THE EpucatioN CoLumMN

BY

JUrAJ HrRomkovié AND DENNIS Komm

ETH Ziirich, Switzerland

juraj.hromkovic@inf.ethz.ch and dennis.komm@inf.ethz.ch


https://inf.ethz.ch
juraj.hromkovic@inf.ethz.ch
dennis.komm@inf.ethz.ch

TESTING OF AN INTERACTIVE ONLINE LEARNING
ENVIRONMENT WITH FOoCUS ON ALGORITHMIC
Tasks

Dario Naepfer

Department of Computer Science, ETH Zurich, Switzerland
dnaepfer@student.ethz.ch

Abstract

In this paper, we present a concept of computer science education, its
implementation in an interactive online learning environment, and the exten-
sive testing thereof. The goal is to support the development of algorithmic
thinking by interactively solving small input instances of computing prob-
lems. The four approached competences are as follows:

1. To understand the abstract problem description and give proof of com-
prehension by classifying solution candidates into feasible and unfea-
sible solutions.

2. To find a solution for a given problem instance.
3. To find several different solutions for a given problem instance.

4. To apply criteria to evaluate and compare solutions, and to search for
optimal solutions.

The contribution of this paper is twofold: First, we design the didac-
tic approach and implement a learning environment in accordance with the
aforementioned competences. Second, we test the environment in schools
under various circumstances and present results of live testing, survey ses-
sions including written feedback, as well as empirical test data derived from
survey statistics. The empirical test covers user experience, intuitiveness of
the learning environment, task difficulty, as well as satisfaction. This pro-
vides a genuine analysis of the application of the learning environment and
allows drawing conclusions on the effectiveness of the applied didactic con-
cept.


dnaepfer@student.ethz.ch

1 Introduction

Since the very beginning of humanity, Computer Science has been an important
part of human culture due to its common roots with mathematics and written lan-
guages. This provides a good reason to consider informatics as a pivotal concept
of education. Furthermore, it also qualifies the idea to include informatics as a
fundamental pillar in the curricula of schools.

Multiple scientists contributed to the characterization of the discipline of in-
formatics: Nygard [14]] defined informatics as conceptual modelling and infor-
mation systems. By Harel [8], informatics was depicted as a discipline cover-
ing computational, behavioural, and cognitive complexity, whereas Denning and
Rosenblum [6] classified informatics as one of the four principal domains of sci-
ence. Hromkovi¢ and Lacher [[12] further expanded the existing definitions as
they added abstraction and symbolic representation, providing more efficiency.
By describing the three roots of informatics, they presented a more holistic view
of the discipline in the context of science than earlier descriptions, providing an
overview of the potential of informatics education.

We define algorithmic thinking following Serafini [[15]]: the ability to system-
atically find solutions for problems with automated solution methods based on an
iterative procedure. This makes it possible to extract, model, and represent infor-
mation such that it can be written in terms of finite series of symbols chosen from
a given set. Further, it characterizes the method, provides arguments supporting
correctness, and analyses the amount of resources needed for execution. Also, it
allows for a third party (e.g., a computer) to execute the solution method.

The learning environment developed here [13] is related to the concepts pre-
sented in Computer Science Unplugged [2,3|], “Abenteuer Informatik” (Computer
Science Adventure) [7], or Algorithmic Adventures [11]. Our environment is based
on the concept of the textbook “einfach Informatik 3/4” (Simply Computer Sci-
ence) 9, 10]. The authors present their as follows [5]]:

The starting point is merging constructionism and critical thinking.
Constructionism with its “learning by doing” and “learning by get-
ting things to work™ enables designing a teaching process in which
students acquire knowledge by creating products, analysing the prop-
erties and the functionality of their own products, and finally derive
motivation to improve these products. Critical thinking asks us not to
teach products of science and technology and their applications, but
to teach the creative process of their development. To implement this
approach, we use the historical method, allowing the students to learn
by productive failures in the process of searching for a solution.

The concept presented in this paper approaches four competences. The stu-



dents solve tasks for problem instances derived from common algorithmic prob-
lems, such as the knapsack problem, vertex cover or dominating set. Step by step,
the student is asked to verify, find, evaluate, and finally optimize solutions for
given problem instances. The tasks are designed for the third and fourth grade of
elementary school implemented in an online learning environment based on the
web framework Vue.js and were then exhaustively tested.

2 Didactic Goals

In this section, we present the didactic goals of the learning environment. The
general didactic concept targeted aims to equip students to be able to encounter
new problem formulations and learn how to solve them on their own. According
to Bloom’s Taxonomy, there are different levels of complexity depending on the
cognitive dimensions of a task [[1]]. Here, four main competences are approached,
which are based on the “Problem Solving and Algorithm Curriculum” that com-
bines concepts such as constructivism and critical thinking with the hierarchy of
Bloom’s revised taxonomy [3]]. These four approached competences are as fol-
lows:

1. To understand the abstract problem description and give proof of compre-
hension by classifying solution candidates into feasible and unfeasible so-
lutions.

2. To find a solution for a given problem instance.
3. To find several different solutions for a given problem instance.

4. To apply criteria to evaluate and compare solutions, and to search for opti-
mal solutions.

The task levels for each task set are designed accordingly: Starting with sim-
ple challenges that are classification tasks — the curriculum is designed such that
the difficulty of the assignments improves gradually. Step by step, the students
are taught the targeted algorithmic skills, similar to the classification informat-
ics tasks of the Bebras challenge on informatics [4]. In this way, active learning
and self-improvement are promoted. The students should learn to think in a way
that enables them to approach new challenges and assignments with sophisticated
steps and to solve them.

The tasks are designed such that the different levels of a curriculum look very
similar. This creates recognition value, i.e., the user is familiarized with the prob-
lem and thus knows the general concept of the task when approaching the next



difficulty level. Additionally, with multiple feasible solutions for problem in-
stances, the student’s creativity is required and challenged. The students learn
to solve similar problems with yet different solutions or, in other words, learn how
to apply algorithms. Random task instances further minimize the possibility of
cheating or copying solutions. The students are compelled to find ways to solve
the problems on their own, since there are no external sources or databases to help
them. We will now link each task level with a competence or learning objective
and describe each one in more detail.

Level 1: Understand Problems and Verify Solution Candidates

The first competence level approaches the student’s capability to interpret a given
problem instance description. He or she has to decide whether a given solution
candidate is a feasible solution or not. In doing so, the student proves the com-
petence of correct interpretation. A solution candidate is feasible if and only if it
fully meets the task specifications. The tasks are modelled as decision problems,
where the user must answer at least one question regarding the correctness of the
proposition. The student is required to interpret the proposition of the problem in-
stance correctly, fully understand the criteria, and then evaluate the given solution
proposition accordingly. Furthermore, in some cases, the students learn to justify
why a specific problem instance is or is not feasible.

Level 2: Find Solutions

At this competence level, the students are confronted with tasks for which a feasi-
ble solution must be found without any further help. The learning objective here is
to work independently to find ways of dealing with a new challenge. This is more
difficult than just verifying a solution candidate, since the student’s creativity to
come up with a new solution is required. The only condition a solution must fulfil
is that it is valid. The quality of the solution according to a criterion is not taken
into consideration here. All solutions are considered of equal value. One exercise
type at this level has an intermediate version: the user is asked to complete a par-
tial specification of a solution or instructed to find a solution on his or her own. In
this case, however, the computer has already taken several steps towards a feasible
solution candidate, so the number of valid solutions decreases significantly. If this
eliminates some easy solutions, the difficulty level may change in comparison to
an original level 2 task instance.



Level 3: List Multiple Solutions

The third competence level approaches the competence to find multiple solutions
that differ from each other. In contrast to the previous level, it is less useful to
use a mere brute-force search and more effective to develop a strategy to solve the
problem. Students could later learn to use decision trees to systematically list all
solutions as a new competence.

Level 4: Evaluate Solutions and Determine Optimal Solutions

Here, finding optimal solutions represents the highest competence level. It re-
quires the student to evaluate different solutions with respect to a given criterion.
This enables the student to compare the solutions and select an optimal one. Given
the target group, it is evident that the number of possible solutions must be kept
small such that a task instance can actually be solved. The variety of solutions
must be small enough to enable the student to list all the different solutions, and
to choose one of the best.

3 Test in Schools

In a final stage of the project, the learning environment was deployed on a test
website and tested in various schools and grades. In this way, feedback for minor
adaptions and improvements and empirical test data could be gathered. The test
procedure was designed and arranged to include students from a wide range of
origin, background, and academic performance to enable genuine and representa-
tive feedback to be gathered. In the following subsection, the test procedure will
be examined and explained. The statistical results of the live testing feedback will
then be presented in detail.

3.1 Test Extent
3.1.1 Test Locations and Levels

The testing phase was carried out in various schools and in different grades. In
total, a variety of third and fourth grade classes as well as groups of especially tal-
ented students from second to eight grade completed the testing procedure. Fur-
ther, online access was distributed to teachers from various places who agreed to
conduct the live testing and to provide feedback. In total, over a hundred people
tested the platform. The feedback was collected, examined, and evaluated in order
to improve the learning environment.



3.1.2 Test Procedure

The test procedure was structured in the following way: First, information about
the project, instructions, and guidelines was announced. Then, each participating
student was provided with a computer or convertible, and was instructed to solve
problem instances within a given time slot for each different task type. The stu-
dents were encouraged to try to understand the exercise on their own and use the
tutorial in case of problems. At the end of each time slot, the exercise type was
changed. At the end of the test, a feedback round was conducted, and each student
had to fill out an online feedback form to enable statistical data to be gathered.

3.2 Empirical Test Results

The feedback form to collect statistical data was designed the following way:
First, general statistics were gathered such that the feedbacks could be categorized
by grade, age, and school. The feedback form contained five main paragraphs,
where the interviewee had to describe the perception of the learning environment.
The paragraphs included questions on how interesting the tasks were, how much
fun it was to solve them, whether the tasks were easy to understand, whether the
tutorial was useful, and whether the number of exercises was satisfying. Some
statistics are shown below to illustrate the feedback. For simplicity’s and brevity’s
sake, only overall results are presented. The data includes representative feedback
from about 70 students, randomly distributed in terms of origin, background, and
academic performance.

First, the platform was evaluated in terms of understandability and intuitive-
ness. The participating students were asked how long it took them to understand
the exercises, and whether they spent much time figuring out what the exact task
description was. The statistical result of the survey is visualized in
Over 90 percent of all students considered the tasks to be intuitive and easy to
understand. Only a small percentage did not understand the tasks and had to ask
someone else for help. These results line up with the design requirement that the
learning environment should provide an intuitive and self-explanatory interface.

Further, how often the users did not understand tasks and then opened the
tutorial was measured. Note that the tutorial contains a text and tutorial video
that can be opened if the task is unclear. On the one hand, the data collected
provides insight into the approaches users choose to handle new tasks. On the
other hand, it yields information on the intuitiveness of each task. The result of
this test is visualized in and aligns with the statistics laid out previously
on intuitiveness of the tasks (see [Figure T)).

Additionally, observations have shown that most of the students immediately
tried to solve the task by testing and trying things out by themselves instead of



24 (34.8%)

22 (31.9%)
18 (26.1%)

2 (2.9%)
3 (4.3%)
1 2 3 4 5

Figure 1: Diagram representing the task intuitiveness, linearly scaled from 1 to 5. 1
corresponds to ‘very intuitive’ and 5 to ‘very unintuitive’.

38 (55.1%)

11 (15.9%)

8 (11.6%)

7 (10.1%)

5 (7.2%)

1 2 3 4 5

Figure 2: Diagram representing the consultations of an additional tutorial, linearly scaled
from 1 to 5. 1 corresponds to ‘not very often’ and 5 to ‘very often’.

reading the instructions. According to the collected data, more than half of the
students tested did not even look at the tutorial once, and less than 20 percent
opened it regularly when solving different tasks. This conclusion lines up with the
feedback from testing staff, who noticed that some students did not even read the
introductory sentence for each exercise, and immediately started clicking on the
screen until they began to understand how to solve the respective task.

Next, statistics on user satisfaction were gathered. The user was asked whether
he or she liked the exercises and was content with the way the tasks were con-
structed. The result of this survey is visualized in[Figure 3|and matches the written
feedback of the students. An overwhelming majority of the users indicated that
they were pleased with the learning environment. Over 80 percent of the students
liked the tasks or liked the tasks a lot. Only a small percentage did not like all the
exercises (see leftmost bars in[Figure 3). The written feedback analysis has shown
that challenges that were perceived to be either too easy or too hard resulted in a
low fun factor for a given task. These results agree with academic performance



44 (63.8%)

13 (18.8%)

1 2 3 4 5

Figure 3: Diagram representing the perceived fun factor, linearly scaled from 1 to 5. 1
corresponds to ‘not so much fun’ and 5 to ‘much fun’.

27 (39.1%)

18 (26.1%)
15 (21.7%)

6 (8.7%)
3 (4.3%)

1 2 3 4 5

Figure 4: Diagram representing the perceived interest attached to the tasks, linearly scaled
from 1 to 5. 1 corresponds to ‘not very interesting’ and 5 to ‘very interesting’.

statistics, which follow a normal distribution.

Further, an analysis on the attractiveness of the learning environment was per-
formed. The tested students had to evaluate how interesting and exciting the tasks
were. The visualization of this data set can be found in The result was
rather positive, since nearly 90 percent of the students thought the tasks were at
least more or less interesting, and overall nearly 40 percent rated the exercises as
highly fascinating.

Subsequently, specific data to measure the difficulty of the tasks was collected.
The users were asked how difficult the exercises were to solve, and whether the
problems were challenging. Also, the time it took to solve single task instances
was measured. gives a rough overview of the feedback data for this sec-
tion. The results showed a normal distribution, as was expected. A small percent-
age of students was able to handle the tasks effortlessly, others were overwhelmed
by the different task sets; and most students were seriously challenged. However,
the statistics gathered suggest that slightly more students found the tasks to be on



12 (17 4%)

7 (10.1%)

1 2 3 4 5

Figure 5: Diagram representing the perceived task difficulty, linearly scaled from 1 to 5.
1 corresponds to ‘easy’ and 5 to ‘hard’.

the easy side within the normal distribution.

In the final evaluation section, the students were asked whether the number of
exercises was sufficient. The result of this poll is visualized in About
three out of four students were content with the variety of tasks.

Lastly, written feedback on specific questions was collected. The students
were asked what they did or did not like about the platform, and what improve-
ments they desired. The results of this questionnaire do not deviate from the
previously presented data. In total, two out of three were highly positive: Over 20

Figure 6: Diagram representing the perceived task variety. The fraction coloured in blue
stands for ‘good task variety’, and the one coloured in red stands for ‘rather small task
variety’.



percent of those questioned explicitly remarked that they were pleased with the
learning platform as a whole; 17 percent explicitly mentioned a specific task set
on Vertex Cover as exceptionally interesting; 15 percent called the Dominating Set
tasks well-designed. The tasks concerning the Knapsack Problem were mentioned
in about 10 percent of the feedback forms. Furthermore, about 30 percent of the
students explicitly indicated that they had no suggestions for improvements, while
only a few individuals elaborated on ideas for enhancing the learning experience.
Further, the feedback data supported the optimization of the learning environ-
ment in terms of user experience and performance. Linguistic vagueness could be
clarified in several task descriptions, and additional explanations were added to
improve understandability. Also, the environment could be further technically en-
hanced as some program parts were revised as a result of specific feedback. This
concludes the feedback from the testing phase.

4 Conclusion and Discussion

The development of technical and didactic ways of teaching students is vital to
ensure a sustainable education in the 21* century. Our contribution is to charac-
terize an online learning environment that features diverse tasks that support the
development of algorithmic thinking. The empirical test results indicate that the
developed concept and derived tasks are user-friendly, intuitive, and interesting for
the targeted student group. So far, the presented didactic concept has succeeded
in the conducted tests. Everyone is invited to join the process by contributing
and providing further feedback. Especially, new ideas for task concepts and test
approaches are greatly appreciated.

Acknowledgements

First of all, I would like to thank Juraj Hromkovi¢ for the opportunity to write
this paper, the uncomplicated procedure, and feedback during the process. Also,
I would like to express my gratitude to Dennis Komm, Regula Lacher, Giovanni
Serafini, and Esther Baumgartner for the ongoing support and constructive feed-
back throughout the proceedings.

References

[1] Lorin W. Anderson and David R. Krathwohl: A Taxonomy for Learning, Teaching,
and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives. 2nd
edition. Longman, New York 2001.



[2] Tim Bell: Establishing a nationwide CS curriculum in New Zealand high schools:
providing students, teachers, and parents with a better understanding of computer
science and programming. Communications of the ACM, 57(2):28-30, 2014.

[3] Tim Bell, Jason Alexander, Isaac Freeman, and Mick Grimley: Computer science
unplugged: school students doing real computing without computers. New Zealand
Jjournal of Applied Computing and Information Technology 13(1):20-29, 2009.

[4] Valentina Dagiené, Juraj Hromkovic, and Regula Lacher: A two-dimensional classi-
fication model for the Bebras tasks on informatics based simultaneously on subfields
and competencies. In Proc. of the 13th International Conference on Informatics in
School (ISSEP 2020), LNCS 12518, pages 42-54, Springer, 2020.

[5] Valentina Dagiené, Juraj Hromkovi¢, and Regula Lacher: Designing informatics
curriculum for K—12 education: from concepts to implementations. Informatics in
Education, 20(3):7-15, 2021.

[6] Peter J. Denning and Paul Rosenbloom: The profession of IT — computing: the fourth
great domain of science. Communications of the ACM, 52(9):27-29, 2009.

[7] Jens Gallenbacher: Abenteuer Informatik: IT zum Anfassen fiir alle von 9 bis 99 —
vom Navi bis Social Media 4th edition. Springer, 2017.

[8] David Harel: Algorithms — The Spirit of Computing. Addison-Wesley, 1987.

[9] Heinz Hofer, Juraj Hromkovi¢, Regula Lacher, Pascal Liitscher, and Urs Wildeisen:
einfach Informatik 3/4: Programmieren und Rdtsel losen (Textbook for Students). 1st
edition. Klett und Balmer AG, 2021.

[10] Heinz Hofer, Juraj Hromkovi¢, Regula Lacher, Pascal Liitscher, and Urs Wildeisen:
einfach Informatik 3/4: Programmieren und Rdtsel losen (Textbook for Teachers). 1st
edition. Klett und Balmer AG, 2021.

[11] Juraj Hromkovi¢: Algorithmic Adventures: From Knowledge to Magic. Springer,
2000.

[12] Juraj Hromkovi¢ and Regula Lacher: The computer science way of thinking in
human history and consequences for the design of computer science curricula. In
Proc. of the 10th International Conference on Informatics in School (ISSEP 2017),
LNCS 10696, pages 3—11, Springer, 2017.

[13] Dario Népfer: An Interactive Learning Environment. https://bit.ly/
einfachInformatik34l Department of Computer Science. ETH Zurich, 2021. Last
accessed 19 Jul 2021.

[14] Kristen Nygaard: Program development as a social activity. In Proc. of the IFIP
10th World Computer Congress, pages 189—198, 1986.

[15] Giovanni Serafini: The Benefits of Computer Science Education in Primary School:
Promoting Algorithmic Thinking and Mathematical Problem Solving. Manuscript in
preparation. Department of Computer Science. ETH Zurich, 2022.


https://bit.ly/einfachInformatik34
https://bit.ly/einfachInformatik34

	Introduction
	Didactic Goals
	Test in Schools
	Test Extent
	Test Locations and Levels
	Test Procedure

	Empirical Test Results

	Conclusion and Discussion

