
The Algorithmics Column
by

Thomas Erlebach

Department of Computer Science
Durham University

Upper Mountjoy Campus, Stockton Road, Durham, DH1 3LE, UK
thomas.erlebach@durham.ac.uk

https://www.durham.ac.uk/staff/thomas-erlebach/
mailto:thomas.erlebach@durham.ac.uk

Approximate counting using Taylor’s theorem:
a survey

Viresh Patel* Guus Regts†

Abstract

In this article we consider certain well-known polynomials associated with
graphs including the independence polynomial and the chromatic polynomial.
These polynomials count certain objects in graphs: independent sets in the case
of the independence polynomial and proper colourings in the case of the chro-
matic polynomial. They also have interpretations as partition functions in statistical
physics.

The algorithmic problem of (approximately) computing these types of polyno-
mials has been studied for close to 50 years, especially using Markov chain tech-
niques. Around eight years ago, Barvinok devised a new algorithmic approach
based on Taylor’s theorem for computing the permanent of certain matrices, and
the approach has been applied to various graph polynomials since then. This arti-
cle is intended as a gentle introduction to the approach as well as a partial survey
of associated techniques and results.
Keywords: approximate counting, independence polynomial, complex zeros, chromatic

polynomial.

1 Introduction

Computational counting is an area of theoretical computer science, which, at its heart,
is concerned with the computational problem of counting certain structures inside
some combinatorial object given as input. Think of counting the number of satisfying
assignments of some logical formula, or the number of independent sets in a graph.
Often the structures to be counted have some natural weighting and one is interested
in the weighted count.

In this article, we focus on graph counting problems and in particular on finding
efficient algorithms for (approximately) counting objects of interest inside some input
graph. The counting problems we consider here are ones where the number of objects

*School of Mathematical Sciences, Queen Mary, University of London. Email:
viresh.patel@qmul.ac.uk.

†Korteweg de Vries Institute for Mathematics, University of Amsterdam. Email:
guusregts@gmail.com. Funded by the Netherlands Organisation of Scientific Research (NWO):
VI.Vidi.193.068

to be counted is typically super-polynomial in the size of the graph and cannot be
directly enumerated in polynomial time. For example, the number of independent
sets of a graph can be exponentially large in the size of the graph1 and indeed, the
problem of (approximately) counting independent sets of a graph is a rich area of
research (here an independent set in a graph is a subset of vertices no two of which
are adjacent). The problem of exact counting is often computationally hard (this is the
case for independent sets [78, 86, 42]) so one is usually interested in approximation
algorithms for counting problems. A notable exception is the problem of counting
spanning trees of a graph. The number of spanning trees is typically exponential
in the size of the graph, but spanning trees can be counted in polynomial time via
the matrix tree theorem [62]. Throughout the article we use the example of counting
independent sets in graphs to illustrate the various ideas we discuss. In fact the ideas
apply more generally for counting many other graph theoretic objects including trees,
matchings, cuts, and proper colourings (we discuss proper colourings towards the end
of the article).

The basic combinatorial counting problems are often not treated directly, but are
considered in more generality by examining their corresponding generating functions.
For example, for independent sets, one is interested in the independence polynomial,
which for a graph G = (V, E), is defined to be the polynomial

ZG(λ) := ∑
S⊆Vindependent

λ|S| = ∑
k≥0

αkλk,

where αk = αk(G) is the number of independent sets of size k in G. This polynomial
encodes a lot of information about the (sizes) of independent sets in G. For example it
is easy to see that ZG(1) gives the number of independent sets in G and Z′G(1)/ZG(1)
gives the average size of an independent set in G. Knowing the value of ZG(λ) for
very large λ would allow one to extract the degree of the polynomial i.e. the size of
the largest independent set (which is known to be NP-hard to compute and even to
approximate within a constant factor). This already tells us we should not expect to be
able to efficiently approximate the independence polynomial at all values of λ.

In this article, we describe a recent technique, the so-called Taylor polynomial in-
terpolation method of Barvinok (first introduced in [7]), for designing approximation
algorithms for computational counting problems. Our aim here is to introduce the
reader to the ideas behind the method and to give a flavour of the mathematics in-
volved. We do not intend to give a complete survey of results that use the technique
and nor do we fully formalise all of the ideas we present. For the latter, we refer the
reader to the excellent book of Barvinok [6] and to [72].

One distinguishing feature of the Taylor interpolation method is that, as well as its
applications to ordinary counting problems, it also applies to evaluations of generating

1As a contrasting example the number of triangles of a graph is polynomial in the size of the graph
and can be enumerated by brute force in polynomial time. Of course it is interesting to know whether
there is an algorithm for counting triangles that is better than using brute force, but we do not pursue
this here.

functions at negative and complex numbers. This is in contrast to earlier techniques.
One motivation for understanding such complex evaluations is in quantum comput-
ing [90, 26, 70, 49], although we will not discuss this here. Another is that complex
evaluations are sometimes useful for real counting problems (see e.g. [3]), and perhaps
most importantly, broadening our perspective to the complex plane gives a deeper un-
derstanding of the underlying computational complexity of various counting problems
(see Section 5 for more discussion on this).

Other techniques for designing approximate counting algorithms (which we will
not discuss) include the Markov chain Monte Carlo method (see Jerrum [62] for an
excellent introduction to the area) as well as the correlation decay method first intro-
duced by Weitz [89] and Bandyopadhyay and Gamarnik [4] (see e.g. Chapters 5 and
6 of [6] for an introduction). A very recent technique, closely related to Barvinok’s
interpolation method, is based on the cluster expansion from statistical physics and
has been introduced by Jenssen, Keevash and Perkins [61]. We say a few words about
this at the end of Section 4.

1.1 Connection to statistical physics

The generating functions for the counting problems we encounter are often studied
in the statistical physics community (using different terminology). For example the
independence polynomial is known as the partition function of the hard-core model in
statistical physics. The hard-core model is a model for gases. Given a closed container
of a gas at equilibrium consider examining the gas in a small region of space inside the
container. The (discretised) space in the region is represented by a grid graph, where
vertices of the graph represent points in space. Each such point can either be occupied
or unoccupied by a gas molecule but adjacent points in space cannot both be occupied
due to repulsive forces between the molecules. Therefore, at any moment in time, the
gas molecules can only occupy an independent set in the grid. The probability P(S)
that at any moment in time the occupied points form a particular independent set S of
the grid is proportional to λ|S|, where λ ∈ [0, ∞) is a temperature-like parameter often
called the fugacity. A high temperature corresponds to a small value of λ, which, as
we intuitively expect, makes it less likely that we see a large set S of occupied points
in our small region of space. Since P(S) ∝ λ|S|, and ∑S⊆V independent P(S) = 1, we see
that P(S) = λ|S|/ZG(λ). Here we see the independence polynomial ZG(λ) (known
here as the partition function of the hard-core model) appearing as the normalising
constant in the probability. Again, this partition function is much more than just a
normalising constant, and encodes a lot of physical information about the system. For
example, by considering the limiting behaviour of ln ZG(λ)/|V(G)| and its derivatives
for larger and larger graphs (usually grids), discontinuities of these limit functions
give information about phase transitions in the system, that is, sharp changes in the
physical parameters associated with the system indicating a qualitative change in the
system. We direct the reader to [46] for a comprehensive and rigourous mathematical

treatment of phase transitions for many models and to [81, 38, 53] for more on the
hard-core model. We will not be concerned directly with the statistical physics, but
some results originally proved by statistical physicists will be used in the algorithmic
approach we describe.

1.2 Preliminaries

We have already mentioned the independence polynomial as an example of a graph
polynomial that we may wish to approximate. The independence polynomial will
serve as a running example throughout the article to illustrate various ideas. Here we
mention a few basic properties of the independence polynomial to give the reader a
feel for this object.

Recall that ZG(λ) = ∑ λ|S|, where the sum is over all independent sets S of G. The
first easy but important fact to note is that the empty set is an independent set, so ZG(0)
(i.e. the constant term in the polynomial) is always 1. Another important fact is that the
independence polynomial is multiplicative, that is ZG1∪G2(λ) = ZG1(λ)ZG2(λ), where
we write G1 ∪ G2 for the disjoint union of the graphs G1 and G2. This is because every
independent set S of G1 ∪ G2 can be written uniquely as S = S1 ∪ S2, where Si is an
independent set of Gi. Therefore λ|S| = λ|S1|λ|S2|, which allows us to factorise the sum.
Using this multiplicative property, we also see, for example, that the independence
polynomial of k isolated vertices is (1+ λ)k. One can also see directly that the complete
graph on k vertices has independence polynomial 1 + kλ.

We now describe the type of algorithm we ideally wish to obtain for our graph
counting problems. Suppose p = p(G) is a graph parameter, e.g. p(G) is the number
of independent sets in G, or p(G) = ZG(λ) for some fixed λ. Note that we allow
p(G) to be a complex number. A fully polynomial-time approximation scheme (or FPTAS
for short) for p is an algorithm that takes as input a graph G and an error tolerance
ε > 0 and outputs a (complex) number N such that N = eεt p(G) for some t ∈ C with
|t| ≤ 1 in time polynomial in |G| (the number of vertices of G) and ε−1. Note that
when ε is small, we have N = eεt p(G) ≈ (1 + εt)p(G), so that N is roughly within
a distance ε|p(G)| of the true value of p(G). For this reason we call such output N
a multiplicative ε-approximation (for p(G)).2 We also discuss algorithms that provide
the same approximation as above but that run in time super-polynomial in |G|.

2 Barvinok’s interpolation method

In this section we describe the Taylor polynomial interpolation method of Barvinok, a
method that can be applied to a wide variety of counting problems. Consider some
graph polynomial, that is, each graph G has some associated polynomial P(z) = PG(z).
As with the independence polynomial, we should imagine that PG is not directly ac-
cessible, i.e. at least some of its coefficients are difficult to compute from G. We will

2Note that this definition of FPTAS is consistent with the usual notion of FPTAS for real parameters.

however assume that the degree of the polynomial PG is always bounded by a constant
times |G|; this is certainly the case for the independence polynomial and is easy to ver-
ify for most graph polynomials one might consider. Our goal is to (efficiently) obtain
a multiplicative ε-approximation for PG(z) for z ∈ C.

The insight of Barvinok was to use Taylor’s theorem, about power series approx-
imations of smooth functions, to obtain the desired approximation. At first sight we
seem to gain nothing from Taylor’s theorem because the Taylor series of a polynomial is
simply the polynomial itself. However, notice that the truncated Taylor series of a (non-
polynomial) function gives an additive ε-approximation to the function, whereas we are
interested in a multiplicative ε-approximation. Therefore, rather than considering the
Taylor series of PG(z), we should in fact consider the Taylor series of g(z) := ln PG(z)
and then take the exponential of the result to obtain the desired approximation.3

To this end, consider the Taylor series of g(z) about zero:

g(z) =
∞

∑
k=0

g(k)(0)
k!

zk,

where g(k) denotes the kth derivative of g. Unfortunately, the Taylor series of a function
does not usually converge for all z ∈ C. We will return shortly to the question of
convergence, but let us assume for now that the Taylor series does converge to g(z)
for a value of z we are interested in. In that case, if we write Tm(z) for the first m
terms of the Taylor series of g above, then for m sufficiently large, we will have that
|Tm(z) − g(z)| < ε, i.e. Tm(z) = g(z) + εt for some t ∈ C with |t| < 1. Taking the
exponential of both sides of the equation, we obtain exp(Tm(z)) = exp(εt)PG(z) i.e.
exp(Tm(z)) a multiplicative ε-approximation for PG(z).

This gives us the desired approximation, but several questions remain. Firstly,
there is the question of convergence mentioned above. Secondly, if the Taylor series
does converge, then how large does m have to be to guarantee that |Tm(z)− g(z)| < ε?
Finally, how can we actually compute Tm(z) in order to compute our approximation
exp(Tm(z)) for PG(z)? Note that we do not have direct access to the numbers g(k)(0);
these have to be computed in some way.

For the first question of convergence, Taylor’s theorem says that the Taylor series
for g converges inside the disk DR := {z ∈ C : |z| ≤ R} for any R > 0 provided that
g is analytic inside DR. In our case, this holds provided PG(z) , 0 for all z ∈ DR.4 So
the Taylor series will converge inside the largest disk that contains no roots of PG(z).
Establishing such zero-freeness results for particular graph polynomials will be the
subject of Section 4.

The second question concerns the rate of convergence of the Taylor series of g.
Here we take advantage of the particular form of g as the logarithm of a polynomial. If

3In order for g(z) to be well-defined we need to fix a branch of the logarithm here; we say more
below.

4Formally, to ensure g is analytic, we fix ln PG(0), and take the branch of g(z) = ln PG(z) on DR given
by g(z) = ln PG(0) +

∫ z
0 P′G(w)/PG(w)dw.

η1, . . . , ηd are the (complex) roots5 of PG(z) then we can write PG(z) = a ∏d
i=1(1− z

ηi
),

where a = PG(0) is assumed to be non-zero. Then taking logarithms of both sides, we
have

g(z) = ln(a) +
d

∑
i=1

ln(1− (z/ηi)).

Using that the Taylor series of ln(1− z) = −z− z2

2 −
z3

3 − · · · for |z| < 1, we obtain the
Taylor series of g as

g(z) = ln(a)−
d

∑
i=1

∞

∑
k=1

(z/ηi)
k

k

for |z| < mini |ηi| (precisely the condition of zero-freeness mentioned above). Assum-
ing |z| ≤ δ mini |ηi| for some δ ∈ (0, 1), this gives

|g(z)− Tm(z)| ≤
d

∑
i=1

∞

∑
k=m

∣∣∣∣∣ (z/ηi)
k

k

∣∣∣∣∣ ≤ d

∑
i=1

∞

∑
k=m

δk =
dδm

1− δ
.

In order to bound the last expression by ε, it is sufficient to take m ≥ C ln(d/ε) for some
constant C depending on δ. For such m we have that exp(Tm(z)) is a multiplicative ε-
approximation for PG(z).

The final question of actually computing Tm(z) is more subtle and will only be
partially addressed here and in the next section. We will show that if we know the
values of the first m = C ln(d/ε) coefficients of PG(z) then we can compute the deriva-
tives g(0), g(1), . . . , g(m) in time poly(m). However, we do not typically have immediate
access to the first m coefficients of our graph polynomials. For example, in the case
of the independence polynomial ZG(λ), the coefficient αk of λk is the number of in-
dependent sets of size k in G: computing this naively with a brute force approach of
checking every k-tuple of vertices takes time nk (where n = |G|) and so computing
αm takes time nm = nO(ln n) (noting that the degree of ZG i.e. the size of the largest
independent set could be and often is linear in n). In the next section, we show how
to compute α0, . . . , αm in poly(n) time and the idea turns out to generalise for many
other graph polynomials of interest. For now, here is how to compute Tm(z) given the
first m coefficients of PG(z).

Suppose P(z) = PG(z) = a0 + a1z + · · · + adzd. We defined g(z) = ln PG(z). We
know g(0)(0) = g(0) = ln(a0). If we differentiate once and rearrange, we obtain
g(1)(z)P(z) = P(1)(z). If we now repeatedly differentiate this expression, we obtain the

5Again, we do not typically have access to the roots of PG; we work with the roots only in the analysis
of the algorithm.

following expressions:

P(1) = g(1)P(0)

P(2) = g(2)P(0) + g(1)P(1)

...

P(r) = g(r)P(0) +

(
r− 1

1

)
g(r−1)P(1) +

(
r− 1

2

)
g(r−2)P(2) + · · ·+

(
r− 1
r− 1

)
g(1)P(r−1).

Evaluating these expressions at zero, and noting that P(r)(0) = r!ar, we obtain

a1 = a0g(1)(0)

2a2 = a0g(2)(0) + a1g(1)(0)
...

rar = a0g(r)(0) +
(r− 1)!
(r− 1)!

a1g(r−1)(0) +
(r− 1)!
(r− 2)!

a2g(r−2)(0) + · · ·+ (r− 1)!
1!

ar−1g(1)(0).

We see that if we know a0, . . . , ar and we have computed g(0)(0), . . . , g(r−1)(0), then
we can use the rth equation above to compute g(r)(0) in time O(r). Therefore given
a0, . . . , am, we can compute Tm(z) in O(m2) time.

The following summarises what we have shown in this section and is the essence
of the Taylor polynomial interpolation method.

Theorem 2.1. Suppose G is an (infinite) set of graphs and for each G ∈ G, PG(z) is a polyno-
mial associated with G, where

PG(z) =
d(G)

∑
i=0

ai(G)zi

Suppose there exists R > 0 and a function T : N×N→N with the properties that

(i) PG(z) , 0 whenever |z| ≤ R for all graphs G ∈ G, and

(ii) we are able to compute ai(G) in time bounded by T(|G|, i), where we assume for conve-
nience that T is non-decreasing in both arguments.

Then there is an algorithm, which, given input G ∈ G, ε > 0, and z ∈ C with |z| < R,
computes a multiplicative ε-approximation of PG(z) in time mT(n, m) + O(m2), where n =
|G| and m := C ln(d(G)/ε) (as defined earlier).

Some remarks are in order. The theorem is formulated for a general class of graphs
G rather than all graphs because often, we are only able to establish conditions (i) and
(ii) effectively for certain types of graphs (typically bounded degree graphs). This is
best illustrated by applying the result above to the independence polynomial.

For the independence polynomial, if we consider G to be the set of all graphs, then
there is no zero-free disk of positive radius6 so we can only take R = 0 in condition
(i). However, if we restrict G to graphs of maximum degree ∆, we will see in Section 4
that we can take R = (∆− 1)∆−1/∆∆. Similarly for condition (ii), if we take G to be
all graphs, then the brute force approach mentioned earlier is essentially the only way
to compute coefficients of ZG(λ) giving T(n, k) = O(nk): overall this gives a super-
polynomial running time of mT(n, m) + O(m2) = nO(m) + O(m2) = nO(ln(n/ε)). Such
a quasi-polynomial running time is already quite promising because it is significantly
better than the exponential running time of a brute-force algorithm. However, in the
next section we will see that for graphs of maximum degree at most ∆, we can compute
the coefficients much faster and take T(n, k) = poly(n)∆O(k), thereby establishing an
overall polynomial running time of T(n, m) = poly(n)∆O(m) = poly(n)∆O(ln(n/ε)) =
(n/ε)O(ln ∆). Combining the results from the next two sections will therefore give an
FPTAS for computing ZG(λ) on graphs of maximum degree at most ∆ provided |λ| <
(∆− 1)∆−1/∆∆.

Finally, we remark that one can in fact relax condition (i) to include regions that
are not necessarily disks provided the region is “thick” in a certain sense and contains
the point 0. Concretely one should think of a small neighbourhood of a real interval
or a sector region. Relaxing condition (i) to non-disk regions is achieved by making
suitable polynomial transformations of PG; see Section 2.2.2 of [6] and [10] for details.

3 Polynomial running time for bounded degree graphs

In the last section we saw how we can use Taylor’s theorem to design algorithms to
approximate graph polynomials. Let P = PG be a graph polynomial. Examining
Theorem 2.1, we require two ingredients to establish an approximation algorithm to
compute PG(z). First we need to establish a zero-free disk for PG; this will be discussed
in detail in the next section. Second, we need to be able to efficiently compute the
first O(ln |G|) coefficients of PG, which we discuss in detail here. There is usually
a straightforward, direct approach for computing these coefficients, which leads to
quasi-polynomial time algorithms, but which is not fast enough for an FPTAS. We
already saw this in the last section with the independence polynomial, where we saw
that computing the coefficients naively leads to an nO(ln n)-time algorithm.7 In this
section, we show how to compute the coefficients of the independence polynomial
more efficiently for bounded degree graphs. The technique generalises to many other
graph polynomials but all the key ideas are best understood through the concrete
example of the independence polynomial. We give the statement for general graph

6The k-vertex complete graph has independence polynomial 1 + kλ, so its roots tend to 0.
7Computing the coefficients naively often gives us quasi-polynomial time approximation algorithms

as with the example of the independence polynomial. This is already very good because it is a significant
improvement on the exponential time taken to enumerate independent sets in a graph. Achieving the
polynomial runtime of an FPTAS is considered to be the gold standard in the area.

polynomials at the end of the section.
It is worth noting that, barring a few exceptions, the setting of bounded degree

graphs is often the setting of interest. For example, the problem of computing a multi-
plicative ε-approximation for ZG(z) is known to be computationally hard for all com-
plex z , 0 if we have no restriction on G; see [84, 51, 23].

3.1 Computing the coefficients of the independence polynomial effi-
ciently

Recall that the independence polynomial ZG(λ) is given by

ZG(λ) = ∑
k≥0

αkλk,

where αk = αk(G) is the number of independent sets of size k in G. Throughout
this section we focus on bounded degree graphs and write G∆ for the set of graphs
of maximum degree at most ∆. If we apply Theorem 2.1 to ZG(λ) (with G ∈ G∆),
assuming we have some suitable zero-free disk containing λ, Theorem 2.1 gives us an
algorithm to compute a multiplicative ε-approximation of ZG(λ) in time mT(n, m) +
O(m2), where T(n, i) is the time needed to compute αi(G) for n-vertex graphs G ∈ G∆
and m ≤ C ln(n/ε). We will sketch a proof of the following.

Theorem 3.1. For G ∈ G∆, we can compute αi(G) in time poly(|G|)∆O(i), i.e. for n-vertex
graphs of maximum degree at most ∆, we can take T(n, i) = poly(n)∆O(i).

Using the theorem above, Theorem 2.1 gives us an approximation algorithm for the
independence polynomial with running time

mT(n, m) + O(m2) = poly(n)∆O(ln(n/ε) = poly(n)(n/ε)O(ln(∆)).

We see that this running time is of the form required for a fully polynomial time
approximation scheme. We now sketch the proof of Theorem 3.1.

Sketch proof of Theorem 3.1

We begin by generalising the algorithmic problem we are interested in. We are inter-
ested in computing αk(G), the number of independent sets of size k in G, when G ∈ G∆.
Equivalently, αk(G) is the number of induced copies of the graph Ik in G, where Ik is
the graph consisting of k vertices and no edges. Generally for graphs H and G, write
ind(H, G) for the number of induced copies8 of H in G. Then αk(G) = ind(Ik, G).

The first observation is that, while we do not know how to efficiently compute
ind(Ik, G), it is not too hard to efficiently compute ind(H, G), when H is connected.

8The number of induced copies of a graph H in the graph G = (V, E) is defined as the number of
vertex subsets S ⊆ V such that G[S] = H.

Observation 3.1. We can compute ind(H, G) in time poly(n)∆O(k), where G ∈ G∆, n =
|G| and k = |H|.

To see this, we first pick any spanning tree T in H (i.e. a subgraph of H that is a tree
and that uses all k vertices of H). Such a spanning tree exists because H is connected.
The idea is to find all (not necessarily induced) copies of T in G and to check which of
the copies of T extend to an induced copy of H. This accounts for all induced copies
of H because every induced copy of H in G contains a (not necessarily induced) copy
of T in G.

There are only relatively few (not necessarily induced) copies of T in G. Indeed,
first we enumerate the vertices of T in a breadth-first ordering v1, v2, . . . , vk. We embed
T into G one vertex at a time in order. There are n choices of where to embed v1. Each
subsequent vertex of T has at most ∆ possibilities for its embedding into G because
when we come to embed vi, its parent in T (say vi′) has already been embedded as
some vertex xi′ in G, so the embedding of vi must be a neighbour of xi′ in G. Therefore
altogether there are at most n∆k−1 embeddings of T in G and each such embedding of
T is checked to see if it gives an induced copy of of H.

From Observation 3.1, we see that we can compute ind(H, G), when H is connected,
but the graph H we are interested in, namely Ik, is very much disconnected. It would
be useful if we could express ind(Ik, G) in terms of ind(H, G) for connected H. A trivial
case of this is the fact that ind(I2, G) = (n

2)− ind(e, G), where e is the graph on two
vertices with an edge between them. This says nothing other than that the number of
edges and non-edges in an n-vertex graph sum to (n

2). With a little more work, we can
express ind(I3, G) in terms of induced counts of connected graphs as follows. There
are four graphs on three vertices, namely I3, the triangle denoted T, the path on three
vertices denoted P3 and the disjoint union of an edge and a vertex denoted e + I1. By
enumerating all induced subgraphs of G on three vertices, we have

ind(I3, G) =

(
n
3

)
− ind(T, G)− ind(P2, G)− ind(e + I1, G).

The only disconnected graph on the right hand side is e + I1, and by simple counting,
it is not too hard to show that

ind(e + I1, G) = (n− 2)ind(e, G)− 2ind(P3, G)− 3ind(T, G).

Substituting the second formula into the first gives an expression for ind(I3, G) in terms
of induced counts of connected graphs.

These calculations suggest that it is possible to express ind(Ik, G) in terms of in-
duced counts ind(H, G) for connected graphs H, but that the calculations and formulae
will get cumbersome. A new idea is needed to approach the problem in a systematic
and manageable way. The next observation is the key insight to overcoming this hur-
dle and is at the heart of the proof of Theorem 3.1. It was proved by Csikvári and
Frenkel [36]; the proof is short and can also be found in [72].

Observation 3.2. Suppose τ(G) is an additive graph property, meaning that it satisfies
the following two properties.

(i) τ(G) can be written as sum of products of induced graph counts, i.e. for all G

τ(G) =
r

∑
i=1

µi ∏
H∈Hi

ind(H, G),

where Hi is a (finite) set of graphs and µi ∈ C is a constant for each i = 1, . . . , r,
and

(ii) τ(G1 ∪ G2) = τ(G1) + τ(G2) for all graphs G1 and G2.

Then τ is in fact of a simpler form, namely, for all graphs G, we have

τ(G) = λ1ind(H1, G) + · · ·+ λsind(Hs, G),

where H1, . . . , Hs are connected graphs and λ1, . . . , λs ∈ C.

The observation above says that every additive graph parameter is a linear combi-
nation of ind(Hi, G) for connected Hi, and so by Observation 3.1, such additive graph
parameters can be computed efficiently.9 Our task now is reduced to the task of ex-
pressing αk(G) = ind(Ik, G) in terms of additive graph parameters. In order to do this,
we now switch from the combinatorial to the polynomial perspective of αk(G).

Recall that the αk(G) are the coefficients of the independence polynomial ZG, i.e.
ZG(λ) = α0 + α1λ + · · · αdλd. Suppose that η1, . . . , ηd are the roots of ZG. Noting that
the constant term α0 is one, we can write ZG(λ) = (1− η−1

1 λ) · · · (1− η−1
d λ). While we

cannot compute the ηi directly, we can relate them to the coefficients αk by expanding
the product above. We see that the αk are the elementary symmetric polynomials in
η−1

i , namely

α0 = 1, α1 = − ∑
1≤i≤d

η−1
i , α2 = ∑

1≤i<j≤d
η−1

i η−1
j etc.

Another important class of symmetric polynomials are the power sums. Let us define
the ith power sum pi to be

pi = η−i
1 + · · ·+ η−i

d .

It is well known that the power sums can be related to the elementary symmetric
polynomials using the Newton identities. There are several short derivations of these
identities. In the context of our problem, the Newton identities give the following

9Actually efficient computation is not immediate because it depends on the number and size of the
Hi; we address this later.

expressions relating the αi and the pi.

−α1 = α0p1

−2α2 = α0p2 + α1p1

−3α3 = α0p3 + α1p2 + α2p1
...

−tαt = α0pt + α1pt−1 + · · ·+ αt−1p1.

From this it is easy to see that if we know the values of the pi then we can inductively
compute the αi. Indeed, if we know the values of p1, . . . , pt, and we also know (by
induction) the values of α1 . . . , αt−1 then using the tth identity, we can compute αt. Thus
the problem of efficiently computing the αi is reduced to that of efficiently computing
the pi. It is possible to efficiently compute the power sums because, as the reader may
have guessed, the power sums are additive graph parameters.

Observation 3.3. The power sums pi = pi(G) as defined above have the property of
being additive graph parameters.

It is easy to verify that pi satisfies the second property of an additive graph parame-
ter, namely that pi(G1 ∪G2) = pi(G1) + pi(G2) for any graphs G1 and G2. Indeed, since
ZG1∪G2 = ZG1 ZG2 (see Section 1.2), if η1, . . . , ηd are the roots of of ZG1 and ν1, . . . , νd′ are
the roots of ZG2 then η1, . . . , ηd, ν1, . . . , νd′ are the roots of ZG1∪G2 so that

pi(G1 ∪ G2) = η−i
1 + · · ·+ η−i

d + ν−i
1 + · · ·+ ν−i

d′ = pi(G1) + pi(G2).

For the first property, we use the Newton identities. Note that, since α0 = 1, we
can rearrange the tth identity and express pt as a sum of products of p1, . . . , pt−1 and
α1, . . . , αt. We know that the αi are induced graph counts, and if we assume by induc-
tion that p1, . . . , pt−1 are also sums of products of induced graph counts, then we see
that pt is also a sum of products of induced graph counts and so satisfies property (i)
of an additive graph parameter.

We now have all the ingredients to explain how to compute the αk efficiently. We
can compute the power sums pi efficiently. This is because the power sums are ad-
ditive graph parameters (Observation 3.3) and they are therefore linear combinations
of induced counts of connected graphs (Observation 3.2). Each induced graph count
ind(H, G) in this linear combination can be computed efficiently when G is of bounded
degree since H is connected (Observation 3.1) thus allowing us to compute the power
sums efficiently. Once we have computed the power sums p1, p2, . . ., we can inductively
compute the αi using the Newton identities.

This gives the main ideas of the argument although there are a few subtleties that
we have glossed over. The main one is that it is not quite obvious that we can compute
the power sums pi(G) efficiently, i.e. in time poly(|G|)∆O(i). While the pi(G) can be
expressed as a linear combination of induced counts of connected graphs

pi(G) = λ1ind(H1, G) + · · ·+ λsind(Hs, G),

we have not said how to find H1, . . . , Hs and λ1, . . . , λs. Conceivably, s could be super-
exponential in i or the Hi could have size superlinear in i; in either case we would not
automatically get the desired running time. However, by using the Newton identities
more carefully, and using the fact that G has bounded degree it is not too difficult to
overcome these technical obstacles. All the details can be found in [72].

3.2 Computing the coefficients of other graph polynomials efficiently

In Section 3.1, we described the main idea of how we can efficiently compute the first
ln |G| coefficients of the independence polynomial ZG for graphs G of bounded degree.
The ideas can be generalised to work for many other graph polynomials of interest.

What are the crucial properties of the independence polynomial ZG that we use
in the sketch proof of Theorem 3.1? The whole proof is based around manipulating
induced graph counts, so we certainly need the coefficients of ZG to be (functions of)
induced graph counts. We also crucially need that ZG is multiplicative, which allows
us to conclude that the power sums are additive, therefore allowing us to compute
them efficiently.

In [72], we show that if a graph polynomial P = PG satisfies certain properties given
below, then its coefficients can be computed efficiently for bounded degree graphs i.e.
the ith coefficient of PG can be computed in time poly(n)∆O(i) where G is an n-vertex
graph of maximum degree at most ∆. As with the independence polynomial, this is
enough to use the Taylor polynomial interpolation method from Section 2 to give an
approximation algorithm for computing PG(z) (provided z is in a suitable zero-free
disk) with the required run time of an FPTAS.

Suppose P = PG is a graph polynomial given by PG(z) = a0 + a1z + · · · + adzd.
Suppose that P satisfies the following properties for some fixed constant α > 0:

(i) for each `, the `th coefficient of P can be expressed as a “α-bounded” linear
combination of induced graph counts, that is, for all G ∈ G∆

a`(G) = ∑
H

ζH,`ind(H, G),

where the sum is over graphs H with at most α` vertices and ζH,` ∈ C are con-
stants (independent of G);

(ii) in property (i), for each H we can compute ζH,` in time exp(O(|H|); and

(iii) PG is multiplicative, i.e. PG1∪G2 = PG1 PG2 .

Then we can compute ai(G) in time poly(|G|)∆O(i). Again, using the Taylor polynomial
interpolation method, this leads to an FPTAS for approximating PG(z) for G ∈ G∆,
again provided we establish a suitable zero-free disk containing z.

Note that in the case of the independence polynomial, properties (i) and (ii) are
trivial and we saw it is easy to verify property (iii). These properties also hold for

various other graph polynomials including the matching polynomial, the chromatic
polynomial, and the Tutte polynomial.10 We will not check these here, but refer the
interested reader to [72]. It is also worth noting that the technique described in this
section can be adapted and applied to polynomials beyond those satisfying properties
(i)-(iii) above; see [68, 15, 70].

In Section 2 we explained how one can design algorithms for approximating graph
polynomials using Taylor’s theorem. In this section, we showed how to make these al-
gorithms efficient (having the running time of an FPTAS) for many graph polynomials
provided we restrict attention to bounded degree graphs. We have seen in Section 2
that essential to all of these algorithms is to establish a suitable zero-free disk or zero-
free region in the complex plane for the graph polynomial in question. Our discussion
of algorithms ends at this point and in the next section, we turn our attention entirely
to the independent problem of establishing these zero-free regions.

4 Techniques for proving absence of zeros

In the previous sections, we have sketched how the problem of approximately evalu-
ating graph polynomials (particularly the independence polynomial) in a region of the
complex plane is reduced to the problem of establishing that the polynomial has no
zeros in that region. There is a long history of proving such results about the locations
of zeros of graph polynomials and partition functions. The techniques used often have
their origin in statistical physics but have now been picked up and extended by the
theoretical computer science community. In this section we will discuss three different
techniques.

4.1 Recursion and ratios

Many graph polynomials satisfy recursions in which the polynomial for a given graph
can be expressed in terms of the polynomial for smaller graphs. Such recursions allow
us to prove properties about the graph polynomial, such as absence of zeros, by in-
duction. However, rather than working with the polynomials directly, it is often more
productive to work instead with related quantities. We illustrate this approach through
our running example of the independence polynomial and at the end of the section we
direct the reader to further work in which this technique is employed.

Our aim is to sketch a proof of the following result due to Shearer [83], Do-
brushin [38] and Scott and Sokal [81]:

Theorem 4.1. Let G = (V, E) be a graph with maximum degree ∆ ≥ 2 and let λ ∈ C satisfy
|λ| ≤ λ∗(∆) := (∆−1)∆−1

∆∆ . Then ZG(λ) , 0.

10The Tutte polynomial is a polynomial in two variables, but the properties above hold if one of the
variables is fixed

Let us briefly discuss this result before delving into the proof. First, recall that by the
Taylor polynomial interpolation method (particularly Theorem 2.1 and Theorem 3.1),
this result immediately implies an FPTAS for computing ZG(λ) for G ∈ G∆ inside the
zero-free disk given by |λ| < λ∗(∆). Second, note that if we are only interested in zero-
free disks, then one cannot improve Theorem 4.1 in the sense that we cannot increase
the constant λ∗(∆). Indeed, one can show that there is a sequence of graphs Gn (in fact
trees) of maximum degree ∆ and negative numbers λn such that ZGn(λn) = 0 and λn →
−λ∗(∆) [81]. However there has been a lot of interest recently in establishing zero-
freeness for non-disk regions. Most notably, it was shown recently [74] that ZG(λ) , 0
whenever G ∈ G∆ and λ ∈ R ⊆ C where R is an open set containing the interval
[0, λc(∆)) and λc(∆) := (∆ − 1)∆−1/(∆ − 2)∆. One significance of λc(∆) is that it is
an algorithmic threshold for real parameters λ: using the interpolation method, the
result in [74] implies that there is an FPTAS11 to compute ZG(λ) whenever G ∈ G∆ and
λ ∈ [0, λc(∆)), while for λ > λc(∆), it is known that there is no such FPTAS unless
P = NP [84, 51].

We now discuss the proof of Theorem 4.1. Let G = (V, E) be a graph and fix a
vertex v ∈ V. We can write down a recursion for ZG(λ) = ∑S⊆V independent λ|S| by
splitting the sum over those independent sets that do not contain v and those that do
to obtain

ZG(λ) = ZG−v(λ) + λZG\[N[v](λ), (1)

where G− v (resp. G \ N[v]) denote the graphs obtained from G by removing v (resp.
v and its neighbours in G). As mentioned earlier, rather than working directly with a
recursion for ZG, it turns out to be more useful to work with a recursion of a related
quantity. Define the ratio, RG,v, by

RG,v(λ) :=
λZG\N[v](λ)

ZG−v(λ)
. (2)

Observe that provided ZG−v(λ) , 0, we have ZG(λ) = 0 if and only if RG,v(λ) = −1
(using (1)). So to prove absence of zeros it suffices to inductively show that the ratios
avoid −1.

Next we establish a recursion for these ratios. Let G be a graph with fixed vertex
u0 and let λ ∈ C. Let u1, . . . , ud be the neighbours of u0 in G (in any order). Set
G0 = G− u0 and define for i = 1, . . . , d, Gi := Gi−1 − ui (so Gd = G \ N[u0]). Suppose
that ZGi(λ) , 0 for all i = 0, . . . , d. Then we use ‘telescoping’ to write

RG,u0(λ)

λ
=

ZGd(λ)

ZG0(λ)
=

ZG1(λ)

ZG0(λ)
·

ZG2(λ)

ZG1(λ)
· · ·

ZGd(λ)

ZGd−1(λ)
.

Applying (1) to each of the denominators and after some rearranging we end up with
the following identity:

RG,u0(λ) =
λ

∏d
i=1(1 + RGi−1,ui(λ))

. (3)

11In fact, an FPTAS was established earlier in [89] using the correlation decay method.

The identity above captures all the relevant combinatorics of independent sets that
we need and the rest of the proof essentially boils down to proving a property about
the above recursion.

Proof of Theorem 4.1. We may assume that G is connected (if G has connected compo-
nents H1, . . . , Hk then ZG(λ) = ZH1(λ) · · · ZHk(λ) and so it is sufficient to prove the
theorem for each Hi).

Fix v0 ∈ V. We will show by induction that the following holds for all U ⊆ V \ {v0}:

(i) ZG[U](λ) , 0,

(ii) if u0 ∈ U has a neighbour in V \U, then |RG[U],u0
(λ)| < 1/∆.

Indeed if |U| = 0 then this is trivially true, so suppose that |U| > 0. Then since G is
connected, there is u0 ∈ U that has a neighbour v ∈ V \U. Let us write H = G[U]
and let u1, . . . , ud be the neighbours of u0 in H. Let H0 = H − u0 and Hi = Hi−1 − ui
for i > 0. Then, by induction ZHi(λ) , 0 and |RHi,ui+1(λ)| < 1/∆ (since ui+1 has a
neighbour in U \V(Hi), namely u0). So we may use (3) to conclude that

|RH,u0(λ)| =
|λ|

∏d
i=1 |1 + RHi−1,ui(λ)|

< |λ|(1− 1/∆)−d

≤ |λ|
(

∆− 1
∆

)−(∆−1)

= 1/∆, (4)

where we used that d ≤ ∆− 1 (since u0 has a neighbour in V \U) and that |λ| ≤ λ∆.
This shows (ii). Then, we also see that RH,u0(λ) , −1 and so ZH(λ) , 0, showing (i).
This completes the induction.

To conclude the proof of the theorem we apply the same trick once more to RG,v0 .
From (4) we then obtain the bound |RG,v0 | < 1/(∆ − 1) since v0 may have d = ∆
neighbours rather than d ≤ ∆− 1. Again we have RG,v0(λ) , 1 and so ZG(λ) , 0, as
desired. �

The proof essentially consists of two steps. First express a suitably chosen ratio in
terms of ratios of smaller graphs. Secondly, use this expression to inductively show
that these ratios are ‘trapped’ in some suitable region of the complex plane (the open
disk of radius 1/∆ in the proof above). Of course the real ingenuity comes in finding
the right ‘trapping region’.

This approach can be traced back to work of Dobrushin [38] and possibly even
earlier. Recent years have seen many variations and refinements of this approach re-
sulting in significant extensions of Theorem 4.1 [74, 19, 21] and zero-free regions for
permanents [7, 8, 11], for the graph homomorphism partition functions [17, 16], for
the partition function of the Ising and Potts models [67, 69, 75, 13, 22, 35], for Holant
problems [76] and for various other graph polynomials [5, 9, 15, 14, 12, 64].

4.2 Stability of multivariate polynomials

In this subsection we briefly mention the technique of polynomial stability without
going into too much detail. The basic idea here is that there are certain operations on
polynomials that preserve certain useful properties. If one can use these operations
to construct some desired graph polynomial or partition function from “elementary”
polynomials, we can establish useful properties of the graph polynomial / partition
function. The method is often most effective for multivariate polynomials, and indeed
many graph polynomials have multivariate counterparts.

For our running example, the independence polynomial, the multivariate counter-
part is defined as follows. Let G = (V, E) be a graph and associate to each vertex v a
variable xv. The multivariate independence polynomial is then defined as

ZG((xv)) = ∑
S⊆V

independent

xS,

where we use the shorthand notation xS := ∏v∈S xv. Note that if we set all the variables
equal to λ then we recover the original (univariate) independence polynomial. The
multivariate independence polynomial is a multi-affine polynomial meaning that it is
affine in each variable (i.e. if we fix all but one variable xv it becomes a polynomial
of degree 1 in xv). It is easy to see that any multi-affine polynomial f (in the same
variables (xv)v∈V) can be written as f = ∑S⊆V asxS for some constants aS.

For two multi-affine polynomials P = ∑S⊆V pSxS and Q = ∑S⊆V qSxS, their Schur
product, P ∗ Q is defined as the multi-affine polynomial in which the coefficient of xS

is pS · qS i.e. P ∗ Q = ∑S⊆V pSqSxS. We can build up the polynomial ZG using Schur
product of simpler polynomials as follows. Suppose H1 and H2 are graphs on the same
vertex set V and G is the union12 of H1 and H2 (i.e. the edges of G are precisely the
edges of H1 together with the edges of H2). Then

ZG = ZH1 ∗ ZH2 .

This is easy to see since we know S is an independent set of G if and only if S is
an independent set of both H1 and H2 and the Schur product has the corresponding
property that the coefficient of xS is 1 in ZH1 ∗ ZH2 if and only if it is 1 in both ZH1

and in ZH2 . For example the 4-cycle C4 with vertex set {1, 2, 3, 4} and edges {1, 2},
{2, 3}, {3, 4} and {4, 1} is the union of two matchings M1 with edges {1, 2}, {3, 4} and
M2 with edges {1, 3}, {2, 4}. Using the multiplicative property13 of the independence
polynomial, we know

ZM1 = (1 + x1 + x2)(1 + x3 + x4) and ZM2 = (1 + x2 + x3)(1 + x1 + x4)

12This is very different from the disjoint union of graphs that we made heavy use of in Section 3.
13We showed this property for the univariate independence polynomial and it follows in the same

way for the multivariate version

and using the Schur product property, one can check

ZC4 = ZM1 ∗ ZM2 = (1 + x1 + x2 + x3 + x4 + x1x3 + x2x4).

The Schur product corresponds beautifully well to taking unions of graphs for the
independence polynomial, but does it preserve any useful properties? Writing D for
the open unit disk in C, we say a multi-affine polynomial P = ∑S⊆V pSxS is D-stable
if P((xv)v∈V) , 0 whenever xv ∈ D for all v ∈ V. It is well known (see [6]) that if P
and Q are D-stable then so is P ∗ Q. This seems promising for us, but unfortunately,
the independence polynomial of a matching or indeed a single edge (out of which we
build all other independence polynomials) is not D-stable, e.g. ZM1(−

1
2 ,−1

2 , 0, 0) = 0.
The independence polynomial of a matching is however non-zero if all the arguments
are in an open disk of radius 1/2. Now, using the fact that every graph in G∆ is the
union of at most ∆ + 1 matchings (Vizing’s theorem) and applying a simple scaling
argument, one can still make use of the D-stability of Schur products to show that ZG
is non-zero if all arguments are in a disk of radius smaller than 1/2∆+1, where G ∈ G∆.

This is a much weaker bound than Theorem 4.1 from the the previous subsection,
but is given simply to illustrate the idea of stability. The idea of using multi-affine poly-
nomials and operations preserving zero-freeness was pioneered by Asano [2] about
fifty years ago to give a short and elegant proof of the famous Lee-Yang theorem (see
also [6] for a proof using Schur products.) The theorem states that the partition func-
tion of the Ising model (in terms of vertex activities), which essentially is the generating
function of the edge cuts in the graph, has all its zeros on the unit circle under suitable
conditions; we choose not to introduce the relevant background here. By now there
are several variations of the technique, some of which use the Grace-Szëgo-Walsh the-
orem, and they have been applied to partition functions of several models and graph
polynomials [80, 80, 88, 54, 54, 20].

4.3 The polymer method

We introduced the multivariate independence polynomial in the last subsection to il-
lustrate the idea of polynomial stability. It turns out that many other graph polyno-
mials and partition functions can be expressed as evaluations of multivariate inde-
pendence polynomials of a particular type. For this reason, there has been a lot of
interest in understanding and proving conditions that guarantee zero-freeness of such
multivariate independence polynomials. This idea of first rewriting a partition func-
tion/graph polynomial as an evaluation of a multivariate independence polynomial
and then checking conditions from the literature known to guarantee that the latter
evaluation is nonzero is a powerful technique originating in statistical physics. There,
the multivariate independence polynomial is sometimes called the partition function
of a polymer model, and the technique we describe is sometimes called the polymer
method.

We will give an example of this idea applied to the chromatic polynomial, a graph
polynomial used for counting proper colourings of a graph, which we will shortly

introduce. We sketch a proof of a result of Férnandez and Procacci [44] and Jackson,
Procacci and Sokal [59] about zero-freeness of the chromatic polynomial. At the end of
the subsection, we list some recent results based on this technique and indicate how a
variation of this technique can in fact be used directly to design efficient algorithms to
approximate graph polynomials, without having to use the interpolation method.

4.3.1 The chromatic polynomial

For a graph G = (V, E) and integer q, a proper q colouring of G is an assignment
of q colours (usually labelled 1, . . . , q) to the vertices such that adjacent vertices receive
different colours. This means in particular that all vertices assigned some fixed colour i
form an independent set. The function χG counts the number of proper q-colourings of
G, that is, for each q ∈N, χG(q) is defined to be the number of proper q-colourings of
G. For example the number of proper q-colourings of a triangle is q(q− 1)(q− 2) since
after ordering the vertices arbitrarily, the first vertex can receive any of the q colours,
the second vertex may receive any of the colours except the colour of the first vertex,
and the third vertex may receive any colour except those of the first two vertices (which
are different).14 More generally, the number of proper q colourings of Kr, the complete
graph on r vertices is q(q− 1) · · · (q− r + 1), i.e. χKr(q) = q(q− 1) · · · (q− r + 1) for
every q ∈ N. For any tree T on r vertices, χT(q) = q(q − 1)r−1 for all q ∈ N since
if we colour the vertices in a breadth-first ordering, then the first vertex may receive
any of the q colours, while each subsequent vertex can receive any colour except that
of its parent. Of course, it is not usually so easy to determine χG(q) because it is
NP-complete to decide if there is even one proper q-colouring of G, i.e. whether χG(q)
is positive or not. Nonetheless, as the examples above suggest, χG(q) is always a
polynomial in q as we shall see shortly, and χG is called the chromatic polynomial of
G.

The chromatic polynomial was introduced in 1912 by Birkhoff in an attempt to
prove the four colour theorem. It has a long history and has been studied from many
perspectives together with its far-reaching generalisation, the Tutte polynomial (see
[40, 43] for a comprehensive account).

We now establish a very useful formula for the chromatic polynomial called the
random cluster model, due to Fortuin and Kasteleyn (see [45]); it is sometimes used as
the definition of the chromatic polynomial. Formally, a proper q-colouring of a graph
G = (V, E) is a function f : V → {1, . . . , q} =: [q] such that f (u) , f (v) whenever
{u, v} ∈ E. Then we can write

χG(q) = ∑
f :V→[q]

∏
{u,v}∈E

1 f (u), f (v),

where 1 f (u), f (v) is the indicator function that f (u) , f (v) (so that the product is 1 if
and only if all edges are properly coloured). Replacing 1 f (u), f (v) with (1− 1 f (u)= f (v)))

14Note that the formula is correct even when q < 3, i.e. when there are no proper q-colourings of the
triangle.

and expanding, we obtain

χG(q) = ∑
f :V→[q]

∏
{u,v}∈E

(1− 1 f (u)= f (v))) = ∑
f :V→[q]

∑
F⊆E

(−1)|F| ∏
{u,v}∈F

1 f (u)= f (v)

= ∑
F⊆E

(−1)|F| ∑
f :V→[q]

∏
{u,v}∈F

1 f (u)= f (v).

The inner sum in the last expression is equal to qk(F), where k(F) is the number of
components of the graph (V, F). The reason is that the product is 1 for an assignment
f if and only if every edge of F is monochromatic in f , which means that f must assign
a single colour to each component of (V, F). There are precisely qk(F) ways of doing
this. Thus

χG(q) := ∑
F⊆E

qk(F)(−1)|F|, (5)

and so we see that χG is indeed a polynomial (although there are easier ways of show-
ing this) and has degree |G|.

Our goal will be to prove the following zero-freeness result for the chromatic poly-
nomial.

Theorem 4.2 ([44, 59]). Let G be any graph. Then all the zeros of χG are contained in the disk
of radius 6.91∆(G) centered at 0 in the complex plane.

It is likely that the constant 6.91 can be improved, but it is not clear what the
optimal value is likely to be; see [79, Footnote 4] for further discussion. By the Taylor
polynomial interpolation method, Theorem 4.2 almost immediately implies an FPTAS
for approximating χG(q) whenever G ∈ G∆ and |q| ≥ 6.92∆. The trick is to apply the
interpolation method to the polynomial q|V|χG(1/q), which has no zeros in the disk of
radius 1

6.91∆ . From the combinatorial perspective, this implies an FPTAS to count the
number of proper q-colourings of any graph G ∈ G∆ whenever q > 6.91∆. It is believed
that there is an FPTAS for counting proper q-colourings whenever q > ∆ and this is
an active area of research. By proving a zero-freeness result for a different polynomial
(the partition function of the Potts model) Liu, Sinclair, and Srivastava [66] have shown
that there is an FPTAS when q ≥ 2∆, and this is currently the state of the art.15

We now sketch the proof of Theorem 4.2. As mentioned, we will need to work
again with the (multivariate) independence polynomial and to make use of a suitable
zero-freeness result for it.

4.3.2 The chromatic polynomial as a multivariate independence polynomial

Our first lemma shows how to express the chromatic polynomial of a graph G as an
evaluation of the multivariate independence polynomial of an associated graph. For
this we need some notation. Let G = (V, E) be a graph. Define a new graph Γ whose

15There are improved bounds if we allow randomised algorithms based on the Markov chain Monte
Carlo method [87, 33].

vertices are subsets S of V of size at least two. (In the context of the polymer method,
these sets are called polymers.) Two of those sets S, T are connected by an edge if and
only if S ∩ T , ∅. Notice that the graph Γ is independent of the edges of G.

We now associate weights to vertices of Γ as follows; these will depend on the edges
of G and on q (the variable in the chromatic polynomial). For each vertex S of Γ, i.e.
S ⊆ V with |S| ≥ 2, define

λS := ∑
F⊆E(S)

connected

(−1)|F|q|S|−1. (6)

Now the multivariate independence polynomial of Γ with the (complex) vertex weights
λS is given by

ZΓ((λS)) = ∑
I⊆V(Γ)

independent

∏
S∈I

λS. (7)

Lemma 4.3. With notation as above we have

q|V|χG(1/q) = ZΓ((λS)).

Proof. We start by expanding the left-hand side using (5)

q|V|χG(1/q) = ∑
F⊆E

(−1)|F|q|V|−k(F) = ∑
F⊆E

∏
C component o f F

(−1)|C|q|V(C)|−1.

Next, we break up the sum over F ⊆ E in terms of the component structure of F as
follows. We sum over all F that have exactly k connected components with vertex
sets S1, . . . , Sk and then we sum over all possible choices of S1, . . . , Sk and all possible
choices of k. In fact we can ignore the components that consist of a single vertex (and
no edge) since they contribute a factor of 1 to the product above. In this way (after
exchanging a sum and product) we obtain

q|V|χG(1/q) = ∑
k≥0

∑
S1,...,Sk⊆V

Si∩Sj=∅ for i,j
|Si|≥2

k

∏
i=1

∑
Fi⊆E(Si)

(Si,Fi) connected

(−1)|Fi|q|Si|−1.

By construction any collection of sets {S1, . . . , Sk} contributing to this sum forms an
independent set of size k in the graph Γ. The weights are constructed precisely so that
the last expression is ZΓ((λS)), as desired. �

4.3.3 Zero-freeness conditions and their verification

Here we present a result due to Biascot, Férnandez and Procacci [25] that provides
useful conditions that guarantee that our multivariate independence polynomial (for
graphs of the type Γ) does not evaluate to zero. We will then verify these conditions
for our situation. Let G = (V, E) and Γ be as before.

Theorem 4.4 ([25]). For any complex numbers (λS)S∈V(Γ) and any a > 1, if, for each v ∈ V,
it holds that

∑
S|v∈S
|S|≥2

|λS|a|S| ≤ a− 1, (8)

then ZΓ((λS)) , 0.

The theorem can be proved along the same lines as the proof of Theorem 4.1.
See [25, Proposition 3.1] for a proof along these lines and a discussion of how this
condition compares with other similar conditions including the Kotécky-Preis condi-
tions [63] and Dobrushin’s conditions [38].

To verify the conditions in Theorem 4.4, we need a bound on the weights λS given
in (6). Our first step in this direction is to get rid of the ‘alternating signs’ in (6). The
lemma below can for example be proved using well-known properties of the Tutte
polynomial; see e.g. [43] for these properties and see [73, 85] for a direct proof.

Lemma 4.5. Let H be a connected graph and denote by τ(H) the number of spanning trees in
H. Then ∣∣∣ ∑

F⊆E(H)
(V(H),F) connected

(−1)|F|
∣∣∣ ≤ τ(H).

For a graph G = (V, E), a vertex v ∈ V, and a variable x we define the tree generating
function by

TG,v(x) := ∑
T⊆E(G)

(V(T),T) is a tree, v∈V(T)

x|T|.

We can now bound ∑S|v∈S,|S|≥2 |λS|a|S| in terms of the tree generating function as fol-
lows:

∑
S|v∈S,|S|≥2

|λS|a|S| = ∑
S|v∈S,|S|≥2

∣∣∣∣∣ ∑
F⊆E(S)

connected

(−1)|F|q|S|−1

∣∣∣∣∣a|S|
≤ ∑

S|v∈S,|S|≥2

∣∣∣∣∣ ∑
F⊆E(S)

connected

(−1)|F|
∣∣∣∣∣|q||S|−1a|S|

≤ ∑
S|v∈S,|S|≥2

τ(G[S])|q||S|−1a|S|

= aTG,v(a|q|)− a. (9)

The next lemma shows how to bound the tree generating function. The proof we
give is slightly shorter than the proof given in [59], and is new as far as we know.

Lemma 4.6 ([58]). Let G = (V, E) be a graph of maximum degree at most ∆ ≥ 1 and let
v ∈ V. Fix any α > 1. Then

TG,v

(
ln α
α∆

)
≤ α.

Proof. The proof is by induction on the number of vertices of G. If |V| = 1, the state-
ment is clearly true. Next assume that |V| ≥ 2. Given a tree T such that v ∈ V(T) let
S be the set of neighbours of v in V(T). After removing v from T, the tree decomposes
into the disjoint union of |S| trees, each containing a unique vertex from S. Therefore,
writing c = ln α

α∆ , we have

TG,v(c) ≤ ∑
S⊆NG(v)

c|S|∏
s∈S

TG−v,s(c),

which by induction is bounded by

∑
S⊆NG(V)

(cα)|S| ≤ (1 + (ln α)/∆)∆ ≤ eln α = α.

This finishes the proof. �

We now combine all our ingredients to finish the proof of Theorem 4.2. Fix ∆ ≥ 2.
For a > 1 to be determined, define α = α(a) = 2− 1/a. Then if

|q| ≤ ln α

aα∆
=

ln(2− 1/a)
(2a− 1)∆

,

we have χG(1/q) , 0 for any graph of maximum degree at most ∆. Indeed, for such a
value of q , 0 we have |aq| ≤ ln α

α∆ and therefore by (9) and the previous lemma

∑
S|v∈S,|S|≥2

|λS|a|S| ≤ a(TG,v(a|q|)− 1) ≤ a(α− 1) = a(1− 1/a) = a− 1,

and so by Theorem 4.4 and Lemma 4.3 we have χG(1/q) , 0. In other words if |q| ≥
∆ 2a−1

ln(2−1/a) we have χG(q) , 0. One can determine

min
a>1

2a− 1
ln(2− 1/a)

< 6.91,

where the minimum is attained at a � 1.588. This finishes the proof sketch of Theo-
rem 4.2.

4.3.4 Recipe and relation to cluster expansion

The steps we took to prove Theroem 4.2 suggest a ‘recipe’ for proving absence of zeros
using the polymer approach:

• Express the graph polynomial as an evaluation of the multivariate independence
polynomial of an associated graph.

• Use the conditions from Theorem 4.4 (or other conditions) that guarantee the
evaluation is nonzero.

• Verify these conditions using combinatorial arguments.

Most combinatorial applications of this ‘recipe’ include various extensions and vari-
ations of the chromatic polynomial. See [85, 44, 39, 60, 59, 41, 36, 35] for some examples
in this direction.

From a statistical physics perspective both Theorem 4.2 and Theorem 4.1 are state-
ments about so-called high temperature models (in the case of Theorem 4.1, high tem-
perature means small values of λ for the independence polynomial). Surprisingly, for
some restricted families of graphs, the ‘recipe’ above can also sometimes be used at
low temperature (see e.g. [28, 46] for this in statistical physics). For example, it has
been used in combination with the interpolation method to design efficient approxi-
mation algorithms to approximate the independence polynomial at large λ on certain
subgraphs of the integer lattice Zd [57], but also on bipartite expander graphs [61]. In
fact, [61] slightly modified the approach from [57]. The idea is to use conditions like
those in Theorem 4.4 to show absolute convergence of the cluster expansion, a formal
power series of the logarithm of ZΓ((λS)), and to bound the remainder after truncat-
ing it at a suitable depth. This avoids the use of the interpolation method and may
occasionally lead to faster algorithms, but other than that is quite similar in spirit.
See [27, 30, 65, 55, 31, 71, 50, 47, 56, 32] for some results inspired by and based on this.

5 Concluding remarks

We have shown how absence of zeros allows one to design efficient algorithms to ap-
proximately compute evaluations of graph polynomials using Barvinok’s interpolation
method. A key part of this method is establishing absence of zeros for the graph
polynomials in question. A few natural questions that remain are: how do other ap-
proaches for approximate counting relate to absence of zeros, and what does presence
of zeros mean for the possibility to design efficient approximation algorithms. In this
section we will briefly address these two questions pointing the interested reader to
the relevant literature.

5.1 Absence of zeros and other algorithm approaches

As mentioned in the introduction there are two other (and older) approaches for de-
signing approximation algorithms to compute evaluations of graph polynomials: a
Markov chain based sampling approach and the method of correlation decay. We will
not discuss the workings of these approaches here, but we mention how these ap-
proaches relate to the interpolation method, or rather, how they relate to absence of
zeros.

Recently it was shown that a standard technique for proving decay of correlations
can be transformed to prove absence of zeros near the real axis [82, 66]. In the other di-
rection, some results appeared indicating that absence of zeros can be used to establish

some form of decay of correlations [52, 77]. Perhaps more surprisingly, in [1, 34] it was
shown that if a multivariate version of the polynomial has no zeros near the positive
real axis, then the associated Glauber dynamics (a local Markov chain often used in
approximate counting and sampling) mixes rapidly. These results indicate that, while
absence of complex zeros is vital for the interpolation method, it also plays a key role
(albeit in disguise) in these two other approaches for approximate counting.

5.2 Presence of zeros

In this section we discuss how presence of zeros is related to hardness of approxi-
mation. We will again specialise the discussion to the independence polynomial and
give some references to results on other polynomials at the end of this section. In
what follows we shall see that presence of zeros implies hardness of approximating
the independence polynomial.

Let us first state the precise algorithmic problem in question. Let λ ∈ Q[i] (the set
of complex numbers whose real and imaginary parts are both rational) and let ∆ ∈N.
Consider the following computational problem.

Name #Hard-CoreNorm(λ, ∆)

Input A graph G of maximum degree at most ∆.

Output If ZG(λ) , 0 the algorithm must output a rational number N such that N/1.001 ≤
|ZG(λ)| ≤ 1.001N. If ZG(λ) = 0 the algorithm may output any rational number.

It is easy to show that replacing the constant 1.001 by any other constant C > 1 does
not change the complexity of the problem.16

The typical notion of hardness one considers for computational counting problems
is #P-completeness/hardness. We do not introduce the notion formally, but wish to
impress only that one does not expect a polynomial-time algorithm for a #P-complete
counting problem (just as one does not expect a polynomial-time algorithm for an
NP-complete problem). For example, the problem of exactly counting the number of
independent sets of a graph of maximum degree ∆ is known to be #P-complete [78, 86,
42] for any ∆ ≥ 3.

Returning to the problem #Hard-CoreNorm(λ, ∆), we define the sets

P∆ = {λ ∈ Q[i] | #Hard-CoreNorm(λ, ∆) is #P-hard},
Z∆ = {λ ∈ C | ZG(λ) = 0 for some graph G ∈ G∆}.

Building on [23], it was shown in [37] that the closure of the set Z∆ is contained in the
closure of the set P∆, meaning that arbitrarily close to any zero λ ∈ Z∆ there exists

16An algorithm that solves the problem above in polynomial time can also be used to solve the problem
with 1.001 replaced by (1.001)2 by running the original algorithm on the disjoint union of two copies of
the graph.

a parameter λ′ ∈ Q[i] such that #Hard-CoreNorm(λ′, ∆) is #P-hard. (A similar result
holds if instead of approximating the norm one wishes to approximate the argument of
ZG(λ).) Recall that Theorem 4.1 gives a zero-free region for the independence polyno-
mial that contains the point 0. If one can show that the maximal zero-free region of the
independence polynomial for bounded degree graphs is connected, then this would
result in an essentially complete understanding of the hardness of approximating the
independence polynomial at complex parameters on bounded degree graphs [37]. We
remark that quite recently it was shown that in the ∆ → ∞ limit this is true [18], but
unfortunately this does not give us information for any finite ∆ yet.

For some models/polynomials such as the matching polynomial [24] and the fer-
romagnetic Ising model (as a function of the external field) [29] we know that ab-
sence/presence of zeros on bounded degree graphs exactly corresponds to easiness/
hardness of approximation. For others such as the Ising model (as a function of edge
interaction) [48] a partial correspondence has been established. This suggests a pro-
gram of study to understand this connection for more models and also to understand
the phenomenon in general.

The interpolation method is clearly a powerful technique for establishing fast ap-
proximation algorithms to evaluate graph polynomials at complex parameters, but
more than that, it often seems to capture the dichotomy between parameters where
approximate computation is easy and hard.

References

[1] Yeganeh Alimohammadi, Nima Anari, Kirankumar Shiragur, and Thuy-Duong Vuong.
Fractionally log-concave and sector-stable polynomials: counting planar matchings and
more. Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,
pages 433–446.

[2] Taro Asano. Lee-Yang theorem and the Griffiths inequality for the anisotropic Heisenberg
ferromagnet. Phys. Rev. Lett., 24:1409–1411, 1970.

[3] Zonglei Bai, Yongzhi Cao, and Hanpin Wang. Zero-freeness and approximation of real
Boolean Holant problems. Theoretical Computer Science, 917:12–30, 2022.

[4] Antar Bandyopadhyay and David Gamarnik. Counting without sampling: asymptotics
of the log-partition function for certain statistical physics models. Random Structures &
Algorithms, 33(4):452–479, 2008.

[5] Alexander Barvinok. Computing the partition function for cliques in a graph. Theory
Comput., 11:339–355, 2015.

[6] Alexander Barvinok. Combinatorics and Complexity of Partition Functions, volume 30 of
Algorithms and combinatorics. Springer, 2016.

[7] Alexander Barvinok. Computing the permanent of (some) complex matrices. Found. Com-
put. Math., 16(2):329–342, 2016.

[8] Alexander Barvinok. Approximating permanents and hafnians. Discrete Anal., Paper No.
2, 34, 2017.

[9] Alexander Barvinok. Computing the partition function of a polynomial on the Boolean
cube. In A journey through discrete mathematics, pages 135–164, 2017.

[10] Alexander Barvinok. Approximating real-rooted and stable polynomials, with combina-
torial applications. Online J. Anal. Comb., (14):Paper No. 8, 13, 2019.

[11] Alexander Barvinok. Computing permanents of complex diagonally dominant matrices
and tensors. Israel J. Math., 232(2):931–945, 2019.

[12] Alexander Barvinok. Stability and complexity of mixed discriminants. Math. Comp.,
89(322):717–735, 2020.

[13] Alexander Barvinok and Nicholas Barvinok. More on zeros and approximation of the
Ising partition function. Forum Math. Sigma, 9: Paper No. e46, 18, 2021.

[14] Alexander Barvinok and Anthony Della Pella. Testing for dense subsets in a graph via the
partition function. SIAM J. Discrete Math., 34(1):308–327, 2020.

[15] Alexander Barvinok and Guus Regts. Weighted counting of solutions to sparse systems
of equations. Combin. Probab. Comput., 28(5):696–719, 2019.

[16] Alexander Barvinok and Pablo Soberón. Computing the partition function for graph ho-
momorphisms with multiplicities. J. Combin. Theory Ser. A, 137:1–26, 2016.

[17] Alexander Barvinok and Pablo Soberón. Computing the partition function for graph ho-
momorphisms. Combinatorica, 37(4):633–650, 2017.

[18] Ferenc Bencs, Pjotr Buys, and Han Peters. The limit of the zero locus of the independence
polynomial for bounded degree graphs. arXiv preprint arXiv:2111.06451, 2021.

[19] Ferenc Bencs and Péter Csikvári. Note on the zero-free region of the hard-core model.
arXiv preprint arXiv:1807.08963, 2018.

[20] Ferenc Bencs, Péter Csikvári, and Guus Regts. Some applications of Wagner’s weighted
subgraph counting polynomial. Electron. J. Combin., 28(4):Paper No. 4.14, 21, 2021.

[21] Ferenc Bencs, Péter Csikvári, Piyush Srivastava, and Jan Vondrák. On complex roots of
the independence polynomial. arXiv preprint arXiv:2204.04868, 2022.

[22] Ferenc Bencs, Ewan Davies, Viresh Patel, and Guus Regts. On zero-free regions for the
anti-ferromagnetic Potts model on bounded-degree graphs. Ann. Inst. Henri Poincaré D,
8(3):459–489, 2021.

[23] Ivona Bezáková, Andreas Galanis, Leslie Ann Goldberg, and Daniel Štefankovič. Inap-
proximability of the independent set polynomial in the complex plane. SIAM J. Comput.,
49(5):STOC18–395–STOC18–448, 2020.

[24] Ivona Bezáková, Andreas Galanis, Leslie Ann Goldberg, and Daniel Štefankovič. The
complexity of approximating the matching polynomial in the complex plane. ACM Trans.
Comput. Theory, 13(2):Art. 13, 37, 2021.

[25] Rodrigo Bissacot, Roberto Fernández, and Aldo Procacci. On the convergence of cluster
expansions for polymer gases. J. Stat. Phys., 139(4):598–617, 2010.

[26] Magnus Bordewich, Michael Freedman, Lázalo Lovász, and Dominic Welsh. Approximate
counting and quantum computation. Combin. Probab. Comput., 14(5-6):737–754, 2005.

[27] Christian Borgs, Jennifer Chayes, Tyler Helmuth, Will Perkins, and Prasad Tetali. Efficient
sampling and counting algorithms for the Potts model on Zd at all temperatures. Proceed-
ings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pages 738–751,
2020.

[28] Christian Borgs and John Imbrie. A unified approach to phase diagrams in field theory
and statistical mechanics. Comm. Math. Phys., 123(2):305–328, 1989.

[29] Pjotr Buys, Andreas Galanis, Viresh Patel, and Guus Regts. Lee-Yang zeros and the com-
plexity of the ferromagnetic Ising model on bounded-degree graphs. Forum Math. Sigma,
10:Paper No. e7, 43, 2022.

[30] Sarah Cannon and Will Perkins. Counting independent sets in unbalanced bipartite
graphs. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, pages
1456–1466, 2020.

[31] Charles Carlson, Ewan Davies, and Alexandra Kolla. Efficient algorithms for the Potts
model on small-set expanders. arXiv preprint arXiv:2003.01154, 2020.

[32] Katrin Casel, Philipp Fischbeck, Tobias Friedrich, Andreas Göbel, and J. A. Gregor
Lagodzinski. Zeros and approximations of Holant polynomials on the complex plane.
Comput. Complexity, 31(2):Paper No. 11, 2022.

[33] Sitan Chen, Michelle Delcourt, Ankur Moitra, Guillem Perarnau, and Luke Postle. Im-
proved bounds for randomly sampling colorings via linear programming. Proceedings of
the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2216–2234, 2019.

[34] Zongchen Chen, Kuikui Liu, and Eric Vigoda. Spectral independence via stability and
applications to Holant-type problems. IEEE 62nd Annual Symposium on Foundations of
Computer Science, pages 149–160, 2022.

[35] Matthew Coulson, Ewan Davies, Alexandra Kolla, Viresh Patel, and Guus Regts. Statistical
physics approaches to unique games. 35th Computational Complexity Conference, volume 169
of LIPIcs. Leibniz Int. Proc. Inform., Art. No. 13, 27. 2020.

[36] Péter Csikvári and Péter Frenkel. Benjamini-Schramm continuity of root moments of
graph polynomials. European J. Combin., 52(part B):302–320, 2016.

[37] David de Boer, Pjotr Buys, Lorenzo Guerini, Han Peters, and Guus Regts. Zeros, chaotic
ratios and the computational complexity of approximating the independence polynomial.
arXiv preprint arXiv:2104.11615, 2021.

[38] R. L. Dobrushin. Estimates of semi-invariants for the Ising model at low temperatures. In
Topics in statistical and theoretical physics, volume 177 of Amer. Math. Soc. Transl. Ser. 2, pages
59–81, 1996.

[39] F. M. Dong and K. M. Koh. Bounds for the real zeros of chromatic polynomials. Combin.
Probab. Comput., 17(6):749–759, 2008.

[40] F. M. Dong, K. M. Koh, and K. L. Teo. Chromatic polynomials and chromaticity of graphs.
World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.

[41] Fengming Dong and Xian’an Jin. Zeros of Jones polynomials of graphs. Electron. J. Combin.,
22(3):Paper 3.23, 18, 2015.

[42] Martin Dyer and Catherine Greenhill. On Markov chains for independent sets. J. Algo-
rithms, 35(1):17–49, 2000.

[43] Joanna A. Ellis-Monaghan and Iain Moffatt. Handbook of the Tutte Polynomial and Related
Topics. CRC Press, 2022.

[44] Roberto Fernández and Aldo Procacci. Regions without complex zeros for chromatic
polynomials on graphs with bounded degree. Combin. Probab. Comput., 17(2):225–238,
2008.

[45] C. M. Fortuin and P. W. Kasteleyn. On the random-cluster model. I. Introduction and
relation to other models. Physica, 57:536–564, 1972.

[46] S. Friedli and Y. Velenik. Statistical mechanics of lattice systems: a concrete mathematical intro-
duction. Cambridge University Press, Cambridge, 2018.

[47] Tobias Friedrich, Andreas Göbel, Martin S Krejca, and Marcus Pappik. Polymer dynamics
via cliques: New conditions for approximations. arXiv preprint arXiv:2007.08293, 2020.

[48] Andreas Galanis, Leslie Ann Goldberg, and Andrés Herrera-Poyatos. The complexity of
approximating the complex-valued Ising model on bounded degree graphs. arXiv preprint
arXiv:2105.00287, 2021.

[49] Andreas Galanis, Leslie Ann Goldberg, and Andrés Herrera-Poyatos. The complexity of
approximating the complex-valued Potts model. Comput. Complexity, 31(1):Paper No. 2,
94, 2022.

[50] Andreas Galanis, Leslie Ann Goldberg, and James Stewart. Fast algorithms for general
spin systems on bipartite expanders. ACM Trans. Comput. Theory, 13(4):Art. 25, 18, 2021.

[51] Andreas Galanis, Daniel Štefankovič, and Eric Vigoda. Inapproximability of the partition
function for the antiferromagnetic Ising and hard-core models. Combin. Probab. Comput.,
25(4):500–559, 2016.

[52] David Gamarnik. Correlation decay and the absence of zeros property of partition func-
tions. Random Structures & Algorithms, 2022.

[53] David Gaunt and Michael Fisher. Hard-sphere lattice gases. i. plane-square lattice. J. Chem.
Phys., 43(8):2840–2863, 1965.

[54] Heng Guo, Chao Liao, Pinyan Lu, and Chihao Zhang. Zeros of Holant problems: locations
and algorithms. ACM Trans. Algorithms, 17(1):Art. 4, 25, 2021.

[55] Tyler Helmuth, Matthew Jenssen, and Will Perkins. Finite-size scaling, phase coexis-
tence, and algorithms for the random cluster model on random graphs. arXiv preprint
arXiv:2006.11580, 2020.

[56] Tyler Helmuth and Ryan L Mann. Efficient algorithms for approximating quantum parti-
tion functions at low temperature. arXiv preprint arXiv:2201.06533, 2022.

[57] Tyler Helmuth, Will Perkins, and Guus Regts. Algorithmic Pirogov-Sinai theory. Probab.
Theory Related Fields, 176(3-4):851–895, 2020.

[58] Jeroen Huijben and Guus Regts. Private communication. 2021.

[59] Bill Jackson, Aldo Procacci, and Alan D. Sokal. Complex zero-free regions at large |q|
for multivariate Tutte polynomials (alias Potts-model partition functions) with general
complex edge weights. J. Combin. Theory Ser. B, 103(1):21–45, 2013.

[60] Bill Jackson and Alan D. Sokal. Zero-free regions for multivariate Tutte polynomials
(alias Potts-model partition functions) of graphs and matroids. J. Combin. Theory Ser. B,
99(6):869–903, 2009.

[61] Matthew Jenssen, Peter Keevash, and Will Perkins. Algorithms for #BIS-hard problems on
expander graphs. SIAM J. Comput., 49(4):681–710, 2020.

[62] Mark Jerrum. Counting, sampling and integrating: algorithms and complexity. Lectures in
Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2003.

[63] R. Kotecký and D. Preiss. Cluster expansion for abstract polymer models. Comm. Math.
Phys., 103(3):491–498, 1986.

[64] Liang Li and Guangzeng Xie. Complex contraction on trees without proof of correlation
decay. arXiv preprint arXiv:2112.15347, 2021.

[65] Chao Liao, Jiabao Lin, Pinyan Lu, and Zhenyu Mao. An FPTAS for the hardcore model
on random regular bipartite graphs. Theoretical Computer Science, 929:174–190, 2022.

[66] Jingcheng Liu, Alistair Sinclair, and Piyush Srivastava. Correlation decay and parti-
tion function zeros: Algorithms and phase transitions. SIAM Journal on Computing,
0(0):FOCS19–200–FOCS19–252, 0.

[67] Jingcheng Liu, Alistair Sinclair, and Piyush Srivastava. Fisher zeros and correlation decay
in the Ising model. J. Math. Phys., 60(10):103304, 12, 2019.

[68] Jingcheng Liu, Alistair Sinclair, and Piyush Srivastava. The Ising partition function: zeros
and deterministic approximation. J. Stat. Phys., 174(2):287–315, 2019.

[69] Jingcheng Liu, Alistair Sinclair, and Piyush Srivastava. A deterministic algorithm for
counting colorings with 2∆ colors. IEEE 60th Annual Symposium on Foundations of Computer
Science, pages 1380–1404, 2019.

[70] Ryan L. Mann and Michael J. Bremner. Approximation Algorithms for Complex-Valued
Ising Models on Bounded Degree Graphs. Quantum, 3:162, July 2019.

[71] Ryan L. Mann and Tyler Helmuth. Efficient algorithms for approximating quantum parti-
tion functions. J. Math. Phys., 62(2):Paper No. 022201, 7, 2021.

[72] Viresh Patel and Guus Regts. Deterministic polynomial-time approximation algorithms
for partition functions and graph polynomials. SIAM J. Comput., 46(6):1893–1919, 2017.

[73] Oliver Penrose. Convergence of fugacity expansions for classical systems. Statistical me-
chanics: foundations and applications, page 101, 1967.

[74] Han Peters and Guus Regts. On a conjecture of Sokal concerning roots of the independence
polynomial. Michigan Math. J., 68(1):33–55, 2019.

[75] Han Peters and Guus Regts. Location of zeros for the partition function of the Ising model
on bounded degree graphs. J. Lond. Math. Soc. (2), 101(2):765–785, 2020.

[76] Guus Regts. Zero-free regions of partition functions with applications to algorithms and
graph limits. Combinatorica, 38(4):987–1015, 2018.

[77] Guus Regts. Absence of zeros implies strong spatial mixing. arXiv preprint
arXiv:2111.04809, 2021.

[78] Dan Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82(1-2):273–
302, 1996.

[79] Gordon F. Royle and Alan D. Sokal. Linear bound in terms of maxmaxflow for the chro-
matic roots of series-parallel graphs. SIAM J. Discrete Math., 29(4):2117–2159, 2015.

[80] David Ruelle. Zeros of graph-counting polynomials. Comm. Math. Phys., 200(1):43–56,
1999.

[81] Alexander D. Scott and Alan D. Sokal. The repulsive lattice gas, the independent-set
polynomial, and the Lovász local lemma. J. Stat. Phys., 118(5-6):1151–1261, 2005.

[82] Shuai Shao and Yuxin Sun. Contraction: a unified perspective of correlation decay and
zero-freeness of 2-spin systems. J. Stat. Phys., 185(2):Paper No. 12, 25, 2021.

[83] J. B. Shearer. On a problem of Spencer. Combinatorica, 5(3):241–245, 1985.

[84] Allan Sly and Nike Sun. Counting in two-spin models on d-regular graphs. Ann. Probab.,
42(6):2383–2416, 2014.

[85] Alan D. Sokal. Bounds on the complex zeros of (di)chromatic polynomials and Potts-
model partition functions. Combin. Probab. Comput., 10(1):41–77, 2001.

[86] Salil P. Vadhan. The complexity of counting in sparse, regular, and planar graphs. SIAM
J. Comput., 31(2):398–427, 2001.

[87] Eric Vigoda. Improved bounds for sampling colorings. J. Math. Phys., 41(3):1555–1569,
2000.

[88] David G. Wagner. Weighted enumeration of spanning subgraphs with degree constraints.
J. Combin. Theory Ser. B, 99(2):347–357, 2009.

[89] Dror Weitz. Counting independent sets up to the tree threshold. Proceedings of the 38th
Annual ACM Symposium on Theory of Computing, pages 140–149, 2006.

[90] D. J. A. Welsh. Complexity: knots, colourings and counting, volume 186 of London Mathematical
Society Lecture Note Series. Cambridge University Press, Cambridge, 1993.

	Introduction
	Connection to statistical physics
	Preliminaries

	Barvinok's interpolation method
	Polynomial running time for bounded degree graphs
	Computing the coefficients of the independence polynomial efficiently
	Computing the coefficients of other graph polynomials efficiently

	Techniques for proving absence of zeros
	Recursion and ratios
	Stability of multivariate polynomials
	The polymer method
	The chromatic polynomial
	The chromatic polynomial as a multivariate independence polynomial
	Zero-freeness conditions and their verification
	Recipe and relation to cluster expansion

	Concluding remarks
	Absence of zeros and other algorithm approaches
	Presence of zeros

