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Abstract

Traditionally, models of fault-tolerant distributed computing assume that
failures are “uniform”: processes are equally probable to fail and a fail-
ure of one process does not affect reliability of the others. In real systems,
however, processes may not be equally reliable. Moreover, failures may be
correlated because of software or hardware features sharedby subsets of
processes. In this paper, we survey recent results addressing the question of
what can and what cannot be computed in systems with non-identical and
non-independent failures.

L’égalité sera peut-être un droit,
mais aucune puissance humaine ne
saura le convertir en fait.1

Honoré de Balzac

1 Introduction

A distributed system is a collection of computing units, called processes. The
principal challenge of distributed computing is to devise protocols that correctly
operate in the presence of failures of processes and asynchrony. A failure model
describes the assumptions on where and when failures might occur. The classical
“uniform” failure model assumes that processes fail with equal probabilities, in-
dependently of each other. This enables reasoning about themaximal number of
processes that may, with a non-negligible probability, fail in any given execution
of the system. It is natural to ask questions of the kind: whatproblems can be
solvedt-resiliently, i.e., assuming that at mostt processes may fail. In particular,

1Equality may perhaps be a right, but no human power can ever turn it into a fact.
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thewait-free((n−1)-resilient, wheren is the number of processes) model assumes
that any subset of processes may fail.

However, in real systems, processes do not always fail in theuniform man-
ner. Processes may be unequally reliable and prone to correlated failures. A
software bug makes all processes using the same build vulnerable, a router’s fail-
ure may makes all processes behind it unavailable, a successful malicious attack
on a given process increases the chances to compromise processes running the
same software, etc. Thus, understanding how to deal with non-uniform failures is
crucial.

Adversaries. Consider a system of three processes,p, q, andr. Suppose thatp
is very unlikely to fail, and otherwise, all failure patterns are allowed. Since we
only exclude executions in whichp fails, the set of correct processes in any given
execution must belong to{p, pq, pr, pqr}2.

Now we give an example of correlated failures. Suppose thatp andq share
a software componentx, p andr share a software componenty, andq andr are
built atop the same hardware platformz (Figure 1). Further, letx, y, andz be
prone to failures, but suppose that it is very unlikely that two failures occur in the
same execution. Hence, the possible sets of correct processes in our system are
{pqr, p, q, r}.

q

p r

x

y

z

Figure 1: A system modeled by the adversary{pqr, p, q, r}: p andq share com-
ponentx, p and r share componenty, andq and r run atop the same hardware
platformz.

The notion of a genericadversaryintroduced by Delporte et al. [9] intends
to model such scenarios. An adversaryA is defined as a set of possible correct
process subsets. E.g., thet-resilient adversaryAt-res in a system ofn processes
consists of all sets ofn − t or more processes. We say that an execution isA-
compliantif the set of processes that are correct in that execution belongs toA.
Thus, an adversaryA describes a model consisting ofA-compliant executions.

2For brevity, we simply writepqr when referring to the set{p, q, r}.
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The formalism of adversaries [9] assumes that processes fail only by crashing,
and adversaries only specify thesetsof processes that may be correct in an execu-
tion, regardless of the timing of failures. Of course, this sorts out many kinds of
possible adversarial behavior, such as malicious attacks or timing failures. How-
ever, it is probably the simplest model that still captures important features of
non-uniform failures.

Distributed tasks. In this paper, we focus on a class of distributed-computing
problems calledtasks. A task can be seen as a distributed variant of a function
from classical (centralized) computing: given a distributed input (aninput vector,
specifying one input value for every process) the processesare required to pro-
duce a distributed output (anoutput vector, specifying one output value for every
process), such that the input and output vectors satisfy thegiventask specification.

The classical theory of computational complexity theory categorizes functions
based on their inherent difficulty (e.g., with respect to solving them on a Turing
machine). In the distributed setting, the difficulty in solving a task also depends
on the adversary we are willing to consider. There are tasks that can be trivially
solved on a Turing machine, but are not solvable in the presence of some dis-
tributed adversaries. For example, the fundamental task ofconsensus, in which
the processes must agree on one of the input values, cannot besolved assuming
the 1-resilient adversaryA1-res [11, 28]. More generally, the task ofk-set con-
sensus [8], where every correct process is required to output an input value so
that at mostk different values are output, cannot be solved in the presence of
Ak-res [21, 30, 4].

Most of this paper deals withcolorlesstasks (also called convergence tasks [5]).
Informally, colorless tasks allow every process to adopt aninput or output value
from any other participating process. Colorless tasks include consensus [11],k-set
consensus [8] and simplex agreement [22].

The relative power of an adversary. This paper primarily addresses the fol-
lowing question. Given a taskT and an adversaryA, isT solvable in the presence
ofA?

Intuitively, the more sets an adversary comprises, the moreexecutions our sys-
tem may expose, and, thus, the more powerful is the adversaryin “disorienting”
the processes. In this sense, thewait-freeadversaryAwf = An−1-res is the most
powerful adversary, since it describes the set ofall possible executions.

In contrast, a “singleton” adversaryA = {S} that consists of only one set
S ⊆ P is very weak. For example, we can use any process inS as the “leader”
that never fail. This allows us to solve consensus or implement any sequential
data type [18].
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But in general, there are exponentially many adversaries defined for n pro-
cesses that are not related by containment. Therefore, it isdifficult to say a priori
which of two given adversaries is stronger.

Superset-closed adversaries.We start with recalling the model ofdependent
failuresproposed by Junqueira and Marzullo [25], defined in terms ofcoresand
survivor sets. In brief, a survivor set is a minimal subset of processes that can
be the set of correct processes in some execution, and a core is a minimal set of
processes that do not all fail in any execution.

We show that, in fact, the formalism of [25] describes a special class ofsuperset-
closedadversaries: every superset of an element of such an adversary A is also
an element ofA. The minimal elements ofA (no subset of which are inA) are
the survivor sets of the resulting model.

It turns out that the power of a superset-closed adversaryA in solving colorless
tasks is precisely characterized by the size of its minimal core, i.e., the minimal-
cardinality set of processes that cannot all fail in anyA-compliant execution. A
superset-closed adversary with minimal core sizec allows for solving a colorless
taskT if and only if T can be solved (c − 1)-resiliently. In particular, ifc = 1,
then any task can be solved in the presence ofA, and ifc = n, thenA only allows
for solving wait-free solvable tasks. Thus, all superset-closed adversaries can be
categorized inn classes, based on their minimal core sizes.

We present two ways of deriving this result: first, using the elements of modern
topology (proposed by Herlihy and Rajsbaum [20]) and second, through shared-
memory simulations (proposed by Gafni and Kuznetsov [16]).

Characterizing generic adversaries. The dependent-failure formalism of [25]
is however not expressive enough to capture the task solvability in generic non-
uniform failure models. It is easy to construct an adversarythat has the minimal
core sizen but allows for solving tasks that can cannot be wait-free solved. One
example is the “bimodal” adversary{pqr, p, q, r} (Figure 1) that allows for solving
2-set consensus.

Therefore, to characterize the power of a generic adversary, we need a more
sophisticated criterion than the minimal core size. Surprisingly, such a criterion,
that we callset consensus power, is not difficult to find. Suppose that we can
partition an adversaryA into k sub-adversaries, each powerful enough to solve
consensus. We conclude thatA allows for solvingk-set consensus: simply runk
consensus algorithms in parallel, each assuming a distinctsub-adversary. More-
over, we show that the set consensus power ofA, defined as the minimal such
number of sub-adversaries, precisely characterizes the power ofA in solving col-
orless tasks.
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Therefore, generic adversaries defined onn processes can still be split inton
equivalence classes. Each classj consists of adversaries of set consensus powerj
that agree on the set of colorless tasks they allow for solving: namely, tasks that
can be solved (j−1)-resiliently and notj-resiliently. In particular, classn contains
adversaries that only allow for solving tasks that can be solved wait-free, and class
1 allows for solving consensus and, thus, any task.

Roadmap. We begin with a background section that states recalls the basics
of our model and the notion of a distributed task. Then we discuss several ap-
proaches to model non-uniform failures: dependent failuremodel of Junqueira
and Marzullo [25], adversaries of Delporte et alii [9], and asymmetric progress
conditions by Imbs et alii [24].

Then we present a complete characterization of superset-closed adversaries.
The result is first shown using elements of combinatorial topology [20] and then
through simple shared-memory simulations [16].

We then characterize generic (not necessarily superset-closed) adversaries us-
ing the notion of set consensus power and relate it with thedisagreement power
proposed by Delporte et alii [9].

We conclude with a brief overview of open questions, primarily related to
solving generic (not necessarily colorless) tasks in the presence of generic (not
necessarily superset-closed) adversaries.

The results described in this paper originally appeared in [9, 14, 20, 16, 24,
31].

2 Background

In this section, we briefly state our system model and recall the notion of a dis-
tributed task and two important constructs used in this paper: Commit-Adopt and
BG-simulation.

2.1 Model

We consider a systemΠ of n processes,p1, . . . , pn, that communicate via reading
and writing in the shared memory. We assume that the system isasynchronous,
i.e., relative speeds of the processes are unbounded. Without loss of generality, we
assume that processes share anatomic snapshotmemory [1], where every process
may update its dedicated element and take atomic snapshot ofthe whole memory.

A process may only fail by crashing, and otherwise it must respect the algo-
rithm it is given. Acorrectprocess never crashes.
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2.2 Tasks

In this paper, we focus on a specific class of distributed computing problems,
calledtasks[22]. In a distributed task [22], every participating process starts with
a unique input value and, after the computation, is expectedto return a unique
output value, so that the inputs and the outputs across the processes satisfy certain
properties. More precisely, ataskis defined through a setI of input vectors (one
input value for each process), a setO of output vectors (one output value for each
process), and a total relation∆ : I 7→ 2O that associates each input vector with a
set of possible output vectors. An input⊥ denotes anot participatingprocess and
an output value⊥ denotes anundecidedprocess.

For example, in the task ofk-set consensus, input values are in{⊥, 0, . . . , k},
output values are in{⊥, 0, . . . , k}, and for each input vectorI and output vectorO,
(I ,O) ∈ ∆ if the set of non-⊥ values inO is a subset of values inI of size at most
k. The special case of 1-set consensus is calledconsensus[11].

We assume that every process runs afull-information protocol: initially it
writes its input value and then alternates between taking snapshots of the memory
and writing back the result of its latest snapshots. After a certain number of such
asynchronous rounds, a process may gather enough state todecide, i.e., i.e., to
produce an irrevocable non-⊥ output value.

In colorlesstask (also calledconvergencetasks [5]) processes are free to use
each others’ input and output values, so the task can be defined in terms of input
and outputsetsinstead of vectors.3 Thek-set consensus task is colorless.

Note that to solve a colorless task, it is sufficient to find a protocol (a decision
function) that allows just one process to decide. Indeed, ifsuch a protocol exists,
we can simply convert it into a protocol that allows every correct process to decide:
every process simply applies the decision function to the observed state of any
other process and adopts the decision.

2.3 The Commit-Adopt protocol

One tool extensively used in this paper is thecommit-adoptabstraction (CA) [12].
CA exports one operationpropose(v) that returns (commit, v′) or (adopt, v′), for
v′, v ∈ V, and guarantees that

(a) every returned value is a proposed value,

(b) if only one value is proposed then this value must be committed,

3Formally, letval(U) denote the set of non-⊥ values in a vectorU. In a colorless task, for
all input vectorsI and I ′ and all output vectorsO andO′, such that (I ,O) ∈ ∆, val(I ) ⊆ val(I ′),
val(O′) ⊆ val(O), we have (I ′,O) ∈ ∆ and (I ,O′) ∈ ∆.
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(c) if a process commits on a valuev, then every process that returns adoptsv
or commitsv, and

(d) every correct process returns.

The CA abstraction can be implemented wait-free [12]. Moreover, CA can be
viewed as a way to establishsafetyin shared-memory computations.

For example, consider a protocol where every processes goesthrough a series
of instances of commit-adopt protocols,CA1,CA2, . . ., one by one, where each
instance receives a value adopted in the previous instance as an input (the initial
input value forCA1). One can easily see that once a valuev is committed in
some CA instance, no value other thanv can ever be committed (properties (a)
and (c) above). One the other hand, if at most one value is proposed to some CA
instance, then this value must be committed by every processthat takes enough
steps (property (b) above).

This algorithm can be viewed as asafeversion of consensus: every committed
value is a proposed value and no two processes commit on different values (prop-
erties (a), (b) and (c) above). Given that every correct process goes from one CA
instance to the other as long as it does not commit (property (d) above), we can
boost the liveness guarantees of this protocol using external oracles.

In fact, the algorithmper seguarantees termination in everyobstruction-free
execution, i.e., assuming that eventually at most one process is taking steps. More-
over, we can build a consensus algorithm that terminatesalmost alwaysif we
allow processes to toss coins when choosing an input value for the next CA in-
stance [2]. Also, if we allow a process to access anoracle (e.g., theΩ failure
detector of [6]) that eventually elects a correct leader process, we get a live con-
sensus algorithm.

2.4 The BG-simulation technique.

Another important tool used in this paper isBG-simulation[4, 5]. BG-simulation
is a technique by whichk + 1 processess1, . . . , sk+1, calledsimulators, can wait-
free simulate ak-resilient(Ak-res-compliant) execution of any protocolAlg on m
processesp1, . . . , pm (m> k). The simulation guarantees that each simulated step
of every processp j is either agreed upon by all simulators, or one less simulator
participates further in the simulation for each step which is not agreed on.

The central building block of the simulation is theBG-agreementprotocol.
BG-agreement reminds consensus: processes propose valuesand agree one of the
proposed values at the end. Indeed, the BG-agreement protocol ensures safety of
consensus—every decided value was previously proposed, and no two different
values are decided— but not liveness. If one of the simulators slows down while
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executing BG-agreement, the protocol’s execution at othercorrect simulators may
“block” until the slow simulator finishes the protocol. If the slow simulator is
faulty, no other simulator is guaranteed to decide.

Suppose the simulation tries to promotem > k simulated processes in a fair
(e.g., round-robin) way. As long there is a live simulator, at leastm− k simulated
processes performs infinitely many steps ofAlg in the simulated execution.

Recently the technique of BG-simulation was extended to show that any col-
orless task that can be solved assuming the (k − 1)-resilient adversary can also be
solved using read-write registers andk-set consensus objects [13].

3 Non-uniform failures in shared-memory systems

In this section, we overview several approaches to model non-uniform failures:
dependent failure model of Junqueira and Marzullo [25], adversaries of Delporte
et alii [9], and asymmetric progress conditions by Imbs et alii [24] and Tauben-
feld [31].

3.1 Survivor Sets and Cores

Junqueira and Marzullo [26, 25] proposed to model non-uniform failures using
the language ofsurvivor setsandcores. A survivor setS ⊆ Π if a set of processes
such that:

(a) in some execution,S is the set of correct processes, and

(b) S is minimal: for every proper subsetS′ of S, there is no execution in which
S′ is the set of correct processes.

A collectionS of survivor sets describes a system such that the set of correct
processes in every execution contains a set inS.

Respectively, acore C is a set of processes such that:

(a) in every execution, some process inC is correct, and

(b) C is minimal: for every proper subsetC′ of C, there is an execution in which
every process inC′ fails.

Thus, a core is a minimal set of processes that cannot be all faulty in any execution
of our system. Note that the set of cores is unambiguously determined by the set
of survivor sets.

A core is actually aminimal hitting setof the set system built of survivor sets,
and a core of smallest size is a corresponding minimum hitting set. Determining
minimum hitting set of a set system is known to be NP-complete[27].
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The language of cores [26, 25] proved to be convenient in understanding the
ability of a system with non-uniform failures to solve consensus or build a fault-
tolerant replicated storage.

3.2 Adversaries

A more general way to model non-uniform failures was proposed by Delporte et
al. [9]. Formally, anadversarydefined for a set of processesΠ is a non-empty
set of process subsetsA ⊆ 2Π . We say that an execution isA-compliantif the
correct set, i.e., the set of correct processes, in that execution belongs toA. Thus,
assuming an adversaryA, we only consider the set ofA-compliantexecutions.4

By convention, we assume that in every execution, at least one process is correct,
i.e., no adversary contains∅.

Given a taskT and an adversaryA, we say thatT isA-resiliently solvableif
there is a protocol such that in every execution, the outputsmatch the inputs with
respect to the specification ofT, and in everyA-compliant execution, each correct
process eventually produces an output.

It is easy to see that the language of survivor sets of [25] describes a special
class ofsuperset-closedadversaries. Formally, the setSC of superset-closed ad-
versaries consists of allA such that for allS ∈ A andS ⊆ S′ ⊆ Π, we have
S′ ∈ A.

For example, consider thet-resilient adversaryAt-res = {S ⊆ Π, |S| ≥ n − t}.
By definition,At-res ∈ SC. The survivor sets ofAt-res are all sets ofn− t processes,
and the cores are all sets oft+1 processes. The (n−1)-resilient adversaryAWF =

An−1-res is also calledwait-free. An AWF-resilient task solution must ensure that
every process obtains an output in a finite number of its own steps, regardless of
the behavior of the rest of the system.

Another exampleALp = {S ⊆ Π|p ∈ S} ∈ SC describing a system in whichp
never fails.ALp has one survivor set{p} and one core{p}. Intuitively, p may then
act as a correct leader in a consensus protocol. Thus, every task can be solved in
the presence ofALp [18].

Thek-obstruction-freeadversaryAk-OF is defined as{S ⊆ Π | 1 ≤ |S| ≤ k}.
In particular,AOF = A1-OF allows for solving consensus [10]. Clearly,Ak-OF for
1 ≤ k < n is not inSC.

The “bimodal” adversary{pqr, p, q, r} (Figure 1) is not inSC either: it con-
tains the singletonp but not its supersetspq andpr.

4Note that in the original definition [9], an adversary is defined as a collection offaulty sets, i.e.,
the sets of processes that can fail in an execution. For convenience, we chose here an equivalent
definition based oncorrect sets.
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3.3 Failure patterns and environments

An adversary is in fact a special case of afailure environmentintroduced by Chan-
dra et alii [6]. An environmentE is a set offailure patterns. For a given run, a
failure patternF is a map that associates each time valuet ∈ T with a set of pro-
cesses crashed by timet. The set of correct processes, denotedcorrect(F) is thus
defined asΠ − ∪t∈TF(t).

Since an adversaryA only defines sets of correct processes and does not spec-
ify the timing of failures, it can be viewed as a specific environmentEA that is
closed under changing the timing of failures. More precisely,EA = {F | correct(F) ∈
A}. Clearly, if F ∈ EA andcorrect(F) = correct(F′), thenF′ ∈ EA.

Thus, we can rephrase the statement “taskT can be solvedA-resiliently” as
“task T can be solved in environmentEA”. It is shown in [15] that, with respect
to colorless tasks, all environments can be split inton equivalence classes, and
each classj agrees on the set of tasks it can solve: namely, tasks that canbe
solved (j − 1)-resiliently and notj-resiliently. Therefore, by applying [15], we
conclude that each adversary belongs to one of such equivalence class. However,
this characterization does not give us an explicit algorithm to compute the class to
which a given adversary belongs.

3.4 Asymmetric progress conditions

Imbs et alii [24] introducedasymmetric progress conditionsthat allow us to spec-
ify different progress guarantees for different processes. Informally, for sets of
processesX andY, X ⊆ Y ⊆ Π, (X,Y)-liveness guarantees that every process in
X makes progress regardless of other processes (wait-freedom for processes inX)
and every process inY − X makes progress if it is eventually the only process in
Y − X taking steps (obstruction-freedom for processes inY− X).

With respect to solving colorless tasks, it is easy to represent (X,Y)-liveness
using the formalism of adversaries. The equivalent adversary AX,Y consists of all
subsets ofΠ that intersect withX and all sets{pi} ∪ S such thatpi ∈ Y − X and
S ⊆ Π − Y. It is easy to see that a colorless task is (read-write) solvable assuming
(X,Y)-liveness if and only if it is solvable in the presence ofAX,Y.

Taubenfeld [31] introduced a refined condition that associates each process
pi with a setPi of process subsets (each containingpi). Then pi is expected to
make progress (e.g., output a value in a task solution) only if the current set of
correct processes is inPi. Similarly, with respect to the question of solvability
of colorless tasks, every such progress condition can be modeled as an adversary,
defined simply as the union∪iPi.
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4 Characterizing superset-closed adversaries

Intuitively, the size of a smallest-cardinality core of an adversaryA, denoted
csize(A), is related to its ability to “confuse” the processes (preventing them from
agreement). Indeed, since in every execution, at least one process in a minimal
coreC is correct, we can treatC as a collection of leaders. But for a superset-
closed adversary, every non-empty subset ofC can betheset of correct processes
in C in some execution. Therefore, intuitively, the system behaves like a wait-free
system onc = |C| processes, wherec quantifies the “degree of disagreement” that
we can observe among all the processes in the system.

In this section, we show thatcsize(A) precisely captures the power ofA with
respect to colorless tasks. We overview two approaches to address this question,
each interesting in its own right: using combinatorial topology and using shared-
memory simulations.

4.1 A topological approach

Herlihy and Rajsbaum [20] derived a characterization of superset-closed adver-
saries using the Nerve Theorem of modern combinatorial topology [3]. A set of
finite executions is modeled as asimplicial complex, a geometric (or combina-
torial) structure where each simplex models a set of local states (views) of the
processes resulting after some execution. This allows for reasoning about the
power of a model using topological properties (e.g., connectivity) of simplicial
complexes it generates.5

The model of [20] is based oniteratedcomputations: each processpi proceeds
in (asynchronous) rounds, where every roundr is associated with a shared array
of registersM[r, 1], . . . ,M[r, n]. Whenpi reaches roundr, it updatesM[r, i] with
its current view and takes an atomic snapshot ofM[r, .]. In the presence of a
superset-closed adversaryA, the set of processes appearing in a snapshot should
be an element ofA. We call the resulting set of executions theA-compliant
iterated model.

Naturally, given an adversaryA, it is easy to implement an iterated model with
desired properties in the classical (non-iterated) sharedmemory model. To imple-
ment a round of the iterated model, every process writes its value in the memory
and takes atomic snapshots until all processes in some survivor set (minimal ele-
ment inA) are observed to have written their values. The result of this snapshot is
then returned. In anA-compliant execution, this allows for simulating infinitely
many iterated rounds.

5For more information on the applications of algebraic and combinatorial topology in dis-
tributed computing, check Maurice Herlihy’s lectures at Technion [19].
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Surprisingly, we can also use theA-compliant iterated model to simulate an
A-compliant execution in the read-write model wheresomeparticipating set of
processes inA takes infinitely many steps (please check the wonderful simulation
algorithm proposed recently by Gafni and Rajsbaum [17]). Inparticular, for the
wait-free adversaryAWF, the simulation isnon-blocking: at least one participating
process accepts infinitely many steps in the simulated execution.

Note that if the simulatedA-compliant execution is used for anA-resilient
protocol solving a given task, then we are guaranteed that atleast one process
obtains an output. But to solve a colorless task it is sufficient to produce an output
for one participating process (all other participants may adopt this output). Thus:

Theorem 1. [17] hosted LetA be a superset-closed adversary. A colorless task
can be solved in theA-compliant iterated model if and only if it can be solved in
theA-compliant model.

This result allows us to apply the topological formalism as follows. The set
of r-round executions of theA-compliant iterated model applied to an initial sim-
plexσ generates aprotocol complexKr(σ). By a careful reduction to the Nerve
Theorem [3],Kr(σ) can be shown to be (c− 2)-connected, i.e.,Kr(σ) contains no
“holes” in dimensionsc− 2 or less (any (c− 2)-dimensional sphere can be contin-
uously contracted to a point). The Nerve theorem establishes the connectivity of
a complex from the connectivity of its components.

Roughly, the argument of [20] is built by induction onn, the number of pro-
cesses. For a given adversaryA on n processes with the minimal core sizec,
theA-compliant protocol complexKr(σ) can be represented as a union of pro-
tocol complexes, each corresponding to a sub-adversary ofA on n− 1 processes
with core sizec−1. By induction, each of these sub-adversaries is at least (c−3)-
connected. Applying the Nerve theorem, we derive thatKr(σ) is (c−2)-connected.
The base casen = 1 andc = 1 is trivial, since every non-empty complex is, by
definition, (−1)-connected.

Thus,Kr(σ) is (c−2)-connected. Hence, no task that cannot be solved (c−1)-
resiliently, in particular (c − 1)-set consensus, allows for anA-resilient solu-
tion [22].

Using the characterization of [22], we can reduce the question ofA-resilient
solvability of a colorless taskT = (I,O,∆) to the existence of a continuous map
f from |skelc−1(I)|, the Euclidean embedding of the (c− 1)-skeleton(the complex
of all simplexes of dimensionc − 1 and less) of the input complexI, to |O|, the
Euclidean embedding of the output complexO, such thatf is carried by∆, i.e.,
f (σ) ⊆ ∆(σ). Indeed, the fact that ofKr(σ) is (c − 2)-connected (and thusd-
connected for all 0≤ d ≤ c− 2) implies that every continuous map fromd-sphere
of Kr(σ) extends to the (d + 1)-disk, for 0≤ d ≤ c − 2. Intuitively, we can thus
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inductively construct a continuous map from|skelc−1(I)| to |O|, starting from any
map sending a vertex ofI to a vertex ofO (for d = 0).

On the other hand, it is straightforward to construct anA-resilient protocol
solving a colorless taskT, given a continuous map from the (c−1)-skeleton of the
input complex ofT to the output complex ofT. Thus:

Theorem 2. [20] An adversaryA ∈ SC with the minimal core size c allows for
solving a colorless task T= (I,O,∆) if and only if there is a continuous map from
|skelc−1(I)| to |O| carried by∆.

Therefore, two adversaries inA,B ∈ SC with the same minimal core sizec
agree on the set of tasks they allow for solving, which is exactly the set of tasks
that can be solved (c− 1)-resiliently (sincecsize(A(c−1)-res) = c).

4.2 A simulation-based approach

It is comparatively straightforward to characterize superset-closed adversaries us-
ing classical BG-simulation [4, 5], and we present a complete proof below.

Theorem 3. [14] Let A be a superset-closed adversary. A colorless task T is
A-resiliently solvable if and only if T is(c− 1)-resiliently solvable, where c is the
minimal core size ofA.

Proof. Let a colorless taskT be (c − 1)-resiliently solvable, and letPc be the
corresponding algorithm. LetC = {q1, . . . , qc} be a minimal-cardinality core ofA
(|C| = c).

Let the processes inC BG-simulate the algorithmPc running on all processes
in Π. Here each simulatorqi tries to use its input value of taskT as an input value
of every simulated process [4, 5]. SinceC is a core ofA, in everyA-compliant
execution, at mostc− 1 simulators may fail. Since a faulty simulator results in at
most one faulty simulated process, the produced simulated execution is (c − 1)-
resilient. SincePc gives a (c − 1)-resilient solution ofT, at least one simulated
process must eventually decide in the simulated execution.The output value is
then adopted by every correct process. Moreover, the decided value is based on
the “real” inputs of some processes. SinceT is colorless, the decided values are
correct with respect to the input values and, thus, we obtainanA-resilient protocol
to solveT.

For the other direction, suppose, by contradiction that there exists anA-
resilient protocolPA to solve a colorless taskT, but T is not possible to solve
(c− 1)-resiliently.

We claim thatA(c−1)-res ⊆ A, i.e., each (c − 1)-resilient execution isA-
compliant. Suppose otherwise, i.e., some setS of n − c + 1 processes is not in
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A. SinceA is superset-closed, no subset ofS is inA (otherwise,S would be in
A). No process inS belongs to any set inA, thus, the smallest core ofAmust be
a subset ofΠ − S. But |Π − S| = c− 1—a contradiction with the assumption that
the size of a minimal cardinality core ofA is c.

Thus, every (c−1)-resilient execution is alsoA-compliant, which implies that
PA is in fact a (c−1)-resilient solution toT—a contradiction with the assumption
thatT is not (c− 1)-resiliently solvable. �

Theorem 3 implies that adversaries inSC can be categorized inton equiva-
lence classes,SC1, . . ., SCn, where classSCk corresponds to cores of sizek. Two
adversaries that belong to the same classSCk agree on the set of colorless tasks
they are able to solve, and it is exactly the set of all colorless task that can be
solved (k− 1)-resiliently.

5 Measuring the Power of Generic Adversaries

Let us come back to the “bimodal” adversaryABM = {pqr, p, q, r} (Figure 1). Its
only core is{p, q, r}. Does it mean thatABM only allows for solving trivial (wait-
free solvable) tasks? Not really: by splittingABM in two sub-adversariesAFF =

{pqr} andAOF = {p, q, r} and running two consensus algorithms in parallel, one
assuming no failures (AFF) and one assuming that exactly one process is correct
(AOF), gives us a solution to 2-set consensus.

5.1 Solving consensus withABM

But can we solve more in the presence ofABM? E.g., is there a protocolAlg that
solves consensusABM-resiliently? We derive that the answer is no by showing
how processes,s0 and s1, can wait-free solve consensus through simulating an
ABM-compliant execution ofAlg. Initially, the two processes act as BG simula-
tors [4, 5] trying to simulate an execution ofAlg on all three processesp, q, and
r. When a simulatorsi (i = 0, 1) finds out that the simulation of some step is
blocked (which means that the other simulators1−i started but has not yet com-
pleted the corresponding instance of BG-agreement),si switches to simulating a
solo executionof the next process (in the round-robin order) in{p, q, r}. If the
blocked simulation eventually resolves (s1−i finally completes the instance of BG-
agreement), thensi switches back to simulating allp, q andr.

If no simulator blocks a simulated step forever, the simulated execution con-
tains infinitely many steps of every process, i.e., the set ofcorrect processes in it
is {p, q, r}. Otherwise, eventually some simulated process forever runs in isolation
and the set of correct processes in the simulated execution is {p}, {q}, or {r}. In
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both cases, the simulated execution ofAlg isABM-compliant, and the algorithm
must output a value, contradicting [11, 28]. This argument can be easily extended
to show thatABM cannot allow for solving any colorless task that cannot be solved
1-resiliently.

5.2 Disagreement power of an adversary

Thus, we need a more sophisticated criterion to evaluate thepower of a generic
adversaryA. Delporte et alii [9] proposed to evaluate the “disorienting strength”
of an adversaryA via itsdisagreement power.

Definition 1. [9] The disagreement power of an adversaryA is the largest k such
that k-set consensus cannot be solved in the presence ofA.

It is shown in [9] that adversaries of the same disagreement power agree on
the sets of colorless task they allow for solving. The resultis derived via a three-
stage simulation. First, it is shown how an adversary can simulate anydominating
adversary, where the domination is defined through an involved recursive inclu-
sion property. Second, it is shown that every adversaryA that does not dominate
thek-resilient adversary6 is strong enough to implement the anti-Ωk failure detec-
tor that, in turn, can be used to solvek-set consensus [34]. Finally, it is shown
that vector-Ωk (a failure detector equivalent to anti-Ωk) can be used to solve any
colorless task that can be solvedk-resiliently. Thus, the largestk such thatk-set
consensus cannot be solvedA-resiliently indeed captures the power ofA.

The characterization of adversaries proposed in [9] does not give a direct way
of computing the disagreement power of an adversaryA and it does not provide
a directA-resilient algorithm to solve a colorless taskT, whenT isA-resiliently
solvable.

In the rest of this section, we give a simple algorithm to compute the dis-
agreement power of an adversary. For convenience, we introduce notion ofset
consensus power, i.e., the smallestk such thatk-set consensus can be solved in
the presence ofA. Clearly, the disagreement power ofA is the set consensus
power ofAminus 1.

5.3 Definingsetcon

LetA be an adversary and letS ⊆ P be any subset of processes. ThenAS denotes
the adversary that consists of all elements ofA that are subsets ofS (including
S itself if S ∈ A). E.g., forA = {pq, qr, q, r} andS = qr, AS = {qr, q, r}. For

6Recall that thek-resilient adversary consists of all subsets ofΠ of size at leastn− k.



77 77

77 77

The Bulletin of the EATCS

69

S ∈ A anda ∈ S, let AS,a denote the adversary that consists of all elements ofAS

thatdo notincludea. E.g., forA = {pq, qr, q, r}, S = qr, anda = q,AS,a = {r}.
Now we define a quantity denotedsetcon(A), which we will show to be the set

consensus power ofA. Intuitively, our goal is to splitA into the minimal number
k of sub-adversaries, such that every sub-adversary allows for solving consensus.
ThenA allows for solvingk-set consensus, but not (k − 1)-set consensus (other-
wise,k would not be minimal).

Definition 2. setcon(A) is defined as follows:

• If A = ∅, then setcon(A) = 0

• Otherwise, setcon(A) = maxS∈Amina∈S setcon(AS,a) + 1

Thus,setcon(A), for a non-empty adversaryA, is determined assetcon(AS̄,ā)+
1 whereS̄ is an element ofA and ā is a process inS̄ that “max-minimize”
setcon(AS,a). Note that forA , ∅, setcon(A) ≥ 1.

We say thatS ∈ A is proper if it is not a subset of any other element inA.
Let proper(A) denote the set of proper elements inA. Note that since for all
S′ ⊂ S, mina∈S′ setcon(AS′,a) ≤ mina∈S setcon(AS,a), we can replaceS ∈ A with
S ∈ proper(A) in Definition 2.

q r

rq

{pqr, pq, pr, p}

p q r

{q, r}

p

Figure 2: AdversaryA = {pqr, pq, pr, p, q, r} decomposed in two sub-adversaries,
{pqr, pq, pr, p} and{q, r}, each withsetcon= 1.

5.4 Calculatingsetcon(A): examples

Consider an adversaryA = {pqr, pq, pr, p, q, r}. It is easy to see thatsetcon(A) =
2: for S = pqr anda = p, we haveAS,p = {q, r} andsetcon(AS,a) = 1. Thus,
we decomposeA into two sub-adversaries{pqr, pq, pr, p} and{q, r}, each strong
enough to solve consensus (Figure 2). Intuitively, in an execution where the cor-
rect set belongs toA − AS,a = {pqr, pq, pr, p}, processp can act as a leader



78 78

78 78

BEATCS no 106 THE EATCS COLUMNS

70

for solving consensus. If the correct set belongs toAS,a = {q, r} (eitherq or r
eventually runs solo) thenq andr can solve consensus using an obstruction-free
algorithm. Running the two algorithms in parallel, we obtain a solution to 2-set
consensus. The reader can easily verify that any other choice ofa ∈ pqr results in
three levels of decomposition.

As another example, consider thet-resilient adversaryAt-res = {S ⊆ Π, |S| ≥
n − t}. It is easy to verify recursively thatsetcon(At-res) = t + 1: at each level
1 ≤ j ≤ t + 1 of recursion we consider a setS of n − j + 1 elements, pick up a
processp ∈ S and delegate the set ofn− j processes that do not includep to level
j+1. At levelt+1 we get one set of sizen−t and stop. Thus,setcon(At-res) = t+1.

More generally, for any superset-closed adversaryA (A ∈ SC), setcon(A) =
csize(A), the size of a smallest-cardinality core ofA. To show this, we pro-
ceed by induction. The statement is trivially true for an empty adversaryA
with csize(A) = setcon(A) = 0. Now suppose that for all 0≤ j < k and all
A′ ∈ SC with csize(A′) = j, we havesetcon(A′) = j. ConsiderA ∈ SC such
that csize(A) = k. Note that the only proper element ofA is the whole set of
processesΠ. Thus,setcon(A) = mina∈Π setcon(AΠ,a) + 1. By the induction hy-
pothesis and the fact thatcsize(A) = k, we have mina∈Π setcon(AΠ,a) = k − 1.
Thus,setcon(A) = k.

Thus, by Theorem 3,setcon() indeed characterizes the disorienting power of
adversariesA ∈ SC: a task isA-resiliently solvable if and only if it is (c − 1)-
resiliently solvable, wherec = setcon(A). In the rest of this section, we extend
this result fromSC to the universe of all adversaries.

5.5 Solving consensus withsetcon= 1

Before we characterize the ability of adversaries to solve colorless tasks, we con-
sider the special case of adversaries ofsetcon= 1.

Consider an adversaryA andS ∈ A. Supposecsize(AS) = 1, and let{a} be
a core ofAS. Obviously,AS,a = ∅. On the other hand, ifAS,a = ∅, then{a} is a
core ofAS. Thus,setcon(A) = 1 if and only if∀S ∈ A, csize(AS) = 1

Supposesetcon(A) = 1. If S is the only proper element ofA, then we can
easily solve consensus (and, thus, any other task [18]), by deciding on the value
proposed by the only member of a core ofAS. The process is guaranteed to be
correct in every execution.

Now we extend this observation to the case whenA contains multiple proper
elements. The consensus algorithm, presented in Figure 3, is a “rotating coordi-
nator” algorithm inspired by by Chandra and Toueg [7].

The algorithm proceeds in rounds. In each roundr, every processpi first tries
to commit its current decision estimate in a new instance of commit-adoptCAr .
If pi succeeds in committing the estimate, the committed value iswritten in the
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Shared variables:
D, initially ⊥
R1, . . . ,Rn, initially ⊥

propose(v)
1 est:= v
2 r := 0
3 S := P
4 repeat
5 r := r + 1
6 (flag, est) := CAr .propose(est)
7 if flag= committhen
8 D := est; return(est) {Return the committed value}
9 Ri := (est, r)
10 wait until ∃S ∈ A, ∀p j ∈ S: Rj = (v j , r j) wherer j ≥ r or D , ⊥

{Wait until a set inA moves}
11 if pr mod n+1 ∈ S then
12 est:= vr mod n+1 {Adopt the estimate of the current leader}
13 until D , ⊥
14 return(D)

Figure 3: Consensus with a “one-level” adversaryA, setcon(A) = 1
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“decision” registerD and returned. Otherwise,pi adopts the returned value as
its current estimate and writes it inRi equipped with the current round numberr.
Thenpi takes snapshots of{R1, . . . ,Rn} until either a setS ∈ A reaches roundr or
a decision value is written inD (in which case the process returns the value found
in D). If no decision is taken yet, thenpi checks if the coordinator of this round,
pr mod n, is in S. If so, pi adopts the value written inRr mod n and proceeds to the
next round.

The properties of commit-adopt imply that no two processes return different
values. Indeed, the first round in which some process commitson some value
v (line 8) “locks” the value for all subsequent rounds, and no other process can
return a value different fromv.

Suppose, by contradiction, that some correct process neverreturns in some
A-compliant executione. Recall thatA-compliant means that some set inA is
exactly the set of correct processes ine. If a process returns, then it has previ-
ously written the returned value inD. Since, in each round, a process performs
a bounded number of steps, by our assumption, no process everwrites a value
in D and every correct process goes through infinitely many rounds in e without
returning.

Let S̄ ∈ A be the set of correct processes ine. After a roundr ′ when all
processes outsidēS have failed, every element ofA evaluated by a correct process
in line 10 is a subset of̄S. Finally, since the minimal core size ofAS̄ is 1, all these
elements ofA overlap on some correct processp j.

Consider roundr = mn+ j ≥ r ′−1. In this round,p j not only belongs to all sets
evaluated by the correct processes, but it is also the coordinator (j = r mod n+1).
Thus, the only value that a process can propose to commit-adopt in roundr + 1 is
the value previously written byp j in Rj. Hence, every process that returns from
commit-adopt in roundr + 1 must commit and return—a contradiction. Thus:

Theorem 4. [14] If setcon(A) = 1, then consensus can be solvedA-resiliently.

5.6 Adversarial partitions

One way to interpret Definition 2 is to say thatsetcon(A) captures the size of
a minimal-cardinality partitioning ofA into sub-adversariesA1

, . . . ,Ak, each of
setcon= 1.

Indeed, for a proper setS ∈ A, selecting an elementa ∈ S allows for splitting
AS into two sub-adversariesAS−AS,a andAS,a. AS−AS,a is the set of elements
of AS that containa and, thus,setcon(AS − AS,a) = 1 (a can act as a leader).
Moreover, selectinga so thatsetcon(AS,a) is minimized makes sure thatAS,a =

setcon(AS) − 1.
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Intuitively,A1, the first such sub-adversary, is the union ofAS − AS,a, for all
such properS ∈ A anda ∈ S. AdversariesA2, . . . ,Ak are obtained by a recursive
partitioning of allA−A1. (A detailed description of this partitioning can be found
in [14].)

Thus, given an adversaryA such thatsetcon(A) = k, we derive thatA allows
for solvingk-set consensus. Just take the described above partitioningofA in to k
sub-adversaries,A1

, . . . ,Ak such that, for allj = 1, . . . , k, setcon(A j) = 1. Then
every process can runk parallel consensus algorithms, one for eachA j, propos-
ing its input value in each of these consensus instances (such algorithm exist by
Theorem 4). Since the set of correct processes in everyA-compliant execution
belongs to someA j, at least one consensus instance returns. The process decides
on the first such returned value. Moreover, at mostk different values are decided
and each returned value was previously proposed. Thus:

Theorem 5. [14] If setcon(A) = k, thenA allows for solving k-set consensus.

5.7 Characterizing colorless tasks

But can we solve (k−1)-set consensus in the presence ofA such thatsetcon(A) =
k? As shown in [14], the answer is no:A does not allow for solving any colorless
task that cannot be solved (k − 1)-resiliently. The result is derived by a simple
application of BG simulation [4, 5].

The intuition here is the following. Suppose, by contradiction, that we are
given an adversaryA such thatsetcon(A) = k and a colorless taskT that is
solvableA-resiliently but not (k− 1)-resiliently. LetAlg be the correspondingA-
resilient algorithm. Then we can construct a (k − 1)-resilient simulation of anA-
compliant execution ofAlg. Roughly, we build upon BG-simulation, except that
theorder in which steps ofAlg are simulated is not fixed in advance to be round-
robin. Instead, the order is determined online, based on thecurrently observed set
of participating processes.

We start with simulating steps of processes inS ∈ A such thatsetcon(AS) = k
(by Definition 2, suchS exists). If the outcome of a simulated step of some pro-
cessa cannot be resolved (the corresponding BG-agreement is blocked), we pro-
ceed to simulating processes in an elementS′ ∈ AS,a with the largestsetcon(if
there is any). As soon as the blocked BG-agreement on the stepof a resolves,
the simulation returns to simulatingS. Sincesetcon(A) = k, we can obtain ex-
actly k levels of simulation. Therefore, in a (k − 1)-resilient execution, at most
k − 1 simulated processes (each in a distinct sub-adversary ofA) can be blocked
forever. SinceA allows fork such sub-adversaries, at least one set inA accepts
infinitely many simulated steps. The resulting execution isthusA-compliant, and
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we obtain a (k− 1)-resilient solution forT—a contradiction (detailed argument is
given in [14]).

In fact, the set of colorless tasks that can be solved given anadversaryA such
thatsetcon(A) = k is exactlythe set of colorless tasks that can be solved (k − 1)-
resiliently, but notk-resiliently. Indeed,A allows for solvingk-set consensus,
and we can employ the generic algorithm of [13] that solves any (k − 1)-resilient
colorless task using thek-set consensus algorithm as a black box. Thus:

Theorem 6. [14] Let A be an adversary such that setcon(A) = k and T be a
colorless task. ThenA solves T if and only if T is(k − 1)-resiliently solvable.

Recall that the set consensus power of an adversaryA is the smallestk such
thatA can solvek-set consensus. Theorem 6 implies:

Corollary 7. The set consensus power ofA is setcon(A), and the disagreement
power ofA is setcon(A) − 1.

By Theorem 3, determiningsetcon(A) may boil down to determining the min-
imum hitting set size ofA, and thus, by [27]:

Corollary 8. Determining the set consensus power of an adversary is NP-complete.

6 Concluding remarks

This survey primarily talks about colorless tasks (consensus, set agreement, sim-
plex agreement, et cetera) in the read-write shared memory systems where pro-
cesses may fail by crashing in a non-uniform (non-identicaland correlated) way.
We modeled such non-uniform failures using the language of adversaries [9]
and we derived a complete characterization of an adversary via its set consensus
power [14] (or, equivalently its disagreement power [9]).

The techniques discussed here can be extended to models where processes
may also communicate through stronger objects than just read-write registers
(e.g.,k-process consensus objects). In particular, BG-simulation is used in [14] to
capture the ability of leveled adversaries of [31] to prevent processes from solving
consensus amongn processes usingk-process consensus objects (k < n).

Combinatorial topology proved to be a powerful instrument in analyzing a
special class of superset-closed adversaries and colorless tasks, not only in read-
write shared-memory models [20], but also in a variety of other models, including
message-passing models and iterated models withk-set consensus objects.

However, the power of adversaries with respect to generic (not necessarily)
colorless tasks is still poorly understood. Consider, for example, a taskTpq which
requires processesp andq (in a system of three processesp, q, andr) to solve
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consensus and allowsr to output any value. The task is obviously not colorless:
the output ofr cannot always be adopted byp or q. The 2-obstruction-free ad-
versaryA2-OF = {pq, pr, qr, p, q, r} does not allow for solvingTpq: otherwise,
we would get a wait-free 2-process consensus algorithm. On the other hand,
Apq = {pqr, pq, p, r} (p is correct wheneverq is correct) allows for solvingTpq

(just usep as a leader forp andq). But setcon(A2-OF) = setcon(Apq) = 2!
One may say that the taskTpq is “asymmetric”: it prioritizes outputs of some

processes with respect to the others. Maybe our result wouldextend to symmetric
tasks whose specifications are invariant under a permutation of process identi-
fiers? Unfortunately, there are symmetric colored tasks that exhibit similar prop-
erties [33]. So we need a more fine-grained criterion than setconsensus power to
capture the power of adversaries with respect to colored tasks.

Finally, this paper focuses on non-uniformcrashfaults in asynchronous shared-
memory systems. Non-uniform patterns of generic (Byzantine) types of faults
are explored in the context of Byzantine quorum systems [29](see also a survey
in [32]) and secure multi-party computations [23]. Both approaches assume that a
faulty process can deviate from its expected behavior in an arbitrary (Byzantine)
manner. In particular, in [29], Malkhi and Reiter address the issues of non-uniform
failures in the Byzantine environment by introducing the notion of a fail-prone
system(adversarial structurein [23]): a setB of process subsets such that no ele-
ment ofB is contained in another, and in every execution someB ∈ B contains all
faulty processes. Determining the set of tasks solvable in the presence of a given
generic adversarial structure is an interesting open problem.
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