wait-free solvable tasks. Thus, all superdesed adversaries can be
categorized im classes, based on their minimal core sizes.

We present two ways of deriving this result: first, using tleerents of modern
topology (proposed by Herlihy and Rajsbaum [20]) and sectimdugh shared-
memory simulations (proposed by Gafni and Kuznetsov [16]).

Characterizing generic adversaries. The dependent-failure formalism of [25]
is however not expressive enough to capture the task stityahigeneric non-
uniform failure models. It is easy to construct an adversaay has the minimal
core sizen but allows for solving tasks that can cannot be wait-fre@estl One
example is the “bimodal” adversafpar, p, g, r} (Figure 1) that allows for solving
2-set consensus.

Therefore, to characterize the power of a generic adversayeed a more
sophisticated criterion than the minimal core size. Ssipgly, such a criterion,
that we callset consensus powes not dtficult to find. Suppose that we can
partition an adversary into k sub-adversaries, each powerful enough to solve
consensus. We conclude tlrdtallows for solvingk-set consensus: simply rikn
consensus algorithms in parallel, each assuming a disrzadversary. More-
over, we show that the set consensus powerptlefined as the minimal such
number of sub-adversaries, precisely characterizes thermaf A in solving col-
orless tasks.
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Therefore, generic adversaries definechqgrocesses can still be split into
equivalence classes. Each clas®nsists of adversaries of set consensus pgwer
that agree on the set of colorless tasks they allow for sgivitramely, tasks that
can be solvedj(- 1)-resiliently and noj-resiliently. In particular, class contains
adversaries that only allow for solving tasks that can beexbivait-free, and class
1 allows for solving consensus and, thus, any task.

Roadmap. We begin with a background section that states recalls tbedba
of our model and the notion of a distributed task. Then weutisseveral ap-
proaches to model non-uniform failures: dependent faitaoelel of Junqueira
and Marzullo [25], adversaries of Delporte et alii [9], argymmetric progress
conditions by Imbs et alii [24].

Then we present a complete characterization of superss¢dladversaries.
The result is first shown using elements of combinatoriabtogy [20] and then
through simple shared-memory simulations [16].

We then characterize generic (not necessarily superssed) adversaries us-
ing the notion of set consensus power and relate it withdikagreement power
proposed by Delporte et alii [9].

We conclude with a brief overview of open questions, pritgarelated to
solving generic (not necessarily colorless) tasks in tlesgmce of generic (not
necessarily superset-closed) adversaries.

The results described in this paper originally appeare®jrif, 20, 16, 24,
31].

2 Background

In this section, we briefly state our system model and reballnotion of a dis-
tributed task and two important constructs used in this papemmit-Adopt and
BG-simulation.

2.1 Model

We consider a systeiii of n processesp;, . . ., pn, that communicate via reading
and writing in the shared memory. We assume that the systasyischronous
i.e., relative speeds of the processes are unbounded. Witss of generality, we
assume that processes sharatmmic snapshanemory [1], where every process
may update its dedicated element and take atomic snapsti whole memory.

A process may only fail by crashing, and otherwise it mugpeesthe algo-
rithm it is given. Acorrectprocess never crashes.
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2.2 Tasks

In this paper, we focus on a specific class of distributed agmg problems,
calledtasks[22]. In a distributed task [22], every participating presestarts with

a unique input value and, after the computation, is expetgdturn a unique
output value, so that the inputs and the outputs across tltegses satisfy certain
properties. More precisely,taskis defined through a sét of input vectors (one
input value for each process), a 6ebf output vectors (one output value for each
process), and a total relatian: 7 — 2° that associates each input vector with a
set of possible output vectors. An inputdenotes aot participatingprocess and
an output valueL denotes amndecidedorocess.

For example, in the task d&-set consensugput values are ifL,0,...,k},
output values are ifiL, 0, .. ., k}, and for each input vectdrand output vectoD,
(1,0) € A if the set of non4. values inO is a subset of values inof size at most
k. The special case of 1-set consensus is caiteensufll].

We assume that every process runBulikinformation protocol: initially it
writes its input value and then alternates between takiagsmots of the memory
and writing back the result of its latest snapshots. Afteerdain number of such
asynchronous rounds, a process may gather enough stdéeitie i.e., i.e., to
produce an irrevocable nan-output value.

In colorlesstask (also calledonvergenceasks [5]) processes are free to use
each others’ input and output values, so the task can be defirterms of input
and outpusetsinstead of vector. Thek-set consensus task is colorless.

Note that to solve a colorless task, it ifistient to find a protocol (a decision
function) that allows just one process to decide. Indeesljéh a protocol exists,
we can simply convert it into a protocol that allows everyreot process to decide:
every process simply applies the decision function to theeoled state of any
other process and adopts the decision.

2.3 The Commit-Adopt protocol

One tool extensively used in this paper is toenmit-adopabstraction (CA) [12].
CA exports one operatioproposév) that returns ¢ommitVv’) or (adopt V'), for
V,v eV, and guarantees that

(a) every returned value is a proposed value,

(b) if only one value is proposed then this value must be cdtechi

SFormally, letval(U) denote the set of nom-values in a vectot). In a colorless task, for
all input vectord andl’ and all output vector® andQ’, such that, O) € A, val(l) c val(l’),
val(O’) c val(O), we have [",0) e Aand (,0’) € A.

59



BEATCS no-106 THE EATCS COLUMNS

(c) if a process commits on a valwethen every process that returns adopts
or commitsv, and

(d) every correct process returns.

The CA abstraction can be implemented wait-free [12]. MueepoCA can be
viewed as a way to establisafetyin shared-memory computations.

For example, consider a protocol where every processedigaegh a series
of instances of commit-adopt protocolSA;, CA,, ..., one by one, where each
instance receives a value adopted in the previous instanaa aput (the initial
input value forCA;). One can easily see that once a valuis committed in
some CA instance, no value other thagan ever be committed (properties (a)
and (c) above). One the other hand, if at most one value isogempto some CA
instance, then this value must be committed by every pratedsakes enough
steps (property (b) above).

This algorithm can be viewed asafeversion of consensus: every committed
value is a proposed value and no two processes committaretit values (prop-
erties (a), (b) and (c) above). Given that every correctgsegoes from one CA
instance to the other as long as it does not commit (propdjtglfove), we can
boost the liveness guarantees of this protocol using extteracles.

In fact, the algorithnper seguarantees termination in evespstruction-free
execution, i.e., assuming that eventually at most one grisdaking steps. More-
over, we can build a consensus algorithm that terminabe®mst alwaysf we
allow processes to toss coins when choosing an input valutaéonext CA in-
stance [2]. Also, if we allow a process to accessoaacle (e.g., theQ failure
detector of [6]) that eventually elects a correct leadecess, we get a live con-
sensus algorithm.

2.4 The BG-simulation technique.

Another important tool used in this papeB&-simulation4, 5]. BG-simulation

is a technique by whick + 1 processes,, ..., &1, calledsimulators can wait-

free simulate &-resilient(Ay..s-compliant) execution of any protocéllg onm
processegs, ..., pm (M > K). The simulation guarantees that each simulated step
of every procesg; is either agreed upon by all simulators, or one less simulato
participates further in the simulation for each step whghat agreed on.

The central building block of the simulation is tiB&-agreemenprotocol.
BG-agreement reminds consensus: processes propose aatliagree one of the
proposed values at the end. Indeed, the BG-agreement pletosures safety of
consensus—every decided value was previously proposedy@two diferent
values are decided— but not liveness. If one of the simwdagtmws down while
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executing BG-agreement, the protocol’s execution at atbeect simulators may
“block” until the slow simulator finishes the protocol. Ifdtslow simulator is
faulty, no other simulator is guaranteed to decide.

Suppose the simulation tries to promate> k simulated processes in a fair
(e.g., round-robin) way. As long there is a live simulatdteastm — k simulated
processes performs infinitely many stepg\g in the simulated execution.

Recently the technique of BG-simulation was extended tovghat any col-
orless task that can be solved assuming khe 1)-resilient adversary can also be
solved using read-write registers dadet consensus objects [13].

3 Non-uniform failures in shared-memory systems

In this section, we overview several approaches to modelumifiorm failures:

dependent failure model of Junqueira and Marzullo [25] esslaries of Delporte
et alii [9], and asymmetric progress conditions by Imbs &f24] and Tauben-
feld [31].

3.1 Survivor Sets and Cores

Junqueira and Marzullo [26, 25] proposed to model non-uniféailures using
the language dsurvivor set@andcores A survivor setS C IT if a set of processes
such that:

() in some executiorg is the set of correct processes, and

(b) Sis minimal: for every proper subsgt of S, there is no execution in which
S’ is the set of correct processes.

A collection S of survivor sets describes a system such that the set ofotorre
processes in every execution contains a sét.in
Respectively, @ore Cis a set of processes such that:

(a) in every execution, some proces<itis correct, and

(b) Cis minimal: for every proper subs€t of C, there is an execution in which
every process i’ fails.

Thus, a core is a minimal set of processes that cannot beu#lf fa any execution
of our system. Note that the set of cores is unambiguousbraéted by the set
of survivor sets.

A core is actually aninimal hitting sebf the set system built of survivor sets,
and a core of smallest size is a corresponding minimum pigat. Determining
minimum hitting set of a set system is known to be NP-comj&ig
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The language of cores [26, 25] proved to be convenient in nstaleding the
ability of a system with non-uniform failures to solve conses or build a fault-
tolerant replicated storage.

3.2 Adversaries

A more general way to model non-uniform failures was progdseDelporte et
al. [9]. Formally, anadversarydefined for a set of processEsis a non-empty
set of process subse® c 21 . We say that an execution jd-compliantif the
correct seti.e., the set of correct processes, in that execution peltmA. Thus,
assuming an adversa, we only consider the set ofi-compliantexecutions?
By convention, we assume that in every execution, at leaspoocess is correct,
i.e., no adversary contaiffls

Given a taskl and an adversaryi, we say thafl is A-resiliently solvablaf
there is a protocol such that in every execution, the outmatish the inputs with
respect to the specification f and in everyA-compliant execution, each correct
process eventually produces an output.

It is easy to see that the language of survivor sets of [25¢riess a special
class ofsuperset-closeddversaries. Formally, the s8€ of superset-closed ad-
versaries consists of affl such that for allS € A andS ¢ S’ C 11, we have
S e A.

For example, consider theresilient adversary. s = {S € I1,|S| > n—t}.
By definition,Ayes € SC. The survivor sets afi, s are all sets oh—t processes,
and the cores are all setstof 1 processes. Tha ¢ 1)-resilient adversarfwr =
An-1res IS also calledvait-free An Awe-resilient task solution must ensure that
every process obtains an output in a finite number of its oepsstregardless of
the behavior of the rest of the system.

Another exampleA,, = {S C I|p € S} € SC describing a system in whigh
never fails.A_, has one survivor sé¢p} and one coré¢p}. Intuitively, p may then
act as a correct leader in a consensus protocol. Thus, eagycan be solved in
the presence aofi,  [18].

The k-obstruction-freeadversaryAy.or is defined agS c I1 | 1 < |S| < K}.
In particular,Aor = Aor allows for solving consensus [10]. Clearfl or for
1<k<nisnotinSC.

The “bimodal” adversarypgr, p, g, r} (Figure 1) is not inSC either: it con-
tains the singletop but not its supersetgqandpr.

“Note that in the original definition [9], an adversary is dediras a collection daulty setsi.e.,
the sets of processes that can fail in an execution. For cigvee, we chose here an equivalent
definition based ororrect sets
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3.3 Failure patterns and environments

An adversary is in fact a special case dé&#éure environmenintroduced by Chan-
dra et alii [6]. An environmeng is a set offailure patterns For a given run, a
failure patternF is a map that associates each time vala€eT with a set of pro-
cesses crashed by tiheThe set of correct processes, denatedectF) is thus

defined agl — Ui F(t).

Since an adversaryi only defines sets of correct processes and does not spec-
ify the timing of failures, it can be viewed as a specific eomiment&y4 that is
closed under changing the timing of failures. More pregise) = {F | correct(F)

A}. Clearly, if F € &4 andcorrect(F) = correct(F’), thenF’ € E4.

Thus, we can rephrase the statement “fagtan be solvedA-resiliently” as
“task T can be solved in environme#8ty”. It is shown in [15] that, with respect
to colorless tasks, all environments can be split imtequivalence classes, and
each clasg agrees on the set of tasks it can solve: namely, tasks thabean
solved ( — 1)-resiliently and notj-resiliently. Therefore, by applying [15], we
conclude that each adversary belongs to one of such equoeatdass. However,
this characterization does not give us an explicit algaritb compute the class to
which a given adversary belongs.

3.4 Asymmetric progress conditions

Imbs et alii [24] introducedisymmetric progress conditiotsat allow us to spec-
ify different progress guarantees foffelient processes. Informally, for sets of
processeX andY, X C Y C II, (X, Y)-liveness guarantees that every process in
X makes progress regardless of other processes (wait-frefagrocesses iX)
and every process M — X makes progress if it is eventually the only process in
Y — X taking steps (obstruction-freedom for processes X).

With respect to solving colorless tasks, it is easy to regreg, Y)-liveness
using the formalism of adversaries. The equivalent advergs y consists of all
subsets ofI that intersect withX and all setp;} U S such thatp, € Y — X and
S CII-Y. Itis easy to see that a colorless task is (read-write) btdvassuming
(X, Y)-liveness if and only if it is solvable in the presence/y y.

Taubenfeld [31] introduced a refined condition that assesi@ach process
pi with a set®P; of process subsets (each containmpy Thenp; is expected to
make progress (e.g., output a value in a task solution) drilyei current set of
correct processes is ;. Similarly, with respect to the question of solvability
of colorless tasks, every such progress condition can beladés an adversary,
defined simply as the union ;.
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4 Characterizing superset-closed adversaries

Intuitively, the size of a smallest-cardinality core of adversaryA, denoted
csiz€A), is related to its ability to “confuse” the processes (preing them from
agreement). Indeed, since in every execution, at least meegs in a minimal
coreC is correct, we can tred as a collection of leaders. But for a superset-
closed adversary, every non-empty subsét gan betheset of correct processes
in C in some execution. Therefore, intuitively, the system bekdike a wait-free
system ort = |C| processes, wherequantifies the “degree of disagreement” that
we can observe among all the processes in the system.

In this section, we show thasiz€A) precisely captures the power @f with
respect to colorless tasks. We overview two approachesdi@ssl this question,
each interesting in its own right: using combinatorial timgy and using shared-
memory simulations.

4.1 A topological approach

Herlihy and Rajsbaum [20] derived a characterization ofessgt-closed adver-
saries using the Nerve Theorem of modern combinatoriallbgyd3]. A set of
finite executions is modeled assanplicial complexa geometric (or combina-
torial) structure where each simplex models a set of loakstyiews of the
processes resulting after some execution. This allowsdasaning about the
power of a model using topological properties (e.g., cotivieg) of simplicial
complexes it generatés.

The model of [20] is based ateratedcomputations: each procegsproceeds
in (asynchronous) rounds, where every rouris associated with a shared array
of registersM[r, 1],..., M[r, n]. When p; reaches round, it updatesM[r, i] with
its current view and takes an atomic snapshoijf,.]. In the presence of a
superset-closed adversafy the set of processes appearing in a snapshot should
be an element ofA. We call the resulting set of executions tiecompliant
iterated model

Naturally, given an adversar, it is easy to implement an iterated model with
desired properties in the classical (non-iterated) shayetiory model. To imple-
ment a round of the iterated model, every process writesltgevin the memory
and takes atomic snapshots until all processes in somevsupgt (minimal ele-
ment inA) are observed to have written their values. The result sfshapshot is
then returned. In arAi-compliant execution, this allows for simulating infinitel
many iterated rounds.

5For more information on the applications of algebraic anthisimatorial topology in dis-
tributed computing, check Maurice Herlihy's lectures atfiigion [19].
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Surprisingly, we can also use tt#-compliant iterated model to simulate an
A-compliant execution in the read-write model whemmeparticipating set of
processes itA takes infinitely many steps (please check the wonderful lsitioun
algorithm proposed recently by Gafni and Rajsbaum [17])pdrticular, for the
wait-free adversaryfy g, the simulation i:ion-blocking at least one participating
process accepts infinitely many steps in the simulated éxecu

Note that if the simulatedd-compliant execution is used for afi-resilient
protocol solving a given task, then we are guaranteed thiaat one process
obtains an output. But to solve a colorless task it ifisient to produce an output
for one participating process (all other participants magpd this output). Thus:

Theorem 1. [17] hosted LetA be a superset-closed adversary. A colorless task
can be solved in thé1-compliant iterated model if and only if it can be solved in
the A-compliant model.

This result allows us to apply the topological formalism aliofvs. The set
of r-round executions of thél-compliant iterated model applied to an initial sim-
plex o generates arotocol complexk; (o). By a careful reduction to the Nerve
Theorem [3]X; (o) can be shown to be (- 2)-connectedi.e., K (o) contains no
“holes” in dimensiong — 2 or less (anyd - 2)-dimensional sphere can be contin-
uously contracted to a point). The Nerve theorem estaldifiiee connectivity of
a complex from the connectivity of its components.

Roughly, the argument of [20] is built by induction anthe number of pro-
cesses. For a given adversarlon n processes with the minimal core sige
the A-compliant protocol comples; (o) can be represented as a union of pro-
tocol complexes, each corresponding to a sub-adversafyafn — 1 processes
with core sizec— 1. By induction, each of these sub-adversaries is at leas3)-
connected. Applying the Nerve theorem, we derive #dtr) is (c—2)-connected.
The base case = 1 andc = 1 is trivial, since every non-empty complex is, by
definition, 1)-connected.

Thus, %X (o) is (c— 2)-connected. Hence, no task that cannot be solved -
resiliently, in particular ¢ — 1)-set consensus, allows for afi-resilient solu-
tion [22].

Using the characterization of [22], we can reduce the qoesif A-resilient
solvability of a colorless task = (7,0, A) to the existence of a continuous map
f from |skef1(X)|, the Euclidean embedding of the<{ 1)-skeletor(the complex
of all simplexes of dimension — 1 and less) of the input complek to O], the
Euclidean embedding of the output compt&xsuch thatf is carried byA, i.e.,
f(o) € A(o). Indeed, the fact that ok (o) is (c — 2)-connected (and thus
connected for all & d < c - 2) implies that every continuous map fraivsphere
of %K (o) extends to thed + 1)-disk, for 0< d < ¢ — 2. Intuitively, we can thus
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inductively construct a continuous map frgskef(7)| to |0|, starting from any
map sending a vertex df to a vertex o0 (for d = 0).

On the other hand, it is straightforward to constructZmesilient protocol
solving a colorless task, given a continuous map from the- 1)-skeleton of the
input complex ofT to the output complex of. Thus:

Theorem 2. [20] An adversaryA € SC with the minimal core size c allows for
solving a colorless task & (7, O, A) if and only if there is a continuous map from
Iskef~1(7)| to |O| carried byA.

Therefore, two adversaries ji, B € SC with the same minimal core size
agree on the set of tasks they allow for solving, which is #ydbe set of tasks
that can be solved(- 1)-resiliently (sincecsiz€A_1).res) = C).

4.2 A simulation-based approach

It is comparatively straightforward to characterize sgpeclosed adversaries us-
ing classical BG-simulation [4, 5], and we present a conepbebof below.

Theorem 3. [14] Let A be a superset-closed adversary. A colorless task T is
A-resiliently solvable if and only if T ik — 1)-resiliently solvable, where c is the
minimal core size afA.

Proof. Let a colorless task be € — 1)-resiliently solvable, and le®. be the
corresponding algorithm. L& = {q, ..., qc} be a minimal-cardinality core oft
(ICl = o).

Let the processes i@ BG-simulate the algorithrR. running on all processes
in T1. Here each simulatay tries to use its input value of tagkas an input value
of every simulated process [4, 5]. SinCeis a core ofA, in everyA-compliant
execution, at most — 1 simulators may fail. Since a faulty simulator results in at
most one faulty simulated process, the produced simulatecugion is ¢ — 1)-
resilient. SinceP; gives a ¢ — 1)-resilient solution ofT, at least one simulated
process must eventually decide in the simulated execufid® output value is
then adopted by every correct process. Moreover, the dieiglee is based on
the “real” inputs of some processes. Sificés colorless, the decided values are
correct with respect to the input values and, thus, we olataifi-resilient protocol
to solveT.

For the other direction, suppose, by contradiction thatettexists an#-
resilient protocolP4 to solve a colorless task, but T is not possible to solve
(c — 1)-resiliently.

We claim thatAc_1yes S A, i.€., each ¢ — 1)-resilient execution isA-
compliant. Suppose otherwise, i.e., someS3elf n — ¢ + 1 processes is not in
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A. SinceA is superset-closed, no subsetSis in A (otherwise S would be in
A). No process i16 belongs to any set irfl, thus, the smallest core (1 must be
a subset ofl — S. But |IT — S| = ¢ — 1—a contradiction with the assumption that
the size of a minimal cardinality core (A is c.

Thus, every¢— 1)-resilient execution is als@l-compliant, which implies that
P4 is in fact a € — 1)-resilient solution td —a contradiction with the assumption
thatT is not (¢ — 1)-resiliently solvable. O

Theorem 3 implies that adversaries$@ can be categorized into equiva-
lence classesSCy, . . ., SC,, where classSSCy corresponds to cores of sikeTwo
adversaries that belong to the same cl&Sg agree on the set of colorless tasks
they are able to solve, and it is exactly the set of all cofwleask that can be
solved k — 1)-resiliently.

5 Measuring the Power of Generic Adversaries

Let us come back to the “bimodal” adversargy = {par, p, g, r} (Figure 1). Its
only core is{p, g, r}. Does it mean tha#gy only allows for solving trivial (wait-

free solvable) tasks? Not really: by splittitisy in two sub-adversarieSlgr =
{pgr} andAor = {p.q,r} and running two consensus algorithms in parallel, one
assuming no failuresAgr) and one assuming that exactly one process is correct
(Aor), gives us a solution to 2-set consensus.

5.1 Solving consensus wittAgy

But can we solve more in the presencefdy? E.g., is there a protocaéllg that
solves consensudgy-resiliently? We derive that the answer is no by showing
how processesy and s;, can wait-free solve consensus through simulating an
Agm-compliant execution oflg. Initially, the two processes act as BG simula-
tors [4, 5] trying to simulate an execution Afg on all three processes, g, and

r. When a simulatos (i = 0,1) finds out that the simulation of some step is
blocked (which means that the other simulasgr; started but has not yet com-
pleted the corresponding instance of BG-agreemensg)yitches to simulating a
solo executiorof the next process (in the round-robin order){maq,r}. If the
blocked simulation eventually resolves { finally completes the instance of BG-
agreement), theg switches back to simulating afl, g andr.

If no simulator blocks a simulated step forever, the sinedatxecution con-
tains infinitely many steps of every process, i.e., the sebafect processes in it
is{p, q,r}. Otherwise, eventually some simulated process foreveriruisolation
and the set of correct processes in the simulated execuwstign,i{qg}, or {r}. In

67



BEATCS no-106 THE EATCS COLUMNS

both cases, the simulated executiomAg is Agm-compliant, and the algorithm
must output a value, contradicting [11, 28]. This argumantloe easily extended
to show thatAg), cannot allow for solving any colorless task that cannot thessb
1-resiliently.

5.2 Disagreement power of an adversary

Thus, we need a more sophisticated criterion to evaluatpdher of a generic
adversaryA. Delporte et alii [9] proposed to evaluate the “disoriegtstrength”
of an adversaryA via its disagreement power

Definition 1. [9] The disagreement power of an adversayis the largest k such
that k-set consensus cannot be solved in the presen@e of

It is shown in [9] that adversaries of the same disagreemantepagree on
the sets of colorless task they allow for solving. The reisuiterived via a three-
stage simulation. First, it is shown how an adversary canilgite anydominating
adversary, where the domination is defined through an iegbrecursive inclu-
sion property. Second, it is shown that every adversathat does not dominate
thek-resilient adversafyis strong enough to implement the af¥j-failure detec-
tor that, in turn, can be used to solkeset consensus [34]. Finally, it is shown
that vector€) (a failure detector equivalent to arf¥;) can be used to solve any
colorless task that can be solvkdesiliently. Thus, the largestsuch thak-set
consensus cannot be solvé@dresiliently indeed captures the powerf

The characterization of adversaries proposed in [9] doegive a direct way
of computing the disagreement power of an advers@mnd it does not provide
a directA-resilient algorithm to solve a colorless taBkwhenT is A-resiliently
solvable.

In the rest of this section, we give a simple algorithm to catephe dis-
agreement power of an adversary. For convenience, we uteodotion ofset
consensus powegr.e., the smallesk such thatk-set consensus can be solved in
the presence ofi. Clearly, the disagreement power @f is the set consensus
power of A minus 1.

5.3 Definingsetcon

Let A be an adversary and IBtC P be any subset of processes. Ttixdenotes
the adversary that consists of all elements/that are subsets & (including
Sitselfif S € A). E.g., forA = {pqg.qr,q.r} andS = qr, As = {qr,q,r}. For

5Recall that thek-resilient adversary consists of all subset$ladf size at leash — k.
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S e Aandac S, let As, denote the adversary that consists of all element&pf
thatdo notincludea. E.g., forA = {pqg,ar,q,r}, S = gr, anda = g, As4 = {r}.

Now we define a quantity denotsdtcorgA), which we will show to be the set
consensus power ofl. Intuitively, our goal is to splitA into the minimal number
k of sub-adversaries, such that every sub-adversary allonsofving consensus.
ThenA allows for solvingk-set consensus, but ndt € 1)-set consensus (other-
wise,k would not be minimal).

Definition 2. setcor{A) is defined as follows:
o If A =0, then setcofA) = 0
e Otherwise, setcqA) = MaXsca MiNges SetCoiAsy) + 1

Thus,setcorfA), for a non-empty adversaryl, is determined asetcorfAs z)+
1 whereS is an element ofA anda is a process irS that “max-minimize”
setcoriAs,). Note that forA # 0, setcofA) > 1.

We say thatS € A is properif it is not a subset of any other element.if
Let proper(A) denote the set of proper elements#h Note that since for all
S’ C S, Mings SetcorfAs ) < Minys SetcoiAs ), we can replacs € A with

S € proper(A) in Definition 2.
r@! {par. pg. pr. p}
®o/® J o

p q r
@ @ {a,r}
q r

Figure 2: AdversaryA = {pqr, pg, pr, p, g, r} decomposed in two sub-adversaries,
{par, pg, pr, p} and{q, r}, each withsetcon= 1.

5.4 Calculating setcorfA): examples

Consider an adversarfl = {pqr, pg, pr, p, g, r}. It is easy to see thaetcofA) =

2: for S = pgranda = p, we haveAs, = {q,r} andsetcofAs.) = 1. Thus,
we decomposeA into two sub-adversariggqr, pg, pr, p} and{qg, r}, each strong
enough to solve consensus (Figure 2). Intuitively, in arcetien where the cor-
rect set belongs toA — As, = {pqr, pg, pr, p}, processp can act as a leader
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for solving consensus. If the correct set belongsA, = {q,r} (eitherqorr
eventually runs solo) thegandr can solve consensus using an obstruction-free
algorithm. Running the two algorithms in parallel, we ohtaisolution to 2-set
consensus. The reader can easily verify that any otherelobae pqr results in
three levels of decomposition.

As another example, consider theesilient adversary; s = {S C I1, |S| >
n —t}. It is easy to verify recursively thaetcorfAes) = t + 1: at each level
1< j <t+1ofrecursion we consider a s8tof n— j + 1 elements, pick up a
procesy € S and delegate the set of- | processes that do not inclugéo level
j+1. Atlevelt+1 we get one set of size-t and stop. ThusetcofAres) = t+1.

More generally, for any superset-closed adversarfA € SC), setcofA) =
csizéA), the size of a smallest-cardinality core @f. To show this, we pro-
ceed by induction. The statement is trivially true for an gmadversaryA
with csiz€A) = setcofA) = 0. Now suppose that for all & j < k and all
A € SC with csizdA’) = j, we havesetcoflA’) = j. ConsiderA € SC such
that csiz€A) = k. Note that the only proper element &t is the whole set of
processe$l. Thus,setcofA) = min,y SetcorfAy ) + 1. By the induction hy-
pothesis and the fact thasizéA) = k, we have mig setcolfAn,) = k- 1.
Thus,setcorfA) = k.

Thus, by Theorem 3etcorf) indeed characterizes the disorienting power of
adversariesAl € SC: a task isA-resiliently solvable if and only if it is¢ — 1)-
resiliently solvable, where = setcoriA). In the rest of this section, we extend
this result fromSC to the universe of all adversaries.

5.5 Solving consensus witketcon= 1

Before we characterize the ability of adversaries to soblertess tasks, we con-
sider the special case of adversariesetton= 1.

Consider an adversatfl andS € A. SupposesizéAs) = 1, and let{a} be
a core ofAs. Obviously,As, = 0. On the other hand, ifis, = 0, then{a} is a
core of As. Thus,setcorfA) = 1 if and only if VS € A, csizdAs) = 1

SupposesetcofA) = 1. If S is the only proper element off, then we can
easily solve consensus (and, thus, any other task [18])ebidiohg on the value
proposed by the only member of a core§. The process is guaranteed to be
correct in every execution.

Now we extend this observation to the case whfenontains multiple proper
elements. The consensus algorithm, presented in Figusea3irotating coordi-
nator” algorithm inspired by by Chandra and Toueg [7].

The algorithm proceeds in rounds. In each roupelvery processg; first tries
to commit its current decision estimate in a hew instanceoofiroit-adoptCA,.

If pi succeeds in committing the estimate, the committed valugitten in the
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Shared variables:
D, initially L
Ri,...,Rn, initially L

proposgv)

1 esti=v

2 r:=0

3 S=P

4 repeat

5 r=r+1

6 (flag, es) := CA.proposées)

7 if flag = committhen

8 D := est return(es) {Return the committed value}
9 R :=(estr)

0 waituntil 3S € A, Vpj € S: Rj = (vj,rj) whererj >ror D # L
{Wait until a set inA moves}
1n if Pr modn+1 € S then
12 est:= Vi modn+1 {Adopt the estimate of the current leader}
wountil D# L
14 return(D)

Figure 3: Consensus with a “one-level” adversatysetcoliA) = 1
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“decision” registerD and returned. Otherwisgy adopts the returned value as
its current estimate and writes it R equipped with the current round numlyer
Thenp; takes snapshots ORy, . .., R,} until either a se6 € A reaches roundor

a decision value is written iB (in which case the process returns the value found
in D). If no decision is taken yet, them checks if the coordinator of this round,
Pr modn, IS INS. If so, p; adopts the value written iR, meqn @and proceeds to the
next round.

The properties of commit-adopt imply that no two processésrn diferent
values. Indeed, the first round in which some process conwnitsome value
v (line 8) “locks” the value for all subsequent rounds, and tieeo process can
return a value dferent fromv.

Suppose, by contradiction, that some correct process mettgns in some
A-compliant executior. Recall thatA-compliant means that some set#his
exactly the set of correct processeseinlf a process returns, then it has previ-
ously written the returned value . Since, in each round, a process performs
a bounded number of steps, by our assumption, no processvewes a value
in D and every correct process goes through infinitely many reumd without
returning.

Let S € A be the set of correct processesein After a roundr’ when all
processes outsidehave failed, every element ¢t evaluated by a correct process
inline 10 is a subset @. Finally, since the minimal core size Gts is 1, all these
elements ofA overlap on some correct procegss

Consider round = mn+j > r’—1. In this roundp; not only belongs to all sets
evaluated by the correct processes, but it is also the auatati( =r modn+1).
Thus, the only value that a process can propose to commygtagooundr + 1 is
the value previously written bp; in R;. Hence, every process that returns from
commit-adopt in round + 1 must commit and return—a contradiction. Thus:

Theorem 4. [14] If setcor(A) = 1, then consensus can be solvddesiliently.

5.6 Adversarial partitions

One way to interpret Definition 2 is to say thsgtcorfiA) captures the size of
a minimal-cardinality partitioning af4 into sub-adversariegt®, ..., A, each of
setcon= 1.

Indeed, for a proper s& € A, selecting an elemeate S allows for splitting
As into two sub-adversariefs — As, andAs . As — As, is the set of elements
of As that containa and, thussetcofAs — Asa,) = 1 (a can act as a leader).
Moreover, selecting so thatsetcorfAs ) is minimized makes sure thefls, =
setcoriAs) — 1.
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Intuitively, A2, the first such sub-adversary, is the union&yf — As 4, for all
such prope6 € A anda € S. AdversariesA,, ..., A are obtained by a recursive
partitioning of allA-A*. (A detailed description of this partitioning can be found
in [14].)

Thus, given an adversarfl such thasetcoriA) = k, we derive thatA allows
for solvingk-set consensus. Just take the described above partitiohifign to k
sub-adversariesa?, ..., A* such that, for allj = 1,...,k, setcofA’) = 1. Then
every process can ruaparallel consensus algorithms, one for esh propos-
ing its input value in each of these consensus instancel @gorithm exist by
Theorem 4). Since the set of correct processes in efecpmpliant execution
belongs to someA/, at least one consensus instance returns. The processslecid
on the first such returned value. Moreover, at niodifferent values are decided
and each returned value was previously proposed. Thus:

Theorem 5. [14] If setcon(A) = k, thenA allows for solving k-set consensus.

5.7 Characterizing colorless tasks

But can we solvel(— 1)-set consensus in the presenceAatuch thasetcolfA) =

k? As shown in [14], the answer is n@t does not allow for solving any colorless
task that cannot be solvedl £ 1)-resiliently. The result is derived by a simple
application of BG simulation [4, 5].

The intuition here is the following. Suppose, by contraditt that we are
given an adversaryd such thatsetcofAl) = k and a colorless task that is
solvableA-resiliently but notk — 1)-resiliently. LetAlg be the correspondingl-
resilient algorithm. Then we can constructka—{1)-resilient simulation of arA-
compliant execution oAlg. Roughly, we build upon BG-simulation, except that
theorderin which steps ofAlg are simulated is not fixed in advance to be round-
robin. Instead, the order is determined online, based oaoutrently observed set
of participating processes.

We start with simulating steps of processeSia A such thasetcorfAs) = k
(by Definition 2, sucls exists). If the outcome of a simulated step of some pro-
cessa cannot be resolved (the corresponding BG-agreement ikédadpcwe pro-
ceed to simulating processes in an elenf&nt As, with the largessetcon(if
there is any). As soon as the blocked BG-agreement on theo§tpesolves,
the simulation returns to simulatiry SincesetcorfA) = k, we can obtain ex-
actly k levels of simulation. Therefore, in & ¢ 1)-resilient execution, at most
k — 1 simulated processes (each in a distinct sub-adversaf) oan be blocked
forever. SinceA allows fork such sub-adversaries, at least one sefliaccepts
infinitely many simulated steps. The resulting executiaghis.A-compliant, and
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we obtain ak — 1)-resilient solution folf —a contradiction (detailed argument is
given in [14]).

In fact, the set of colorless tasks that can be solved givexdaarsaryA such
thatsetcoflA) = k is exactlythe set of colorless tasks that can be solhked {)-
resiliently, but notk-resiliently. Indeed,A allows for solvingk-set consensus,
and we can employ the generic algorithm of [13] that solves(r- 1)-resilient
colorless task using tHeset consensus algorithm as a black box. Thus:

Theorem 6. [14] Let A be an adversary such that set¢gt) = k and T be a
colorless task. Therl solves T if and only if T igk — 1)-resiliently solvable.

Recall that the set consensus power of an advergais/the smallesk such
thatA can solvek-set consensus. Theorem 6 implies:

Corollary 7. The set consensus power4fis setcoiA), and the disagreement
power ofA is setcoA) — 1.

By Theorem 3, determininggetcoiiA) may boil down to determining the min-
imum hitting set size aofA, and thus, by [27]:

Corollary 8. Determining the set consensus power of an adversary is M late.

6 Concluding remarks

This survey primarily talks about colorless tasks (consenset agreement, sim-
plex agreement, et cetera) in the read-write shared menystgras where pro-
cesses may fail by crashing in a non-uniform (non-identeal correlated) way.
We modeled such non-uniform failures using the languagedot@aries [9]
and we derived a complete characterization of an adversarnysvset consensus
power [14] (or, equivalently its disagreement power [9]).

The techniques discussed here can be extended to models ptoeesses
may also communicate through stronger objects than just-wede registers
(e.g.,k-process consensus objects). In particular, BG-simulasiosed in [14] to
capture the ability of leveled adversaries of [31] to preygncesses from solving
consensus amongprocesses usingprocess consensus objedts(n).

Combinatorial topology proved to be a powerful instrumentanalyzing a
special class of superset-closed adversaries and cadasiss, not only in read-
write shared-memory models [20], but also in a variety okothodels, including
message-passing models and iterated modelskagtt consensus objects.

However, the power of adversaries with respect to genent rfacessarily)
colorless tasks is still poorly understood. Consider, f@meple, a task,q which
requires processgsandq (in a system of three processpsq, andr) to solve
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consensus and allowsto output any value. The task is obviously not colorless:
the output ofr cannot always be adopted Ipyor . The 2-obstruction-free ad-
versaryAzor = {pq pr,qr, p,q,r} does not allow for solvingl,q: otherwise,
we would get a wait-free 2-process consensus algorithm. h@rother hand,
Apq = {pAr, pg, p,r} (p is correct wheneveq is correct) allows for solving g
(just usep as a leader fop andq). But setCorfA,.or) = setcofApg) = 2!

One may say that the tadk, is “asymmetric”: it prioritizes outputs of some
processes with respect to the others. Maybe our result veotidohd to symmetric
tasks whose specifications are invariant under a permutafigrocess identi-
fiers? Unfortunately, there are symmetric colored taskiseklaibit similar prop-
erties [33]. So we need a more fine-grained criterion thao@asensus power to
capture the power of adversaries with respect to colordég tas

Finally, this paper focuses on non-unifocmashfaults in asynchronous shared-
memory systems. Non-uniform patterns of generic (Byzajtigpes of faults
are explored in the context of Byzantine quorum systems (@8 also a survey
in [32]) and secure multi-party computations [23]. Both ay@zhes assume that a
faulty process can deviate from its expected behavior inrhitrary (Byzantine)
manner. In particular, in [29], Malkhi and Reiter addressitsues of non-uniform
failures in the Byzantine environment by introducing theiow of a fail-prone
system(adversarial structuren [23]): a setB of process subsets such that no ele-
ment ofB is contained in another, and in every execution s@&wesB contains all
faulty processes. Determining the set of tasks solvabledrptesence of a given
generic adversarial structure is an interesting open probl
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