THE CoNCURRENCY COLUMN

BY

NoBuko YosHIDA

Department of Computing
Imperial College London

180 Queen’s Gate, London, SW7 2AZ
n.yoshida@imperial.ac.uk, http://mrg.doc.ic.ac.uk/

http://www.doc.ic.ac.uk/
http://www.doc.ic.ac.uk/
http://mrg.doc.ic.ac.uk/

INTERVIEWS WITH THE 2021 CONCUR
TEST-OF-TIME AWARD RECIPIENTS

Luca Aceto
ICE-TCS, Department of Computer Science,
Reykjavik University
Gran Sasso Science Institute, L’ Aquila

Nathalie Bertrand
Univ Rennes, Inria, CNRS, IRISA

Nobuko Yoshida
Department of Computing, Imperial College London, UK

Abstract

Last year, the CONCUR conference series inaugurated its Test-of-Time
Award, purpose of which is to recognise important achievements in Con-
currency Theory that were published at the CONCUR conference and that
have stood the test of time. This year, the following four papers were chosen
to receive the CONCUR Test-of-Time Awards for the periods 1994-1997
and 1996-1999 by a jury consisting of Rob van Glabbeek (chair), Luca de
Alfaro, Nathalie Bertrand, Catuscia Palamidessi, and Nobuko Yoshida:

e David Janin and Igor Walukiewicz. On the Expressive Completeness
of the Propositional mu-Calculus with respect to Monadic Second Or-
der Logic [3].

e Uwe Nestmann and Benjamin C. Pierce. Decoding Choice Encod-
ings [4].

e Ahmed Bouajjani, Javier Esparza, and the late Oded Maler. Reacha-

bility Analysis of Pushdown Automata: Application to Model-
checking [2].

e Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Moshe Y.
Vardi. Alternating Refinement Relations [[1].

This year, the second paper was live-interviewed by Nobuko Yoshida; the
third paper was interviewed by Nathalie Bertrand and the forth paper was
interviewed by Luca Aceto. Adam Barwell and Francisco Ferreira helped
making the article from the live interview by Yoshida.

1 Interview with David Janin and Igor Walukiewicz

Luca: You receive the CONCUR ToT Award 2021 for your paper ‘On the Ex-
pressive Completeness of the Propositional mu-Calculus with respect to Monadic
Second Order Logic’, which appeared at CONCUR 1996. In that article, you
showed what I consider to be a fundamental result, namely that the mu-calculus
and the bisimulation-invariant fragment of monadic second-order logic (MSOL)
have the same expressiveness over transition systems. Could you tell us how you
came to study that question and why do you think that such a natural problem
hadn’t been answered before your paper?

David and Igor: At that time we were interested in automata characterizations of
the expressive power of MSOL and the mu-calculus. In 1988 Damian Niwinski
has shown that over binary trees the mu-calculus and MSOL are expressively
equivalent. When it appeared, the result was quite surprising, even unexpected.
The two logics are not equivalent on unranked trees where the number of children
of a node is not fixed. In consequence, the logics are not equivalent over the class
of all transition systems.

In 1983 van Benthem showed that modal logic is equivalent to the bisimulation
invariant fragment of first-order logic. When we have learned about this result we
have realized that our automata models can be used to prove a similar statement
for the mu-calculus.

The method of van Benthem could not be applied to MSOL, the automata
based method looks like the only way to prove the result.

Luca: I am interested in how research collaborations start, as I like to tell
‘research life stories’ to PhD students and young researchers. Could you tell us
how you started your collaboration?

David: I came to meet Igor when he was visiting Bordeaux in fall 93, present-
ing his first completeness result on a proof system for the mu-calculus (LICS 93).
I was myself starting a PhD considering modal logic for specifying (various forms
of) nondeterminism in connection with (power)domain theory (FSTTCS 93).

We eventually met again in Auvergnes (centre of France) for the Logic Col-
loquium in summer 94. There, spending time in the park nearby the conference
venue or walking around the volcanoes, we elaborated a notion of nondetermin-
istic automata for the modal mu-calculus. This result can be seen as extending
the notion of ‘disjunctive’ normal form from propositional logic to the modal mu-
calculus. I remember that Igor later used this result for his second completeness
result for Kozen’s proposed proof system for the mu-calculus (LICS 95). Thanks
to Igor, this was for me the occasion to learn in depth the link between mu-calculus
and tree automata.

Incidentally, Johan van Benthem was also attending this Logic Colloquium
and we both attended his lecture about the bisimulation-invariant fragment of FO.
Although we did not yet realize we could generalize his result to MSO, this surely
increased our own understanding of logic.

Our first result (Automata for the mu-calculus) was presented at MFCS in 95
in Prague, where Igor and I met again. It could have been there, or a little later,
that we eventually postulated our bisimulation-invariance result. However, proof
arguments were only found later while exchanging emails. It was a bit amazing
for me that we could discuss that way across Europe: email started to be heavily
used only in the late 80’s. In my head, Poland was far, far away from France.

Yet our collaboration was eventually in the line of an ongoing collaboration
between Warsaw and Bordeaux, involving researcher like Arnold (my supervisor)
and Niwinski (Igor’s mentor), both major specialists in the area of automata and
logics. Somehow, as a followup, together with Aachen (Gradel and Thomas) and
many other sites, the GAMES European network was later created, and, almost at
the same time, Igor came to Bordeaux as a CNRS researcher.

Luca: As you mentioned earlier, van Bentham has shown that modal logic has
the same expressive power as the bisimulation-invariant fragment of first-order
logic. In some sense, one may consider your main result as the extension of van
Bentham’s theorem to a setting with fixed-points. Could you briefly describe at a
high level the challenges that fixed-points created in your w ork? To y our mind,
what was the main technical achievement or technique in your paper?

David and Igor: Sure our result is similar to van Benthem’s, and, as men-
tioned above, his own presentation in 1993 was very inspiring. However, his
proof relies on compactness of first-order logic and cannot be adapted to monadic
second-order logic. In our proof, we have used automata-theoretic techniques.

In our previous works we had developed automata models for MSOL and the
mu-calculus on unranked trees. Every transition system is bisimulation invariant
to a tree obtained by the unfolding of the transition system. Crucially for our
result, it is also equivalent to a tree where every subtree is duplicated infinitely
many times. A short pumping argument shows that on such trees the two automata
models are equivalent.

Luca: Did any of your subsequent research build explicitly on the results
and the techniques you developed in your award-winning paper? Is there any
result obtained by other researchers that builds on your work and that you like in
particular?

David and Igor: Around that time Marco Hollenberg and Giovana D’ Agosti-
no used our automata-theoretic methods to show the uniform interpolation prop-

erty for the mu-calculus.

In collaboration with Giacomo Lenzi (postdoc in Bordeaux from Pisa), David
considered the bisimulation-invariant fragment of various levels of the monadic
quantifier alternation hierarchy. It turns out that monadic X ; corresponds to reach-
ability properties and monadic X, corresponds to Biichi properties, respectively
the first and second levels of the mu-calculus hierarchy.

It could be the case that all mu-calculus can be translated into monadic X5 for-
mulas — this is true when restricting to deterministic transition systems. However,
with nondeterminism, such a result seems difficult to achieve.

Incidentally, Giacomo and David also proved that adding limited counting
capacity to modalities yields a fixed-point calculus equivalent to the unravelling
invariant fragment of MSO (LICS 2001).

In 1999, in collaboration with Erich Gridel, Igor has used similar techniques
to define and study guarded fixed-point lo gic. Subsequently, several other fixed-
point logics of this kind were proposed with the most expressive one probably
being guarded negation logic with fixed points of Bardny, ten Cate, and Segoufin
from 2015. These works all use automata-theoretic methods to some extent.

Luca: Your paper was written while Igor was at BRICS at the University
of Aarhus. Igor, what was it like to be at BRICS @ Aarhus at that time? What
role do you think centres like BRICS played and can play in the development of
theoretical computer science? Do you think that your stay at BRICS had a positive
impact on your future career?

Igor: My stay at BRICS had definitively a beneficial impact on me . At that
time BRICS was one of the most active centers world wide in theoretical computer
science. Being able to see and talk to so many different people, being exposed to
so many different ideas, was very enriching. BRICS was a meeting place allowing
scientists to have a better and larger vision of our field. BRICS contributed to the
development of many people involved, as well as to the excellence of Aarhus, and
even Denmark as a whole, in our field.

Luca: I have been brought up in the concurrency-theory tradition and I feel
that bisimulation-invariant properties are the interesting ones over transition sys-
tems. Do you think that we actually ‘need’ logics that allow one to specify prop-
erties of transition systems that are not bisimulation invariant?

David: That was the idea indeed and the mu-calculus is the good logic for
that. From a mathematical perspective, bisimulation is a fairly natural definition.
In some sense, bisimulation equivalence is a greatest co-congruence.

However, I always suspected that bisimulation is too fine grained as an equiv-
alence for concurrency. When modelling realistic systems, nondeterminism arises

either as controllable (angelic) or uncontrollable (demonic) choice. In this case,
the right equivalence to be considered is simulation equivalence.

The funny thing is that David Park, who ‘invented’ bisimulation, was actually
studying equivalence of J.R. Biichi’s deterministic string automata where, because
of determinism, bisimulation turns out to be equivalent to simulation equivalence.
It is only after Matthew Hennessy and Robin Milner’s work in concurrency that
bisimulation was applied to nondeterministic behaviors.

Igor: In the context of XML and semistructured data, bisimulation is not
relevant. One of the prominent queries in XPATH is whether a value appears
twice — that is clearly not a bisimulation-invariant property. So while XPATH
looks very close to PDL or the mu-calculus, many techniques and questions are
very different. The other context that comes to mind is controller synthesis, where
we ask for a transition system of a specific shape, for example, with self-loops on
certain actions. Such self loops represent invisibility of the action to the controller.

Luca: What are the research topics that you find most interesting right now?
Is there any specific problem in your current field of interest that you’d like to see
solved?

David: In Logic for Computer Science, there have always been two kinds of
approaches: model theory that eventually led to model checking and proof theory
that eventually led to typed programming languages.

Twenty years later, aiming at designing and implementing real concurrent sys-
tems, especially for interactive arts, I realized that the latter approach was (at least
for me) a lot more effective. Building concurrent systems by synchronizing arbi-
trary sub-systems sounded for me like unstructured programming; it was essen-
tially unmaintainable. Monads and linear types, among many other approaches in
typed functional programming, surely offered interesting alternatives to process
calculi approaches.

Igor: In the context of the paper we discuss here, I am surprised by devel-
opments around the model-checking problem for the mu-calculus. After some
years of relative calm, Calude, Jain, Khoussainov, Li and Stephan have made an
important breakthrough in 2017. Yet, despite big activity after this result, the
research on the problem seems to have hit one more barrier. Another old promi-
nent problem is decidability of the alternation hierarchy for the mu-calculus. The
problem is: given a formula and a number of alternations between the least and
the greatest fixed-points, decide if there is an equivalent formula with this number
of alternations. Even when the number of alternations is fixed we do not know the
answer. Among others, Thomas Colcombet and Christof Loeding have done very
interesting work on this subject.

Luca: What advice would you give to a young researcher who is keen to start
working on topics related to automata theory and logic in computer science?

David: From the distance, our result sounds to me as a combination of both
technique and imagination. Technique for mastering known results and imagina-
tion for finding original open problems, especially between research fields that are
not (yet) known to be deeply related. As a matter of fact, I felt lucky finding such
a fresh open problem that was (probably) a lot easier to solve than many other
well-known hard problems.

Technique comes from hard work. It is obviously essential but somehow easy
to teach and evaluate in academia. Imagination comes from curiosity. It is still
essential but a lot more difficult to teach. So young researchers must develop by
themselves their own imagination and curiosity.

In the automata-theory branch of logic in computer science, the remaining
open problems seem fairly hard, so I believe that it is the imagination of young re-
searchers that will make the difference for setting up new interesting directions of
research, especially those who are ready to look aside, towards other areas of logic
in computer science and, because it can be a considerable source of motivation,
funny applications.

Igor: Naturally, the field is much broader these days than it was 25 years
ago. It is crucial to master some techniques. For this, working on variations of
already solved problems is a good method. Yet, I think it is important to escape
the cycle of constant modifications of existing problems and their solutions. I
would suggest that, at some moment, one should find an important open problem
that one is passionate about and should spend a considerable effort on it. I admit
that this is a matter of a taste, personality, and having a sufficiently comfortable
situation to afford such a risk. Another good option is to look at frontiers with
other areas: distributed computing, semantics, control theory, security.

2 Interview with Uwe Nestmann and Benjamin Pierce

Nobuko: You receive the CONCUR 2021 Test-of-Time Award for your paper
“Decoding Choice Encodings”, which appeared at CONCUR 1996. Could you
tell us briefly what lead you to embark on studying the expressiveness of choice
in the asynchronous pi-calculus?

Uwe: I did my diploma thesis in "91. I was working on a topic that had to
do with communicating functions. I built a lambda calculus with communication
in it. It was a typed lambda calculus and it was strong enough to type the Y-
combinator. I went to Edinburgh and presented that at the Concurrency Club, and

they asked me, “who is your supervisor?”. 1 didn’t really have one, because I was
mostly self-driven those days. What they told me is that it’s better to not work
on this topic without a competent supervisor. The second piece of advice was to
get a supervisor first and then look for a t opic. So I found B enjamin. Benjamin
had this wonderful project at the time on trying to make a programming language
out of the pi-calculus and, in that language, choice encodings (or at least choice
operators) played a role. He invited me to visit him in Paris, where he was on
six-months’ leave, I think.

Benjamin: It was actually a “nested postdoc.” I did three postdocs after fin-
ishing my PhD at CMU: one in Edinburgh, one in Paris, and one in Cambridge.
The Paris one was nested inside the Edinburgh one.

Uwe: I was in Paris for one week, and Benjamin told me to try programming
in his new programming language, PicT. I tried to write down the dining philoso-
phers problem, in a way such that I could use an abstraction to pick up forks in
either order, and I wanted to instantiate it with left and right, and right and left,
but the Pict language didn’t allow me to do so. Behind was the interplay between
choice and abstraction (and instantiation) and that was the start of all of it from my
point of view. Then I wrote up an exposé and I ended up actually working on just
a third of that for my PhD thesis. And of course, there were technical reasons for
Benjamin and Dave [Turner] at the time for being interested in choice constructs.

Benjamin: Of course, Dave Turner is the most important name that needs to
be mentioned here, besides obviously Robin Milner. All of this was happening
under the umbrella of Robin’s wonderful work on pi-calculus and the amazing
group that he had assembled at the time. He had this incredible set of students,
including Dave Turner and David Sangiorgi and Peter Sewell, doing all sorts of
things with pi-calculus. Dave, besides being a first-class hacker, was also a really
good theoretician. He truly married the two. He and I started talking at some
point about what kind of programming language would you get if you treated the
pi-calculus like the Lisp people treated the lambda calculus. What that led to was a
lot of different language designs based on different versions of the pi-calculus, but
we kept wanting to make it simpler and simpler. Partly because we were thinking
of it as possibly even a distributed language, not just a concurrent language, and as
everybody knows, the choice operator — in the full-blown pi-calculus or CCS sense
— is not a real thing in distributed systems: it’s not implementable. So we were
trying to make the underlying calculus simpler and simpler, and eventually wound
up with this programming language with no choice at all. But as Uwe discovered,
there are things that you might want to do where choice is the natural primitive,
like dining philosophers, which raises the question of how much of it can you
get just by programming on top of plain parallel composition plus messages on
channels. We found that programming up a restricted form of choice was a little
tricky but not that tricky. What was really tricky, though, was justifying that it was

correct. The reason why it turned into a whole dissertation for Uwe, was because
the well-known notions of correctness that were lying around did not apply to this
situation. I remember being totally astonished at the length and technicality of the
final proof that Uwe ended up doing.

Nobuko: Did you imagine at the time that your award-winning paper would
have so much impact on the area of expressiveness in concurrency theory, and
how do you feel now?

Benjamin: Maybe Uwe did; I did not. I think we were just following our
noses.

Uwe: Actually, I would say “yes” and “no”. The “no” is when it came to the
CONCUR acceptance, I got the impression that we just about made it because the
competition was so tough and the pi-calculus was really hot at that time. There
were six or seven pi-calculus papers in the conference in the end (I don’t know
how many were in the submission pool). The tiny “yes” that I would like to say
is because Kohei [Honda] had foreseen it. When I gave the presentation at the
Newton Institute just in autumn 95 — that was the workshop that Benjamin or-
ganised on concurrent high-level languages — Kohei came to me after the talk and
said something like, “maybe you don’t know yet, but you will be known for this”.
I can’t remember the exact wording. I think he called it “Nestmann’s Theorem”
or something. Me, a PhD student, the first time in front of this crowd of expert
people and then he tells me something like that. I didn’t believe him. Of course
not.

Benjamin: Kohei was ahead of his time in so many ways.

Nobuko: Could you tell us what the research environment was like in Edin-
burgh and the UK as a whole at that time and how it has influenced the rest of
your career?

Benjamin: I came as a postdoc to Robin’s group. I was the last postdoc of
Robin’s in Edinburgh, and then travelled with him to Cambridge, where Peter
Sewell and I were his first p ostdocs. I would say that both Edinburgh and Cam-
bridge at the time, and still, were just incredible. In Edinburgh you had Milner,
you had [Gordon] Plotkin, you had Don Sannella, you had students around you
like Martin Hofmann and Philippa Gardner and Marcelo Fiore, and the list goes
on and on. You had other postdocs like Randy Pollack. It was just an incredible
place. People talking about amazing, deep, mind-bending things all the time. It
was particularly an amazing place for thinking about concurrency. There were a
lot people breaking new ground.

Nobuko: Benjamin, how did that experience influence your current research?
Benjamin: For one thing, it solidified my interest in language d esign. The

whole Pict experience was so fruitful. It was so much fun working with Dave on

implementing this interesting language, and both the design and the programming
that we did in Pict gave rise to so many interesting questions. For example, it
led us to do a bunch of thinking about type systems for concurrency, and I can
see echoes of those ideas in the work that you, Nobuko, and colleagues have
done more recently with session types. Though I don’t consider myself a core
concurrency researcher any more, the experience gave me an appreciation for the
theory of concurrency that has drawn me back to the area over and over.

Nobuko: Uwe, how did it influence your research?

Uwe: I did my PhD in Erlangen (University of Erlangen-Niirnberg), which
was a place that was not so much known at that time for theory, and especially
not for concurrency theory. I had the opportunity by a bilateral travel exchange
programme between these two universities pushed by my other supervisor, Terry
Stroup, at that time. And when I came into Edinburgh, not only was there so much
competence around, which is mainly what Benjamin summarised, but there was so
much openness. There was so much openness for any kind of ideas. So much cu-
riosity and joy. So I was very lucky that I could regularly, every couple of months,
visit the LFCS for a few days. There, I was pumped up with content and ideas,
and did a presentation in the pi club in Robin’s tiny office, with almost ten people
sitting around a tiny blackboard, listening to my ideas and my problems. It was
just unbelievable at this time. That kind of culture and atmosphere was so great. I
traced it back, in May or June ’95, since we’re talking about this particular paper,
it was culminating in the crucial part where I was just before proving choice en-
codings correct. I only needed two ingredients. One came a week later by Davide
Sangiorgi posting, for the first time, a short note on asynchronous bisimilarity.
And the other was that we were rediscovering, mostly together in the pi club with
Ole-Hggh Jensen and Robin Milner, the notion of coupled similarity. Both Ole
and Robin had different ideas and came to the same conclusion. I came back to
Erlangen and found the old paper on coupled similarity by [Joachim] Parrow and
[Peter] Sjodin and within a week all of the pieces were just about there. I “simply”
had to write down the details and convince myself that it went all the way through.
That was the crucial moment and without Edinburgh, without this culture, these
possibilities, this openness, it would not have happened and maybe I would not
even have become a professor in Berlin. Just because of this tiny situation and
getting together of bright people.

Nobuko: Studying expressiveness this way was quite new and at the beginning
at that time, so you probably cared a lot about presentation and how to communi-
cate your ideas. Do you have any comments about this aspect? I found your paper
is still very readable and very clearly written for such a subtle paper. How did you
go about writing with this in mind? Apart from technical details.

Uwe: [was a great fan of Benjamin’s presentation and communication skills
at that time. I was seeing him on stage and reading his papers and I had the
possibility to closely interact with this impressive guy and learn from him. Just
recently, I learnt about a citation that summarises this approach about writing:
“Do not try to write such that you are understood. Try to write such that you
cannot be misunderstood.” 1 think this expresses precisely what I think I learnt
back then in trying to get this paper out, and making these subtle observations,
and finding the right n otation. It’s often underestimated how important the role
of good notation is for getting things across. The same goes for graphical pre-
sentations. And then, polishing, polishing, polishing, polishing. “Get simpler
sentences,” Benjamin always said. I’'m German, you know, we like complicated
constructions which are somewhat nice and deeply nested. I learnt at the time to
get it as simple as possible. Presentations were another thing. I found my pre-
sentation back at the Newton Institute again and I remember I had this table of
contents written with ABCDE, which were the initial letters of the concepts that I
presented: Asynchrony, Bisimulation, Coupled similarity, Decoding, and I think
E was for End or something. I obviously like playing with words, and I admire
the power and joy of well-chosen language.

Nobuko: I do remember your presentation. You highlighted a coupled simu-
luation as a part of Rob [van Glabbeek]’s famous diagram at branching bisimilar-
ities” CONCUR paper. I still remember your presentation at Newton Institute.

Benjamin: I have always cared a lot about good writing. Communicating
ideas is really one of the most important parts of an academic’s job. So it feels
important to acknowledge the people I learned about writing from. The first was
Don Knuth — his level of attention to writing, among all the other things he did,
is totally inspiring to me. The other was John Reynolds, who was one of my
two supervisors as a PhD student and who is the most careful writer that I’ve
ever worked closely with. He gave me one time a draft of one of his papers to
proofread, and I said to myself, “Aha, this is my chance to get back at him for all
the mistakes and flaws he has found in my writing over the y ears!” So I started
reading it, and I got more and more frustrated because I couldn’t find anything
to improve. Anything at all! In the whole paper — not a comma, not a notational
choice, not the way something was worded. Nothing. That experience was both
an inspiration and a humbling lesson to me.

The biggest thing I've learned over the years about writing is that the biggest
ingredient of good writing is exactly what Uwe brought to this paper: the will-
ingness to iterate until it’s good. Good writers are people that stop polishing later
than bad writers.

Nobuko: How much of your later work has built on your award-winning pa-
per? What follow-up result of yours are you most proud of and why?

Uwe: [would like to mention three. Funnily, neither of them was in the decade
following the paper. The reason may be because I was dragged into other projects,
having to do with security protocols, pi-calculus, and object calculi. (1) By acci-
dent, I got back in contact with Ursula Goltz, who was one of my PhD referees:
she was working on a project on synchronous and asynchronous systems and she
asked me for literature because she knew I was digging deep in the 80s about re-
sults on the first CSP implementations. In the course of this project, I got back to
actually directly building upon my PhD work, and I found Kirstin Peters, at that
time a PhD student, who got interested in that. We found a number of remark-
able observations having to do with distributed implementability and notions of
distributability and what this may have to do with encodings between calculi. We
discovered a hierarchy of calculi where you can very easily see which of them are
at the same level of distributed implementability. We found that the asynchronous
pi-calculus is actually not fully implementable in a distributed system, like many
others. There is the ESOP paper in 2013, which I’m very proud of. Kirstin pushed
this reasearch much further. (2) Another follow-up work concerns the notion of
correctness that we were applying in the awarded paper, it was a lot about a direct
comparison between terms and their translations. Not by plain full abstraction on
two different levels and having an if and only if, but a direct translation so you
could not distinguish a term from its translation. This kind of observation led to
a rerun of, say, the research on what we actually want from an encoding. What is
a good criterion for a good encoding? This culminated in the work with Daniele
Gorla where we criticised the notion of full abstraction in the sense that it’s a very
important notation but you can easily misuse it and get to wrong results or useless
results. (We also emphasised the importance of operational correspondence, and
Daniele went on to establish his, by now, quite standard and established set of
criteria for what a good encoding is.) That is a nice highly abstract paper with
Daniele in Mathematical Structures in Computer Science in 2016, only, so also
well, well after the CONCUR paper in 1996. (3) In just the last two or three
years, my PhD student Benjamin Bisping finally studied algorithms and imple-
mentations for checking coupled similarity. We found an amazing wealth of new
views on these kinds of equivalences that are slightly weaker than weak bisim-
ilarity. So back to the roots, in a sense, to what we were doing 25 years ago.
(Like Kirstin Peters and Rob van Glabbeek who further showed that coupled sim-
ilarity is in fact very closely connected to encodings, in general.) Seeing these
developments makes a lot of fun.

Nobuko: This was a TACAS paper, right?

Uwe: Yes, and we also published the survey article “Coupled Similarity —
The First 32 Years”, for the Festschrift for Robert van Glabbeek. It’s basically an
advertising paper for this great notion of equivalence, which is highly underesti-
mated. It’s, in a sense, much better than weak bisimilarity. Especially if you’re

interested in — and this is my favourite domain — distribution, distributability, dis-
tributed implementations.

Nobuko: Benjamin, do you have any further comments?

Benjamin: For me, the answer is a little more oblique. I haven’t written pa-
pers about choice encodings and things like that, besides this one. But what it
did for me was to really solidify my interest in the asynchronous pi-calculus as a
foundation for programming languages — and as a foundation for thinking about
concurrency — because this paper, Uwe’s result, teaches us that the asynchronous
pi-calculus is more powerful than it looks — powerful enough to do a lot of pro-
gramming in. You know there’s this famous quote attributed to Einstein, “Make
everything as simple as possible, but no simpler.” 1 felt like the asynchronous pi-
calculus was kind of “it” after seeing this result. And that calculus then became the
foundation for a whole bunch of my later work on type systems for concurrency
and language design.

Uwe: Actually the encodings we did back then went into what is now called
the “localised asynchronous pi-calculus”, but it simply wasn’t yet known back
then. The localised asynchronous pi-calculus is at this perfect level of distributed
implementability, as we know by now.

Nobuko: This is partly also Massimo Merro did with Davide Sangiorgi, right?

Uwe: Yes, they did this few years later, towards the end of the *90s.

Nobuko: What do you think of the current state and future directions of the
study of expressiveness in process calculi, or more generally, concurrency theory
as a whole?

Uwe: Back then, in Cambridge, I was having discussions with Peter Sewell.
Quite many of them. At the time, we were making fun by saying, “now we know
how to do process calculi, we can do five of them for b reakfast.” We know the
techniques, we know how to write down the rules, we know what to look for in
order to make it good. And I would say that for studying encodings nowadays it’s
kind of the same level of maturity; we know what to look for when writing down
encodings, pitfalls to avoid, and it’s done. So what I found most interesting today,
is that often enough, the proximity between encodings and actually doing imple-
mentations is very close and that is may be because the maturity of programming
languages we can use is much higher. We can use convenient abstractions in order
to more-or-less straightforwardly write down encodings.

What’s going on? Current state and future directions. The EXPRESS/SOS
workshop is still alive and kicking. It attracts great papers and not that many are
submitted but typically they’re great papers and I think that’s good. I think we had
an impact on concurrent programming, and for example, if you look at Google
Go, the concurrency primitives that you find in there is pretty much a process

calculus. It’s message passing, and choice, and even mixed choice, and stuff like
that. I cannot say right now that there are deep, deep, deep questions to be solved
about encodings except for finding out what Robert van Glabbeek’s criteria have
to do with Daniele Gorla’s criteria. There is an ongoing debate, but the issues are
quite technical. What could use more research is typed languages, typed calculi,
and typed encodings. It has been done and we have many nice results, but I think
there are still some open questions on what the ideal criteria should be on those.

Nobuko: What advice would you give a young researcher interested in work-
ing on concurrency theory and process calculus like today?

Benjamin: My best advice for people that want to do theory is: keep one
foot in practice. Don’t stop building things. Because that’s the way you find
interesting problems, it’s the way you keep yourself grounded, it’s the way you
make sure that the directions you’re looking and the questions that you’re asking
have something to do with . ..something! It’s the way to stay connected to reality
while also generating great questions.

Nobuko: Uwe, do you have anything to add to that?

Uwe: Having a foot in practice is also good for actually checking and finding
mistakes in your reasoning. Building systems not only for finding problems but
also for finding out that you have a problem in your t hinking. A part from that,
I would not like to push for any particular area for concurrency theory. I mean,
concurrency theory is incredibly wide. My advice is: get the best possible su-
pervisor that you can find and then work on his project. I think this is very good
advice. Be patient, dig deep. This is very general advice. Never give up. It took
me two years until, in one week, the pieces fell together. So be patient, dig deep,
and train your communication skills, practice networking. All the general things.
Ah, and maybe what I found very useful for my own career: learn the basics and
the history of your field. Understand what has already been found and what that
means even twenty years after. [learned a lot from the early 80s papers that I was
mentioning beforehand on first implementations of the communication primitives
of CSP. There is one published supposedly deadlock-free algorithm, which almost
twenty years later was discovered to be incorrect. The proof was incorrect; it was
not actually deadlock free. So, work on hard problems, dig deep, be patient. And
communicate well. This is also the best way to get help.

Nobuko: Wow. Anyone who can satisfy everything would be quite a fantastic
student. (Laughs.) Like you, Uwe, you know.

Nobuko: This is the last question: what are the research topics that currently
excite you the most? Can I ask Benjamin first?

Benjamin: I will name two. One is machine-checked proofs about real soft-
ware. Over the past fifteen or twenty years, the capabilities of proof assistants,

and the community around them, have reached the point where you can really use
them to verify interesting properties of real software; this is an amazing opportu-
nity that we are just beginning to exploit.

On a more pragmatic level, I’'m very interested lately in testing. Specifi-
cally, specification-based (or property-based) testing in the style popularised by
QuickCheck. It’s a beautiful compromise between rigor and accessibility. Com-
pared to the effort of fully verifying a mathematically stated property, it is incred-
ibly easier and lower-cost, and yet, you can get tremendous benefit, b oth from
the process of thinking about the specification in the mathematical way that we’re
used to in this community and from the process of testing against, for example,
randomly generated or enumerated examples. It’s a sweet spot in the space of
approaches to software quality.

Nobuko: These things are still very difficult for concurrency or distributed
systems. Do you have any comment because proof assistants for concurrency
theory is, I think, still quite difficult compared to hand-written proof.

Benjamin: Yes, in both domains — both verification and testing — concurrency
is still hard. I don’t have a deep insight into why it is hard in the verification
domain, beyond the obvious difficulty that the properties you want are subtle; but
in the testing domain, the reason is clear: the properties have too many quantifier
alternations, which is hard for testing. Not impossible — not always impossible,
anyway — but it raises hard challenges.

Uwe: There’s a recurring pattern in what I like doing and that is always to do
with looking at different levels of abstractions. You can think of it in terms of en-
codings or as a distributed system, and I was always wondering about the relation
between global (higher-level) properties and local (lower-level) implementation
of systems. And throwing formal methods, formal models, and theories at this
problem has always been what I liked, and I still do that, nowadays again, more
on fault-tolerant distributed algorithms. Maybe also because of the recent hype
due to blockchain and the strong interest in practical fault-tolerant Byzantine al-
gorithms, and so on. And, here I meet Benjmain again, at best doing mechanical
verification of those. Mechanical verification is still hard and you can easily pull
PhD students into a miserable state by dragging them onto a problem that takes
an awful lot of time, and then you get out one paper, with the proof in Isabelle,
in our case. On the other hand, it’s getting more and more a tool that we just
use. The more you’ve done, using a proof assistant, the more you integrate it into
your everyday life. Some students, as a standard, test their definitions and their
theorems and do their proofs in Isabelle and we now even have bachelor students
using that. Good ones, I mean bright ones, of course, but it’s becoming more and
more an everyday thing. The other idea: Benjamin, you’re well-known also for
the software foundations series. I don’t know whether you’ve done pedagogical
research, learning theory, on top of that in the following sense. What we are inter-

ested in, just recently, is understanding how people learn how to do proofs. It’s a
long, difficult, mental process and there are a number of theories about this actu-
ally works, and whether this works, and there’s magic involved, and whatnot. And
getting used to, of course. Learning from patterns. But then, what could be the
impact of using proof assistants for learning how to do proofs? Does it actually
help? Or does it actually hinder?

Benjamin: It turns people into hackers. (Laughs.)

Uwe: Yeah, yeah, yeah. We’re talking about computer science students, not
maths students, right? Programming is proving, proving is programming. This is
of course a slogan from type theory, but one may actually use it as a motivation
to write down first proofs, getting feedback from the proof assistant, and go on
from there. This is one of the interests that we have, in actually understanding this
process of learning how to do proofs.

Nobuko: I now conclude this interview. Thank you both very much for giving
us your time.

3 Interview with Ahmed Bouajjani and Javier Es-
parza

Nathalie: You receive the CONCUR ToT Award 2021 for your paper with Oded
Maler Reachability Analysis of Pushdown Automata: Application to Model-Checking,
which appeared at CONCUR in 1997. In that article, you develop symbolic tech-
niques to represent and manipulate sets of configurations of pushdown automata,
or even of the broader class of alternating pushdown systems. The data struc-
ture you define to represent potentially infinite sets of configurations is coined
alternating multi-automata, and you provide algorithms to compute the set of pre-
decessors (pre*) of a given set of configurations. Could you briefly explain to our
readers what alternating multi-automata are?

Ahmed: The paper is based on two ideas. The first one is to use finite automata
as a data structure to represent infinite sets of configurations of the pushdown au-
tomaton. We called them multi-automata because they have multiple initial states,
one per control state of the pushdown automaton, but there is nothing deep there.
The second idea is that this representation is closed under the operation of com-
puting predecessors, immediate or not. So, given a multi-automaton representing
a set of configurations, we can compute another multi-automaton representing all
their predecessors. If you compute first the immediate predecessors, then their
immediate predecessors, and so on, you don’t converge, because your automata
grow bigger and bigger. The surprising fact is that you can compute all prede-
cessors in one go by just adding transitions to the original automaton, without

adding any new states. This guarantees termination. Later we called this process
“saturation”.

Once you can compute predecessors, it is not too difficult to obtain a model-
checking algorithm for LTL model checking. But for about branching-time logics
you must also be able to compute intersections of sets of configurations. That’s
where alternation kicks in, we use it to represent intersections without having to
add new states.

Nathalie: Could you also tell us how you came to study the question addressed
in your award-winning article? Which of the results in your paper did you find
most surprising or challenging?

Javier: In the late 80s and early 90s many people were working on symbolic
model-checking, the idea of using data structures to compactly represent sets of
configurations. BBDs for finite-state model-checking were a hot topic, and for
quite a few years dominated CAV. BDDs can be seen as acyclic automata, and so
it was natural to investigate general finite automata as data structure for infinite-
state systems. Pierre Wolper and his group also did very good work on that.

About your second question, when I joined the team Ahmed and Oded had
already been working on the topic for a while, and they had already developed
the saturation algorithm. When they showed it to me I was blown away, it was so
beautiful. A big surprise.

Nathalie: In contrast to most previous work, your approach applied to model
checking of pushdown systems treats in a uniform way linear-time and branching
time logics. Did you apply this objective in other contributions?

Javier: I didn’t. The reason is that I was interested in concurrency, and when
you bring together concurrency and procedures even tiny fragments of branching-
time logics become undecidable. So I kind of stuck to the linear-time case. Did
you work on branching-time, Ahmed?

Ahmed: Somehow yes (although it is not precisely about linear vs branching
time properties), in the context of Regular Model Checking, a uniform frame-
work for symbolic analysis of infinite-state systems using automata-based data
structures. There, we worked on two versions, one based on word automata for
systems where configurations can be encoded as words or vectors of words, such
as stacks, queues, etc., and another one based on tree automata for configurations
of a larger class of systems like heap manipulating programs, parametrised sys-
tems with tree-like architectures, etc. The techniques we developed for both cases
are based on the same principles.

Nathalie: As it is often the case, the paper leaves some open questions. For
instance, I believe, the precise complexity of verification of pushdown systems
against CTL specifications is PSPACE-hard and in EXPTIME. Did you or others
close this gap since? Did your techniques help to establish the precise complexity?

Ahmed: In our paper we showed that model checking the alternating modal

mu-calculus is EXPTIME-hard. CTL is less expressive, and it was the most pop-
ular logic in the verification community at the time, so it was natural to ask if it
had lower complexity.

Javier: Yes, as a first step in the paper we showed that a fragment of CTL,
called EF, had PSPACE complexity. But I made a mistake in the proof, which
was later found by Igor Walukiewicz. Igor cracked the problem in a paper at
FSTTCS’00. It turns out that EF is indeed PSPACE-complete (so at least we got
the result right!), and full CTL is EXPTIME-complete. I wish Igor had used our
technique, but he didn’t, he applied the ideas of his beautiful CAV’96 paper on
parity pushdown games.

Nathalie: It is often interesting to understand how research collaborations
start as it can be inspiring to PhD students or colleagues. Could you tell us how
you started your collaboration on the award-winning paper? Did you continue
working together (on a similar topic or on something totally different) after 19977

Ahmed: Javier and I first met in Liege for CAV 9 5. French universities have
this program that allows us to bring foreign colleagues to France for a month as
invited professors, and I invited Javier to Grenoble in 96.

Javier: It was great fun; Verimag was a fantastic place to do verification,
we both liked cinema, Ahmed knew all restaurants, and the Alps were beautiful.
Ahmed invited me again to Grenoble in 97. This time I came with my wife, and
we again had a great time.

When I arrived in Grenoble in 96 Ahmed and Oded had already written most of
the work that went into the paper. My contribution was not big, I only extended the
result to the alternation-free mu-calculus, which was easy, and proved a matching
lower bound. I think that my main contribution came *after* this paper. Ahmed
and Oded were too modest, they thought the result was not so important, but I
found it not only beautiful, I thought it’d be great implement the LTL part, and
build a model checker for programs with procedures. We could do that thanks to
Stefan Schwoon, who started his PhD in Munich around this time—he is now at
Paris-Saclay—and was as good a theoretician as a tool builder. Around 2000 he
implemented a symbolic version of the algorithms in MOPED, which was quite
successful.

Ahmed: In 99 I moved to LIAFA in Paris, and I remember your kids were
born.

Javier: Yes, you sent my wife beautiful flowers!

Ahmed: But we kept in touch, and we wrote a paper together in POPL’03 with
my PhD student Tayssir Touili, now professor in Paris. We extended the ideas of
the CONCUR paper to programs with both procedures and concurrency. Other
papers came, the last in 2008.

Javier: And Ahmed is visiting Munich next year, pandemic permitting, so I
hope there’ll be more.

Nathalie: How would you say this award-winning paper influenced your later
work? Did any of your subsequent research build explicitly on it?

Ahmed: This paper was the first of many I have co-authored on verification
of infinite-state systems using automata. All of them use various automata classes
to represent sets of configurations, and compute reachable configurations by iter-
ative application of automata operations. We call these procedures accelerations;
instead of computing a fixpoint of a function by repeated iteration, y ou “jump”
to the fixpoint after finitely many steps, or at least converge faster. Accelerations
were implicitly present in the CONCUR’97 paper. They have been also used by
many other authors, for example Bernard Boigelot and Pierre Wolper.

My first paper on accelerations was with Peter Habermehl, my PhD student
at the time and now at IRIF. We worked on the verification of systems communi-
cating through queues, using finite automata with Presburger constraints as data
structure. Then came several works on communicating systems with my student
Aurore Annichini and Parosh Abdulla and Bengt Jonsson from Uppsala. As a nat-
ural continuation, with the Uppsala group and my student Tayssir Touili we de-
veloped the framework of Regular Model Checking. And then, with Peter Haber-
mehl, Tomas Vojnar and Adam Rogalewicz from TU Brno, we extended Regular
Model Checking to Abstract Regular Model Checking, which proved suitable and
quite effective for the analysis of heap manipulating programs.

We also applied the CONCUR’97 results to the analysis of concurrent pro-
grams. The first work was a POPL’03 paper with Javier, Tayssir, and me on an
abstraction framework. Two years later, Shaz Qadeer and Jacob Rehof proposed
bounded-context switch analysis for bug detection. That paper created a line of
research, and we contributed to it in many ways, together with Shaz, Mohamed
Faouzi Atig, who was my student then, and is now Professor at Uppsala, and
others.

Javier: The CONCUR’97 paper was very important for my career. As I said
before, it directly led to MOPED, and later to jMOPED, a version of MOPED
for Java programs developed by Stefan Schwoon and Dejvuth Suwimonteerabuth.
Then, Tony Kucera, Richard Mayr, and I asked ourselves if it was possible to
extend probabilistic verification to pushdown systems, and wrote some papers on
the topic, the first in LICS’04. This was just the right moment, because at the same
time Kousha Etessami and Mihalis Yannakakis started to write brilliant papers on
recursive Markov chains, an equivalent model. The POPL’03 paper with Ahmed
and Tayssir also came, and it triggered my work on Newtonian program analysis
with two very talented PhD students, Stefan Kiefer, now in Oxford, and Michael
Luttenberger, nw my colleague at TUM. So the CONCUR’97 paper was at the
root of a large part of my work of the next 15 years.

Nathalie: Is there any result obtained by other researchers that builds on your
work and that you like in particular or found surprising?

Javier: After implementing MOPED, Stefan worked with Tom Reps on an
extension to weighted pushdown automata, the Weighted Pushdown Library. Tom
and Somesh Jha also found beautiful applications to security. This was great work.
I was also very impressed by the work of Luke Ong and his student Matthew
Hague. In 97 Ahmed and I tried to apply the saturation method to the full mu-
calculus but failed, we thought it couldn’t be done. But first Thierry Cachat gave a
saturation algorithm for Biichi pushdown games, then Luke, Matthew cracked the
mu-calculus problem, and then they even extended it to higher-order pushdown
automata, together with Arnaud Carayol, Oliver Serre, and others. That was really
surprising.

Ahmed: I agree. I’d also mention Qadeer and Rehof’s TACAS’05 paper. They
built on our results to prove that context-bounded analysis of concurrent programs
is decidable. They initiated a whole line of research.

Nathalie: What are the research topics that you find most interesting right
now? Is there any specific problem in your current field of interest that you’d like
to see solved?

Javier: Ten years ago I’ve had said the complexity of the reachability problem
for Petri nets and of solving parity games, but now the first one is solved and
the second almost solved! Now I don’t have a specific problem, but in the last
years I've been working on parameterised systems with an arbitrary number of
agents, and many aspects of the theory are still very unsatisfactory. Automatically
proving a mutual exclusion algorithm correct for a few processes was already
routine 20 years ago, but proving it for an arbitrary number is still very much an
open problem.

Ahmed: I think that invariant and procedure summary synthesis will remain
hard and challenging problems that we need to investigate with new approaches
and techniques. It is hard to discover the right level of abstraction at which the
invariant must be expressed, which parts of the state are involved and how they are
related. Of course the problem is unsolvable in general but finding good method-
ologies on how to tackle it depending on the class of programs is an important is-
sue. I think that the recent emergence of data-driven approaches is promising. The
problem is to develop well principled methods combining data-driven techniques
and formal analysis that are efficient and that offer well understood guarantees.

Nathalie: Would you have an anecdote or a tip from a well-established re-
searcher to share to PhD students and young researchers?

Javier: Getting this award reminded me of the conference dinner at CAV 12
in St. Petersburg. I ended up at a table with some young people I didn’t know. The
acoustics was pretty bad. When the CAV Award was being announced, somebody
at the table asked "What’s going on?", and somebody else answered "Not much,
some senior guys getting some award". Never take yourself very seriously ...

Nathalie: Oded Maler passed away almost 3 years ago. Do you have any

memory of him to share with our readers?

Ahmed: Oded was very amused by the number of citations. He used to say
"Look at all the damage we’ve done".

Javier: Yes, Oded had a wonderful sense of humour, very dry and deadpan.
When I arrived in Grenoble it took me a few days to learn how to handle it! I miss
it very much.

4 Interview with Rajeev Alur, Thomas A. Henzinger,
Orna Kupferman and Moshe Y. Vardi

Luca: You receive the CONCUR 2021 Test-of-Time Award for your paper “Alter-
nating Refinement Relations”, which appeared at CONCUR 1998. In that article,
you gave what I consider to be a fundamental contribution, namely the introduc-
tion of refinement relations for alternating transition systems. Could you briefly
explain to our readers what alternating transition systems are? Could you also tell
us how you came to study the question addressed in your award-winning article
and why you focused on simulation- and trace-based refinement relations? Which
of the results in your paper did you find most surprising or challenging?

AHKY: When we model a system by a graph, our model abstracts away some
details of the system. In particular, even when systems are deterministic, states
in the model may have several successors. The nondeterminism introduced in the
model often corresponds to different actions taken by the system when it responds
to different inputs from its environment. Indeed, a transition in a graph that mod-
els a composite system corresponds to a step of the system that may involve some
components. Alternating transition systems (ATSs) enable us to model compos-
ite systems in more detail. In an ATS, each transition corresponds to a possible
move in a game between the components, which are called agents. In each move
of the game, all agents choose actions, and the successor state is deterministically
determined by all actions. Consequently, ATSs can distinguish between collabora-
tive and adversarial relationships among components in a composite system. For
example, the environment is typically viewed adversarially, meaning that a com-
ponent may be required to meet its specification no matter how the environment
behaves.

In an earlier papeI{‘_L some of us introduced ATSs and Alternating Temporal
Logics, which can specify properties of agents in a composite system. The CON-
CUR 1998 paper provided refinement relations between ATSs which correspond
to alternating temporal logics. Refinement is a central issue in a formal approach

ISee https://www.cis.upenn.edu/~alur/Jacm02.pdf

https://www.cis.upenn.edu/~alur/Jacm02.pdf

to the design and analysis of reactive systems. The relation “/ refines S intu-
itively means that system S has more behaviors than system /. It is useful to
think about § being a specification and I an implementation. Now, if we consider
a composite implementation I||E and specification S|| E and w e w ant t o check
that the component I refines the component S, then the traditional refinement
preorders are inappropriate, as they allow / to achieve refinement of /||E with re-
spect to S||E by constraining its environment E. Alternating refinement relations
are defined with respect to ATSs that model the interaction among the underly-
ing components, and they enable us to check, for example, that component / has
fewer behaviors than component S no matter how component E behaves. They
are called “alternating” because refinement may restrict implementation actions
but must not restrict environment actions. In other words, refinement may admit
fewer system actions but, at the same time, more environment actions.

It was nice to see how theoretical properties of preorders in the traditional
setting are carried over to the game setting, and so are the results known then
about the computational price of moving to a game setting. First, the efficiency of
the local preorder of simulation with respect to the global preorder of trace con-
tainment is maintained. As in the traditional setting, alternating simulation can
be checked in polynomial time, whereas alternating trace-containment is much
more complex. Second, the branching vs. linear characterizations of the two pre-
orders is preserved: alternating simulation implies alternating trace containment,
and the logical characterization of simulation and trace-containment by CTL and
LTL, respectively, is carried over to their alternating temporal logics counter-
parts. The doubly-exponential complexity of alternating trace containment, as
opposed to the PSPACE complexity of trace containment, is nicely related to
the doubly-exponential complexity of LTL synthesis, as opposed to its PSPACE
model-checking complexity.

Luca: In your paper, you give logical characterisations of your alternating
refinement relations in terms of fragments of alternating temporal 1 ogic. Logical
characterisations of refinement relations are classic results in our field and I find
them very satisfying. Since I teach a number of those results in my courses, I'd
be interested in hearing how you would motivate their interest and usefulness to a
student or a colleague. What would your “sales pitch” be?

AHKY: There is extensive research on the expressive power of different for-
malisms. Logical characterization of refinement relations tells us something about
the distinguishing power of formalisms. For example, while the temporal logic
CTL* is more expressive than the temporal logic CTL, the two logics have the
same distinguishing power: if you have two systems and can distinguish between
them with a CTL" formula (that is, your formula is satisfied only in one of the sys-

tems), then you should be able to distinguish between the two systems also with
a CTL formula. Moreover, while CTL is not more expressive than LTL, we know
that CTL is “more distinguishing” than LTL. These results have to do with the
logical characterizations of trace containment and simulation. The distinguishing
power of a specification formalism is useful when we compare systems, in partic-
ular an implementation and its abstraction: if we know that the properties we care
about are specified in some formalism L, and our system refines the abstraction
according to a refinement relation in which the satisfaction of specifications in L
is preserved, then we can perform verification on the abstraction.

Luca: I am interested in how research collaborations start, as I like to recount
“research-life stories” to PhD students and young researchers of all ages. Could
you tell us how you started your collaboration on the award-winning paper?

AHKY: Subsets of us were already collaborating on other topics related to
reactive models and model checking, and all of us shared a common belief that
the field was in need to move from the limited setting of closed systems to a more
general setting of open systems, that is, systems that interact with an environment.
Open systems occur not only when the environment is fully or partly unknown, but
also when a closed system is decomposed into multiple components, each of them
representing an open system. To build “openness” into models and specifications
as first-class citizens quickly leads to the game-theoretic (or “alternating”) setting.
It was this realization and the joint wish to provide a principled and systematic
foundation for the modeling and verification of open systems which naturally led
to this collaboration.

Luca: Did any of your subsequent research build explicitly on the results
and the techniques you developed in your award-winning paper? Which of your
subsequent results on alternating transition systems and their refinement relations
do you like best? Is there any result obtained by other researchers that builds on
your work and that you like in particular or found surprising?

AHKYV: Various subsets of us pursued multiple research directions that devel-
oped the game-theoretic setting for modeling and verification further, and much
remains to be done. Here are two examples. First, the game-theoretic setting
and the alternating nature of inputs and outputs are now generally accepted as
providing the proper semantic foundation for interface and contract formalisms
for component-based design. Second, studying strategic behavior in multi-player
games quickly leads to the importance of probabilistic behavior, say in the form
of randomised decisions and strategies, of equilibria, when players have non-
complementary objectives, and of auctions, when players need to spend resources

for decisions. All of these are still very active topics of research in computer-
aided verification, and they also form a bridge to the algorithmic game theory
community.

Luca: One can view your work as a bridge between concurrency theory and
multi-agent systems. What impact do you think that your work has had on the
multi-agent-system community? And what has our community learnt from the
work done in the field of multi-agent s ystems? To your mind, what are the main
differences and points of contact in the work done within those communities?

AHKY: Modeling interaction in multi-agent systems is of natural interest to
planning problems studied in the AI community. In 2002, the International Foun-
dation for Autonomous Agents and Multiagent Systems (IFAAMAS) was formed
and the annual International Conference on Autonomous Agents and Multiagent
Systems (AAMAS) was launched. The models, logics, and algorithms developed
in the concurrency and formal methods communities have had a strong influence
on research presented at AAMAS conferences over the past twenty years. Coinci-
dentally, this year our paper on Alternating-Time Temporal Logic was chosen for
the IFAAMAS Influential Paper Award.

Luca: What are the research topics that you find most interesting right now?
Is there any specific problem in your current field of interest that you’d like to see
solved?

AHKY: Research on formal verification and s ynthesis, including our paper,
assumes that the model of the system is known. Over the last few years, rein-
forcement learning has emerged as a promising approach to the design of policies
in scenarios where the model is not known and has to be learned by agents by
exploration. This leads to an opportunity for research at the intersection of re-
active synthesis and reinforcement learning. A potentially promising direction
is to consider reinforcement learning for systems with multiple agents with both
cooperative and adversarial interactions.

The realization that reactive systems have to satisfy their specifications in all
environments has led to extensive research relating formal methods with game
theory. Our paper added alternation to refinement r elations. The transition from
one to multiple players has been studied in computer science in several other con-
texts. For the basic problem of reachability in graphs, it amounts to moving from
reachability to alternating reachability. We recently studied this shift in other fun-
damental graph problems, like the generation of weighted spanning trees, flows
in networks, vertex covers, and more. In all these extensions, we consider a game
between two players that take turns in jointly generating the outcome. One player
aims at maximizing the value of the outcome (e.g., maximize the weight of the

spanning tree, the amount of flow that travels in the network, or the size of the
vertex cover), whereas the second aims at minimizing the value. It is interest-
ing to see how some fundamental properties of graph algorithms are lost in the
alternating setting. For example, following a greedy strategy is not beneficial in
alternating spanning trees, optimal strategies in alternating flow networks may use
fractional flows, and while the vertex-cover problem is NP-complete, an optimal
strategy for the maximizer player can be found in polynomial time. Many more
questions in this setting are still open.

Luca: What advice would you give to a young researcher who is keen to start
working on topics related to alternating transition systems and logics?

AHKY: One important piece of advice to young researchers is to question
the orthodoxy. Sometimes it is necessary to learn everything that is known about
a topic but then take a step back, look at the bigger picture, reexamine some of
the fundamental assumptions behind the established ways of thinking, change the
models that everyone has been using, and go beyond the incremental improvement
of previous results. This is particularly true in formal methods, where no single
model or approach fits everything. And young researchers stand a much better
chance of having a really fresh new thought than those who have been at it for
many years.

References

[1] R. Alur, T. A. Henzinger, O. Kupferman, and M. Y. Vardi. Alternating refinement
relations. In D. Sangiorgi and R. de Simone, editors, CONCUR ’98: Concurrency
Theory, 9th International Conference, Nice, France, September 8-11, 1998, Proceed-
ings, volume 1466 of Lecture Notes in Computer Science, pages 163—178. Springer,
1998.

[2] A.Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata:
Application to model-checking. In A. W. Mazurkiewicz and J. Winkowski, editors,
CONCUR ’97: Concurrency Theory, 8th International Conference, Warsaw, Poland,
July 1-4, 1997, Proceedings, volume 1243 of Lecture Notes in Computer Science,
pages 135-150. Springer, 1997.

[3] D. Janin and I. Walukiewicz. On the expressive completeness of the propositional
mu-calculus with respect to monadic second order logic. In U. Montanari and V. Sas-
sone, editors, CONCUR ’96, Concurrency Theory, 7th International Conference,
Pisa, Italy, August 26-29, 1996, Proceedings, volume 1119 of Lecture Notes in Com-
puter Science, pages 263-277. Springer, 1996.

[4] U. Nestmann and B. C. Pierce. Decoding choice encodings. In U. Montanari and
V. Sassone, editors, CONCUR ’96, Concurrency Theory, 7th International Confer-
ence, Pisa, Italy, August 26-29, 1996, Proceedings, volume 1119 of Lecture Notes in
Computer Science, pages 179-194. Springer, 1996.

	Interview with David Janin and Igor Walukiewicz
	Interview with Uwe Nestmann and Benjamin Pierce
	Interview with Ahmed Bouajjani and Javier Esparza
	Interview with Rajeev Alur, Thomas A. Henzinger, Orna Kupferman and Moshe Y. Vardi

