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Abstract

Given an unweighted undirected graph G = (V, E), and a pair of parameters ✏ > 0,
� = 1, 2, . . ., a subgraph G0 = (V,H), H ✓ E, of G is a (1 + ✏, �)-spanner (aka, a near-
additive spanner) of G if for every u, v 2 V ,

dG0(u, v)  (1 + ✏)dG(u, v) + � .

It was shown in [25] that for any n-vertex G as above, and any ✏ > 0 and  = 1, 2, . . ., there
exists a (1 + ✏, �)-spanner G0 with O✏,(n1+1/) edges, with

� = �EP =

 
log 
✏

!log �2

.

This bound remains state-of-the-art, and its dependence on ✏ (for the case of small ) was
shown to be tight in [3].

Given a weighted undirected graph G = (V, E,!), and a pair of parameters ✏ > 0,
� = 1, 2, . . ., a graph G0 = (V,H,!0) is a (1+ ✏, �)-hopset (aka, a near-exact hopset) of G if
for every u, v 2 V ,

dG(u, v)  d(�)
G[G0(u, v)  (1 + ✏)dG(u, v) ,

where d(�)
G[G0(u, v) stands for a �-(hop)-bounded distance between u and v in the union graph

G [ G0. It was shown in [22] that for any n-vertex G and ✏ and  as above, there exists a
(1 + ✏, �)-hopset with Õ(n1+1/) edges, with � = �EP.

Not only the two results of [25] and [22] are strikingly similar, but so are also their proof
techniques. Moreover, Thorup-Zwick’s later construction of near-additive spanners [41]
was also shown in [24, 29] to provide hopsets with analogous (to that of [41]) properties.

In this survey we explore this intriguing phenomenon, sketch the basic proof techniques
used for these results, and highlight open questions.



1 Introduction

1.1 Spanners
Given an undirected unweighted n-vertex graph G = (V, E), and a pair of paremeters ↵ � 1, � �
0, a subgraph G0 = (V,H), H ✓ E, of G is called an (↵, �)-spanner of G, if for every pair
u, v 2 V of vertices, we have dH(u, v)  ↵ · dG(u, v) + �. Here dG (respectively, dH) stands
for the distance in G (respectively, in H). If � = 0, the spanner is called multiplicative, and if
↵ = 1, the spanner is called additive. A graph G0 = (V,H,!) (possibly weighted, even when
the original graph G = (V, E) is unweighted) is called an (↵, �)-emulator of G, if for every pair
u, v 2 V , we have dG(u,w)  dH(u, v)  ↵dG(u, v) + �.

Althofer et al. [6], improving upon an earlier work by Peleg and Schae↵er [37], showed
that for every n-vertex undirected (possibly weighted) graph G = (V, E), and any parameter
 = 1, 2, . . ., there exists a (2 � 1)-spanner with at most n1+1/ edges. This bound is known to
be tight under Erdos’ girth conjecture (see, e.g., [40], Section 5), and is unconditionally tight
up to a leading constant coe�cient in the stretch.

A large body of literature exploring constructions of spanners in various computational
settings was developed throughout the years [2, 16, 5, 31, 18, 25, 20, 11, 26, 41, 34, 35, 36,
43, 9, 17, 38, 13, 1, 3, 23, 21]. Algorithms for constructing purely additive spanners were
given in [5, 18, 25, 9, 13]. Specifically, Aingworth et al. and Dor et al. [5, 18] devised an
algorithm constructing additive 2-spanners with Õ(n3/2) edges, and additive 4-emulators with
Õ(n4/3) edges. Elkin and Peleg [25] shaved polylogarithmic factors from these size bounds via
di↵erent constructions; their size bounds are O(n3/2) and O(n4/3), respectively. Baswana et al.
[9] devised a construction of additive 6-spanners with O(n4/3) edges, and Chechik [13] devised
a construction of additive 4-spanners with Õ(n7/5) edges.

In [25] Elkin and Peleg also devised the first construction of near-additive spanners, i.e.,
(1 + ✏, �)-spanners, which are together with near-exact hopsets, constitute the main topic of
the current survey. Specifically, they showed that for any ✏ > 0 and  = 1, 2, . . ., there exists
�(✏, ) (denoted also �EP) such that for any n-vertex unweighted undirected graph there exists
a (1 + ✏, �)-spanner with O✏,(n1+1/) edges.

Note that in this result, unlike in the aforementioned tradeo↵ for multiplicative spanners
[37, 6], both the multiplicative stretch 1 + ✏ and the exponent of the number of edges 1 + 1/
can simultaneously be made as small as one wishes, at the expense of increasing the additive
error term �. This additive term behaves as

�EP(✏, ) =
 
log 
✏

!log �2

,

and it is still the state-of-the-art bound.
Observe also that this result means also that distances larger than some constant threshold

can be approximated arbitrarily well using arbitrarily sparse spanners. The threshold increases,
of course, as the approximation factor and the exponent of the number of edges decrease.

At the beginning near-additive spanners were often viewed as a stepping stone towards
the “real thing", that is, purely additive spanners. However, Abboud and Bodwin [1], relying
on earlier lower bounds for distance preservers [12], showed that one cannot in general have
purely additive spanners with constant (or even polylogarithmic) error term � and size o(n4/3).
Therefore, near-additive spanners is the best one can hope for!



Near-additive spanners were intensively studied in the last two decades [25, 20, 26, 41, 34,
35, 36, 23, 4, 21]. In [20] Elkin devised the first e�cient algorithm for constructing them. This
algorithm provides (1 + ✏, �)-spanners with Õ✏,,⇢(n1+1/) edges in centralized time O(|E| · n⇢),
with �E = (/✏)O( log 

⇢ ), where ⇢ > 0 is an additional parameter that controls the running time.
Improved variants of this algorithm, as well as e�cient implementations of it in distributed and
streaming settings, were devised in [26]. Both these algorithms [20, 26] build upon ideas from
a seminal algorithm of Cohen [15] for constructing hopsets. (See more about it in Section 1.2.)

Another remarkable algorithm for constructing near-additive spanners and emulators was
devised by Thorup and Zwick [41]. The main feature of their construction is that it provides a
universal near-additive spanner, i.e., the same spanner applies simultaneously for all values of
✏ > 0. Putting it di↵erently, their algorithm accepts as input an n-vertex graph G = (V, E) and a
parameter  = 2, 3, . . ., (but it does not accept ✏ as a part of the input), and it constructs for it a
spanner G0 = (V,H), H ✓ E, |H| = O(n1+1/), which constitutes a (1+ ✏, �(✏, ))-spanner for all
✏ > 0 simultaneously. The additive term in their construction behaves as � = �TZ = O

⇣

✏

⌘�1
,

i.e., it is much higher than �EP. On the other hand, they have also devised a universal emulator
whose additive term is the same as in the spanner of [25].

Interestingly, the universality of Thorup-Zwick’s construction enables one to obtain span-
ners and emulators with a sublinear additive error term. For concreteness, let us consider a pair
of vertices u, v 2 V with dG(u, v) = d. We can set

✏ =
log 

d
1

log �1
.

Then we have

dH(u, v)  d(1 + ✏) +
 
log 
✏

!log �2

 d + O
⇣
log  · d1� 1

log �1
⌘
.

Note that the additive error O
⇣
log  · d1� 1

log �1
⌘

is sublinear in the original distance d = dG(u, v),
and this property holds for all pair of vertices.

Pettie [34, 35, 36] improved the construction of universal spanners of [41]. His algorithm
constructs universal (1 + ✏, �)-spanners with O(n1+1/) edges and

� = �Pet = �
log4/3 2
EP ⇡ �2.41

EP .

Devising universal spanners with additive error that matches the additive error of spanners of
[25] (i.e., closing the gap between �Pet and �EP) is an open problem. The algorithm of Pettie
[34, 35, 36] is based on a combination of Thorup-Zwick’s construction of emulators with a
construction of distance preservers from [12].

Finally, Abboud et al. [4] showed a lower bound on the size-stretch tradeo↵ of near-additive
spanners. They showed that any construction of (1 + ✏, �)-spanners with O(n1+1/) edges must
have

�ABP = ⌦

 
1

✏ · log 

!log �2

.

Note that while this lower bound is tight for a very small ✏ > 0 and constant , it is meaningless
when ✏ � 1

log  . So, in particular, it is wide open if one can achieve near-additive spanners with �



that depends polynomially on . (The state-of-the-art dependence is �EP = (log )log  = log log ,
i.e., it is slightly superpolynomial in .)

We note that if one allows a larger but still constant multiplicative stretch, then (O(1), �)-
spanners with Õ(n1+1/) edges with � = poly() were devised by Pettie [34]. Improved and
generalized bounds along these lines were given in [19, 10].

1.2 Near-Exact Hopsets
Given an undirected weighted n-vertex graph G = (V, E,!), and a pair of parameters ↵ � 1 and
� = 1, 2, . . ., a graph G0 = (V,H,!0), H \ E = ;, is called an (↵, �)-hopset of G if for every pair
u, v 2 V of vertices we have

dG(u, v)  d(�)
G[G0(u, v)  ↵ · dG(u, v) .

Here G̃ = G [G0 is the union graph of G and G0, i.e., G [G0 = (V, E [ H, !̃), where for every
edge e 2 E, !̃(e) = !(e), and for every e 2 H, !̃(e) = !0(e). Also, d(�)

G̃
stands for a �-bounded

distance function in G̃, i.e., d(�)
G̃

(u, v) is the length of the shortest u � v path in G̃ that contains
at most � hops. The parameter � is called the hopbound of the hopset G0, and ↵ is called the
stretch of the hopset.

Hopsets turn our to be extremely useful for exact and approximate distance-related compu-
tations in distributed, dynamic, parallel and streaming settings. They also constitute fascinating
combinatorial objects of independent interest.

Exact hopsets (i.e., hopsets with ↵ = 1) were implicitly studied by Ullman and Yannakakis
[42], by Klein and Sairam [32] and by Shi and Spencer [39]. Near-exact hopsets, i.e., hopsets
with ↵ = 1 + ✏, for an arbitrarily small ✏ > 0, were introduced in a seminal paper by Cohen
[15]. For an input undirected possibly weighted n-vertex graph, Cohen’s algorithm constructs
(1 + ✏, �)-hopsets of size Õ(n1+1/), and with a polylogarithmic hopbound �. Specifically,

�Coh = O
 
log n
✏

!O(log )

.

Additional constructions of near-exact hopsets were given by Bernstein [8], Henzinger et
al. [27], and by Miller et al. [33]. The hopset of [8] has hopbound O(log n · (1/✏)), and size
Õ( · n1+1/ · log⇤), where ⇤ is the aspect ratio of the graph.1 The hopsets of Henzinger et
al. [27, 28] have hopbound exp{Õ✏(

p
log n · log log n)} and size n · exp{Õ✏(

p
log n · log log n)} ·

logO(1)⇤. The hopsets of [33] have hopbound n�, for an arbitrarily small constant � > 0, and
size O(n).

The first construction of hopsets with constant hopbound (and non-trivial size guarantee)
was given by the current authors in [22]. Specifically, we showed there that for any pair of
parameters ✏ > 0 and  = 1, 2, . . ., there exists � = �(✏, ) = �EP, such that for every undirected
weighted n-vertex graph G = (V, E,!), there exists a (1 + ✏, �)-hopset with O(n1+1/ · log n)
edges. Note the striking similarity between this result and the result of Elkin and Peleg [25]
concerning near-additive spanners. Remarkably, not just the results are similar, but also their
proofs are closely related. We will elaborate on this relationship below.

Interestingly, the same phenomenon occurs for the Thorup-Zwick’s construction [41] of
near-additive spanners and emulators as well. In [24, 29] it was shown that Thorup-Zwick’s

1The aspect ratio ⇤ of a weighted graph G = (V, E,!) is the ratio betwen maxu,v dG(u, v) and minu,v dG(u, v).



construction not only gives rise to universal near-additive emulators, but also to universal
hopsets. Specifically, the algorithm of [24, 29, 41], given an input n-vertex graph and a
parameter , constructs a hopset of size O(n1+1/), which serves as a (1 + ✏, �)-hopset with
� = �EP(✏, ) =

⇣
log 
✏

⌘log �2
, simultaneously for all ✏ > 0.

1.3 Discussion
With these results in mind, it is natural to wonder why are near-additive spanners and near-exact
hopsets that similar? After all, there are some apparent significant di↵erences. First, near-
additive spanners apply to unweighted graphs2, while near-exact hopsets apply to weighted
graphs. Second, the meaning of the parameter � is very di↵erent. For spanners it is the additive
error term, while for hopsets it is the hopbound. Third, spanners are subgraphs of the input
graph, while hopsets are sets of edges that are not present in the original graph. (This distinction
becomes blurred if one considers emulators instead of spanners. Nevertheless, an emulator, like
a spanner, is used on its own, while hopset is used together with the edges of the original graph.)

We will next shortly discuss these techniques for spanners and hopsets. In the technical
part of this survey we will sketch proofs of these results, and highlight the similarities and
di↵erences between them.

As was discussed above, there are three main approaches to building near-additive span-
ners and near-exact hopsets. The first one is the superclustering and interconnection approach,
which was introduced by [25] in the context of near-additive spanners, and used in [22] for
constructing hopsets. The second one, closely related to the first one, is the universal extension
of the superclustering and interconnection approach. It was introduced by [41] in the context
of spanners and emulators, and used in [24, 29] in the context of hopsets. The third one, based
on neighborhood covers, was originated in Cohen’s construction of hopsets [15]. It was later
used in [20, 26] for building near-additive spanners. Because of space considerations, we will
focus on the first two approaches in this survey.

The superclustering and interconnection approach, which we describe in detail in Section 2,
works roughly as follows. It proceeds for ` = log  phases, indexed 0, 1, . . . , `�1. (Throughout
the survey, we assume, for simplicity, that log  = log2  is an integer. This has only a very
minor impact on the cited bounds.) On phase 0, its input partition P0 = {{v} | v 2 V} is
the collection of singletons. One uses a sequence of degree thresholds, deg0, deg1, . . . , deg`�1,
the simplest of which is degi = n 2i

 [25], and a sequence of distance thresholds �i = (1/✏)i.
Each cluster C of the input partition Pi that has at least degi other clusters of Pi at distance
at most �i from it, becomes superclustered, i.e., merged into a next-level cluster, a cluster of
Pi+1. Spanning trees of superclusters are added into the spanner/hopset. (On phase ` � 1, the
superclustering step is skipped, and the algorithm proceeds directly to the interconnection step.)

In [25], this is done directly. Specifically, one initializes the set Ui of uncovered clusters
as Pi. Then one iteratively finds such clusters C 2 Pi with many uncovered nearby clusters,
creating superclusters around them, and marking them as covered. For reasons of e�ciency and
parallelism, in [22, 23], this is done by sampling clusters ofPi with probability 1

degi
, and creating

superclusters around the sampled clusters. In [21] the same step is performed by computing
ruling sets.

At any rate, once we are done with superclustering, we move to the interconnection step. On

2Even though there are some results [20, 19] about weighted graphs as well.



this step pairs of clusters are interconnected, i.e., shortest paths between them (or direct edges,
in the case of hopsets/emulators) are inserted into the spanner (respectively, hopset/emulator).

The stretch analysis of this construction considers a pair u, v 2 V of vertices, and a shortest
path ⇡(u, v) between them. The path is partitioned into segments of length �`�1 = (1/✏)`�1. On
each such a segment x�y one identifies the leftmost and the rightmost P`�1 clusters CL and CR.
The substitute spanner’s path ⇡0(x, y) that the stretch analysis finds uses a direct CL�CR shortest
path. The latter was inserted into the spanner on the (`� 1)st phase, because dG(CL,CR)  �`�1.
Then the stretch analysis zooms in into the x � CL subpath, and into the CR � y subpath. Both
these subpaths are free of P`�1 clusters, and the stretch analysis exploits this to provide small-
stretch substitute spanner’s paths for them.

We note that the radii of CL and CR are both O((1/✏)`�2), i.e., by one order of magnitude
(that is, by a factor of 1/✏) smaller than the length of the segment x� y. The same phenomenon
occurs on lower levels of stretch analysis as well, i.e., in segments of the subpaths x � CL and
CR � y. These segments are of length (1/✏)`�2, while the maximum radius of a cluster that
appears on these segments is O((1/✏)`�3), etc. Hence, roughly speaking, we have multiplicative
stretch of 1 + ✏ on every level of stretch analysis, and thus the overall stretch is 1 + O(✏ · `).
The additive error term stems from the fact that dG(u, v) might be shorter than �`�1 = (1/✏)`�1.
In this case one would not be able to charge the radii of CL and CR to the length of the segment
x � y, and the additive term accounts for that.

The construction of hopsets that employs the superclustering and interconnection method
[22] proceeds along very similar lines. In its simplest form it builds a separate hopset Hj for
each distance scale [2 j, 2 j+1), for j = 0, 1, . . . , dlog⇤e. For each fixed j, the hopset Hj takes care
of pairs u, v 2 V of vertices with dG(u, v) 2 [2 j, 2 j+1). The ultimate hopset is H =

Sdlog⇤e
j=0 Hj.

We then define a distance unit � = 2 j

(1/✏)`�1 = ✏
`�12 j. (As we aim at hopbound of (1/✏)`�1, one

can assume that 2 j � (1/✏)`�1.) Then the distance thresholds �i are defined as �·(1/✏)i, i.e., in the
same way as for near-additive spanners, except for scaling by a factor of �. We then conduct the
same superclustering and interconnection algorithm as for the spanner’s construction, with the
same degree thresholds, and distance thresholds �i as above. The only di↵erence is that instead
of inserting shortest paths between pairs of vertices z, z0 into the spanner, here we insert direct
hopset edges (z, z0) of weight dG(z, z0). (This also happens in the construction of emulators.)

The stretch analysis of the resulting hopset is also conducted very similarly to the case
of spanners. There are some technicalities that have to do with the fact that we deal with
weighted graphs in the case of hopsets, and thus we may not be able to partition the shortest path
into segments of length precisely �`�1 = (1/✏)`�1�. However, one can easily overcome these
di�culties. (See Section 2.1.2.) Another di↵erence is that one can use edges of the original
graph in the substitute path in the case of hopsets, while this is not the case for spanners. This
actually makes the stretch analysis easier in the former case. Finally, in the case of hopsets one
also needs to carefully analyze the number of hops used in the substitute path. Intuitively, the
shortest path ⇡(u, v) is partitioned to ⇡ (1/✏)`�1 subsegments of length �, and for each of them
O(1) hops su�ce. Thus, the hopbound is, up to rescaling of ✏, equal to O((1/✏)`�1).

Next we overview the construction of Thorup-Zwick’s emulators [41] and hopsets of [24,
29], while focusing on their relationship to the superclustering and interconnection method. As
was already mentioned, these emulators and hopsets can be viewed as a scale-free version of
spanners and hopsets from [25, 22].

the algorithm of [41] works as follows. It defines A0 = V , and for i = 0, 1, . . . , `�1, vertices



of Ai+1 are obtained from those of Ai by sampling each v 2 Ai independently with probability
1

degi
. The sequence deg0, deg1, . . . , deg`�1 of degree thresholds is defined exactly as in [25].
Given this hierarchy of subsets V = A0 ◆ A1 ◆ . . . ◆ A`�1, the algorithm defines for every

vertex v 2 Ai, i < ` � 1, its pivot p(v) to be the closest Ai+1-vertex to v. (Ties are broken
arbitrarily but consistently.) We also define the bunch of v 2 Ai by

Bunch(v) = {u 2 Ai | dG(v, u) < dG(v, Ai+1)} .

It is the set of all vertices of Ai that are closer to v than the pivot of v. For any v 2 A`�1, its
bunch is defined as the entire A`�1.

The algorithm then inserts into the emulator H (and into the hopset) the edges
S`�1

i=0 {(v, u) |
v 2 Ai, u 2 Bunch(v)}, and also the edges

S`�2
i=0 {(v, p(v))}. This completes the description of

the construction. Intuitively, the edges
S`�2

i=0 {(v, p(v))} are superclustering edges, i.e., edges that
connect an i-level cluster center to its (i+1)st level parent. The edges of

S`�1
i=0 {(v, u) | v 2 Ai, u 2

Bunch(v)} are interconnection edges, i.e., edges that connect pairs of cluster centers of the same
level.

For the stretch analysis, we consider a pair u, v 2 V of vertices, at distance d = dG(u, v)
from one another. If we analyze H as an emulator, then we partition a shortest path ⇡(u, v)
between them into segments of length �`�1 = (1/✏)`�1. (Recall than ✏ > 0 is not a parameter of
the algorithm in these scale-free constructions. Rather, it is a parameter of the analysis, which
applies for any ✏ > 0.) These segments are then partitioned into 1/✏ subsegments of length
�`�2, and those are again partitioned to 1/✏ subsegments, up until we reach single edges. (To
analyze H as a hopset, we partition ⇡(u, v) of length d into ⇡ 1/✏ segments of length ⇡ d · ✏,
and each of them into ⇡ 1/✏ segments of length ⇡ d · ✏2, up until the bottom level, where each
subsegment has length ⇡ d · ✏`�1.)

Now a segment x� y of level i (i.e., of length �i) is called successful, if it admits a substitute
path of length 1 + O(i · ✏) between its endpoints in the emulator. For an unsuccessful segment,
it can be argued that its endpoints x, y admit nearby (i + 1)st pivots x0, y0, respectively. This is
argued by an induction on i. The base case follows from definitions of pivots and bunches (with
stretch 1). For the induction step, the analysis considers i-level subsegments of an (i+1)st level
segment. If they are all successful, then we get a stretch of 1+O(i ·✏) for the entire segment, and
we are done. Otherwise, we consider the leftmost and the rightmost unsuccessful subsegments
xL � yL and xR � yR. (The case that there is just one unsuccessful subsegment is even simpler.
See Section 3.) By the induction hypothesis, there are (i+ 1)st level pivots zL, zR, with zL being
close to xL and zR to yR. Now either zR 2 Bunch(zL), and so the edge (zL, zR) is in the emulator.
We then obtain a short substitute emulator’s x � y path, that consists of the subpaths x � xL,
xL � zL, zL � zR, zR � yR, and finally, yR � y. Otherwise, there is a nearby (i + 1)nd pivot z to zL,
which, by triangle’s inequality, is also close to x. This completes the inductive proof.

This inductive statement is used with i = ` � 1. At this level all segments are successful,
just because A` = ;. Hence the emulator provides stretch 1 + O(✏ · `). In the case of hopsets
one needs also to carefully count the number of hops, but other than that the stretch analysis
proceeds along the same lines.

1.4 Organization
In Section 2 we describe the superclustering and interconnection approach in more detail. In
Section 3 we do so for its scale-free extension.



2 Superclustering and Interconnection
This section is devoted to the superclusterig and interconnection method of constructing near-
additive spanners and hopsets [25, 22, 21]. We start (Section 2.1) with describing the construc-
tion of near-additive spanners, and then proceed (Section 2.2) to hopsets.

2.1 Spanners
2.1.1 Algorithm

Let Q be the ground partition of the graph G = (V, E), i.e., Q = {C1,C2, . . . ,Cq}, for some
integer q � 1, is a collection of pairwise disjoint clusters such that V =

S
C2Q C. Moreover,

each cluster C 2 Q has a designated center rC, and the radius of the partition, i.e., the maximum
radius of one of its clusters (with respect to its designated center) is

Rad(C) = max
u2C
{dG(C)(rC, u)}   � 1 ,

for a parameter  that controls the stretch-size tradeo↵ of the ultimate spanner.
The supergraph G = (Q,E) induced by the ground partition is defined by

E = {(C,C0) | C , C0,C,C0 2 Q,9(v, v0) 2 E, v 2 C, v0 2 C0} .

The ground partition Q has the property that the supergraph G is sparse, i.e., |E| = O(n1+1/).
Moreover, the ground partition Q has the property that Q =

S�1
i=0 Qi, where all clusters in Qi

have radius i, contain at least ni/ vertices each, and have at most n(i+1)/ “outgoing” neighbors
(so that the total number of neighboring clusters is O(n1+1/)).

For convenience, we will assume that  is of the form  = 2` � 1, for an integer `. It is
easy to adapt the constructions to the case of a general integer parameter . We partition the set
of indices {0, 1, . . . ,  � 1} into subsets {0}, {1, 2}, {3, 4, 5, 6}, . . . , {2`�1 � 1, 2`�1, . . . , 2` � 2}. Let
Q̂0 = Q0, Q̂1 = Q1 [ Q2, . . ., and Q̂`�1 = Q2`�1�1 [ . . . [ Q2`�2.

Constructions of such ground partitions are well-known, and can be found, e.g., in [37, 7,
30, 25]. We note that modern constructions of near-additive spanners [23, 21] that follow the
superclustering and interconnection paradigm manage to bypass ground partitions altogether.
However, the original construction of [25] that does use them is somewhat simpler.

The spanner H is initialized to contain the union of BFS spanning trees of all clusters C of
the ground partition Q. For each cluster C 2 Q, the BFS tree is rooted in its designated center
rC. We also insert into the spanner one edge e = (u, v) for each pair of neighboring clusters
C,C0 2 Q (i.e., e.g., u 2 C, v 2 C0). The overall number of edges inserted to the spanner so far
is O(n1+1/). (See [37, 7, 30, 25].)

The algorithm itself proceeds for ` phases. At the beginning of each phase i, 0  i  ` � 1,
we have the input partition Pi of clusters. For i  ` � 2, the phase i superclusters some of
these clusters into larger clusters (aka superclusters). The resulting partition P̂i, union with
the collection Q̂i+1 of clusters from the ground partition, forms the input for the next phase
i + 1. (On phase 0, the input is P0 = Q̂0 = Q0.) Some other clusters of Pi are not involved
in superclustering. The set of these clusters is called Ui, the set of unsuperclustered clusters
of phase i. On the last phase i = ` � 1, the superclustering step is omitted, and we define
U`�1 = P`�1.



On all phases i = 0, 1, . . . , ` � 1, the unsuperclustered clusters (the set Ui) of this phase
proceed to the interconnection step. On the interconnection step shortest paths between nearby
clusters of Ui are added into the spanner H. An invariant of the algorithm is that each of the
superclusters of Pi has size at least n 2i�1

 , for all i = 0, 1, . . . , ` � 1. At the beginning of phase
i, the partition Pi is created as a union of P̂i�1 (the output of phase i � 1) with Q̂i. Recall that
each of the clusters of Q̂i has size at least n 2i�1

 as well.
The algorithm also employs sequences of degree and distance thresholds. On each phase i,

it uses the parameters degi = n 2i
 as degree threshold and �i = (1/✏)i as distance threshold.

Next, we take a closer look on each particular phase i = 0, 1, . . . , ` � 2. (The last phase
i = ` � 1 is slightly di↵erent, as it has no superclustering step.) The algorithm checks if there
exists a cluster C 2 Pi, such that at distance at most �i (in G) from C, there are at least degi
uncovered clusters C0 2 Pi. (Initially all clusters of Pi are uncovered, i.e., Ui is initialized as
Pi.) If there is such a cluster C, then the algorithm creates a supercluster Ĉ around it, centered
at C. This supercluster includes all the other uncovered clusters C0 2 Pi at distance at most �i

(in G) from C. Shortest paths between C and each of these clusters C0 are added to the spanner
H. Finally, C and all these clusters C0 that are merged into Ĉ are removed from Ui, i.e., they
are marked as covered. Then the algorithm iterates. The resulting collection of superclusters Ĉ
created in this way is the aforementioned set P̂i. Together with Q̂i+1 it constitutes the collection
Pi+1, which serves as input to phase i + 1. This concludes the superclustering step of phase i.

On the interconnection step of phase i, each pair of clusters of Ui that are at distance at
most �i from one another in G, are interconnected with one another via shortest paths. These
shortest paths are added into the spanner H.

The last phase i = ` � 1 is special, because the overall number of clusters in the input
collection P`�1 is at most O(n +1

2 ). Consequently, one interconnects all pairs of nearby clusters
of P`�1 (i.e., clusters at distance at most �`�1 from one another in G).

This concludes the description of the algorithm.

2.1.2 Analysis

We next sketch its analysis.
Size: We start with the size analysis. The number of edges inserted into H during the

initialization step is, as was mentioned above, O(n1+1/). This follows from properties of the
ground partition [37].

Consider some fixed phase i = 0, 1, . . . , ` � 1. It can be easily seen inductively that each
cluster C 2 Pi has size at least n 2i�1

 . Since they are disjoint, we conclude that |Pi|  n1� 2i�1
 .

Recall that degi = n 2i
 . Hence the number of paths inserted into the spanner by the interconnec-

tion step of phase i is at most |Pi| · degi  n1+1/. Each path contains at most �i edges (because
we connect nearby clusters). Thus, the number of edges inserted on this step is O(�i · n1+1/).

Consider the superclustering step (for i < ` � 1). Let Ĉ1, Ĉ2, . . . , Ĉp be the set of created
superclusters. For each index j 2 [p], let C j be the center cluster of Ĉ j, i.e., the cluster around
which the supercluster Ĉ j was created. Also, let C j1,C j2, . . . ,C j(q j) denote the other clusters
superclustered into the supercluster Ĉ j. Then the collection of edges

{(C j,C j1), (C j,C j2), . . . , (C j,C j(q j))} | 1  j  p}
forms a forest (a collection of disjoint stars), and thus contains less than n edges. For each of
these edges, at most �i edges of the respective shortest path between C j, for some 1  j  p,



Figure 1: A drawing justifying the inequality Ri+1  3Ri + �i, where Ri is the radius of a level i cluster,
and �i is the bound on the search distance at level i.

and some C jh, for some 1  h  qj, are inserted into the spanner H. Thus, the superclustering
step of phase i inserts into the spanner O(�i · n) edges. Thus, altogether phase i inserts into the
spanner O(�i · n1+1/) edges. Hence overall

|H| = O(n1+1/) ·
`�1X

i=0

�i = O✏,(n1+1/) .

(Recall that �i = (1/✏)i.)
Stretch: Next we outline the stretch analysis of this construction.
Note thatU0 [U1 [ . . .U`�1 is a partition of V . LetU(i) =

Si
j=0U j, for all i 2 [0, ` � 1].

Observe also that all clusters of U0 are singletons, i.e., their radius (denoted R0) is 0. Each
of the clusters C in U(`�1) has a designated center r, and the radius of C, denoted Rad(C), is
defined as maxv2C dH(r, v).

Generally, observe that the radius Ri+1 of a cluster Ĉ 2 Ui+1, for some 0  i  ` � 2, is at
most 3Ri + �i = 3Ri + (1/✏)i. (Here Ri is the maximum radius of a cluster inUi.) See Figure 1
for an illustration.

Thus, R1 = 1, and generally, for 0  i  ` � 2, we have

Ri+1 =

iX

j=0

3i� j(1/✏) j < 2
 
1
✏

!i

,

assuming ✏ < 1/6.
Let u, v 2 V be a pair of vertices, and let ⇡(u, v) be a fixed shortest u � v path in G. We par-

tition it into segments of length (1/✏)`�1, except the last segment that may be shorter. Consider
a particular fixed segment x � y of this path, of length at most (1/✏)`�1 = �`�1.

It is convenient to imagine the path ⇡(u, v) and the subpath ⇡(x, y) as going from left to right,
with u and x being the left endpoints and v and y being the right endpoints of their respective
paths. Let z and w be the leftmost and the rightmost U`�1-clustered vertices on ⇡(x, y). (We
assume that they exist. It is possible that z = w. If no such a vertex exists, the analysis is



actually simpler, as will be further indicated below.) Let Cz,Cw 2 U`�1 be the clusters of z and
w, respectively, i.e., z 2 Cz, w 2 Cw.

Then dG(Cz,Cw)  dG(z,w)  (1/✏)`�1, and thus, a shortest path ⇡̃ between Cz and Cw was
inserted into the spanner H. It follows that there exist vertices z̃ 2 Cz, w̃ 2 Cw, such that ⇡̃ is
the shortest z̃ � w̃ path. Since spanning trees of radius at most R`�1 for each cluster C 2 U`�1

are contained in the spanner H, we conclude that

dH(z,w)  dG(Cz,Cw) + 4 · R`�1  (1/✏)`�1 + 8 · (1/✏)`�2 .

Let z0 (respectively, w0) be the left (resp., right) neighbor of z (resp., w) on ⇡(x, y), if exists.
Since z0 and z belong to neighboring clusters of the ground partition Q, there is a path in H of
length at most 4( � 1) + 1 between them. Thus,

dH(z0,w0)  (1/✏)`�1 + 8 · ((1/✏)`�2 + ) .

For simplicity, we suppress the term  in this expression, as it is dominated by (1/✏)`�2 =

(1/✏)log(+1)�2.
So the overall overhead so far that the spanner’s path incurs in comparison to the original

shortest path is O((1/✏)`�2), for each segment of length (1/✏)`�1. This amounts to the multi-
plicative stretch of 1 + O(✏). The last segment of the path ⇡(u, v), which may be of length
smaller than (1/✏)`�1, is responsible for the additive stretch of O((1/✏)`�2).

But we are not yet done. The spanner’s path still needs to reach from x to z0 and from w0 to
y. Observe that both these subsegments contain only vertices clustered at U(`�2) (i.e., they are
not clustered in U`�1).3 We partition each of them into subsegments of length �`�2 = (1/✏)`�2

each, except the last subsegment that may be shorter.
On each such a subsegment x0 � y0, we find the leftmost and the rightmost U`�2-clustered

vertices z`�2 and w`�2. Let z0`�2 be the left neighbor of z`�2, and w0`�2 be the right neighbor of
w`�2 along the path. The respective clusters C(z`�2),C(w`�2) 2 U`�2 containing z`�2 and w`�2,
respectively, have radius at most R`�2  2(1/✏)`�3. Hence an analogous computation to the one
we did above for the z � w path shows that the spanner H contains a z0`�2 � w0`�2 path of length
at most dG(z0`�2,w

0
`�2)+ 8 · ((1/✏)`�3 + /2). (The second term is /2 and not , because clusters

of the ground partition that may end up in aU`�2 cluster belong to Q̂`�2, and thus their radii are
at most /2.) In other words, on each subsegment of length (1/✏)`�2, the spanner’s path pays an
overhead of 8 · ((1/✏)`�3 + /2), i.e., another multiplicative factor of 1 + O(✏).

We then proceed by zooming in into subsegments between x0 and z0`�2, and between w0`�2
and y0, They are U(`�3)-clustered, and thus analogous considerations can be applied to them.
Ultimately, this stretch analysis accumulates an overhead of O(✏)-fraction of the length of the
original path for ` times, leading to an overall multiplicative stretch of 1+O(✏ · `). The additive
error of the spanner manifests itself on the last segment x � y of the partition of ⇡(u, v) into
segments of length �`�1 = (1/✏)`�1 is of length much smaller than (1/✏)`�1. Then the spanner’s
path pays an overhead of O(R`�1) = O((1/✏)`�2), and this overhead cannot be charged to edges
of the segment x � y, because the latter segment is too short.

To summarize, the spanner provides a stretch of (1 + O(✏ · `), (1/✏)`�2). By rescaling, i.e.,

3The case that the entire x � y path ⇡(x, y) has noU`�1-clustered vertices is actually a special case of the case
considered here.



setting ✏0 = O(✏ · `), one obtains a (1 + ✏0,O
⇣
`
✏0

⌘`�2
)-spanner. Hence we have additive term

� = O
 
log 
✏0

!log(+1)�2

.

We conclude this section with the following theorem:

Theorem 2.1. [25] For every pair of parameters ✏ > 0 and  = 1, 2, . . ., there exists � =
�(✏, ) = O

⇣
log 
✏

⌘log(+1)�2
, such that for every unweighted undirected n-vertex graph G = (V, E)

there exists a (1 + ✏, �)-spanner with O✏,(n1+1/) edges.

We note that if one is interested in an emulator as opposed to spanner, one can use the very
same construction, but every time it inserted a shortest path between a pair of clusters C,C0

into the spanner, the emulator will include a weighted edge between their respective centers rC

and rC0 of weight equal to the distance dG(rC, rC0) between these centers. It is easy to verify
that the resulting emulator will have size O(n1+1/) (as opposed to O✏,(n1+1/)), i.e., its size
will no longer depend on ✏. One can also obtain this property for spanners constructed via
the superclustering and interconnection approach, but via a slightly more involved construction
that involves distance preservers [12], and with a slightly inferior additive error � [23].

2.2 Hopsets
In this section we argue that the same approach of superclustering and interconnection can be
used to produce hopsets, with parameters similar to those of the corresponding near-additive
spanners.

The algorithm produces a separate hopset for each distance scale. Assume that the smallest
edge weight is 1, and let the aspect ratio ⇤ denote the maximum distance between a pair of
vertices u, v in the input weighted undirected graph G = (V, E,!). Our ultimate hopset H will
be the union of single-scale hopsets Hi, where for each i = 0, 1, . . . , � = dlog2⇤e, Hi is the
hopset that takes care of pairs of vertices u, v with dG(u, v) 2 [2i, 2i+1). (The last scale will
always contain pairs with distance exactly ⇤ as well.) In [22] we showed that one can get rid
of the dependence on the aspect ratio in the size of the ultimate hopset H. Here, however, we
will describe a simpler construction in which |Hi| = O(n1+1/),4 for every scale i 2 [0, �], and
thus, |H| = O(log⇤ · n1+1/).

We fix a scale i, denote R = 2i, and construct a hopset Hi that takes care of pairs of vertices
u, v with dG(u, v) 2 [R, 2R). From now on it will be referred to as H0 = Hi.

We initialize P0 = {{v} | v 2 V} as the partition of V into singletons. (In [23] it was shown
one can start with a partition into singletons when building near-additive spanners as well.) We
initialize the set of uncovered clusters as U0  P0. Let �0 = R · ✏`�1. Generally, we define
degi = n 2i

 , for all i 2 [0, ` � 1], exactly as in the construction of near-additive spanners in
Section 2.1.1. Also, we set �i = �0/✏ i, for all i 2 [0, ` � 1]. In particular, �`�1 = R. The way to
think of it is that �0 = R · ✏`�1 is the “distance unit" of the construction. Scaling down by the
distance unit, one obtains the same sequence of distance thresholds as in Section 2.1.1.

Returning to the superclustering step of phase 0, if the algorithm finds an uncovered cluster
C 2 U0 with at least deg0 = n1/ other uncovered clusters C0 2 U0 at distance at most �0 from it

4Specifically, |Hi| = O(log  · n1+1/). One can also eliminate the leading factor of log  [22].



in G, then it creates a supercluster Ĉ out of them centered at the center rC of C. (For a singleton
cluster C = {v}, the center rC is set as v.) The supercluster is created by adding into it C, and the
nearby clusters C0 2 U0 (at distance at most �0 from C in G). One also adds to the hopset the
edges {(rC, rC0) | C0 2 Ĉ}, with weights !((rC, rC0)) = dG(rC, rC0). The cluster C and the clusters
C0 as above are then removed from U0, i.e., they are marked as covered. We then proceed to
constructing the next supercluster in the same manner. The superclustering step (of phase 0)
proceeds iteratively up until no additional supercluster can be created.

The set U0 of remaining unclustered clusters is then the input to the interconnection step
of phase 0. On this step each pair of nearby clusters C,C0 2 U0 (i.e., dG(C,C0)  �0) is
interconnected by a direct hopset edge (rC, rC0) between their respective centers. Its weight is
also set as dG(rC, rC0), This concludes the description of phase 0.

The resulting collection P1 of superclusters created on phase 0 is the input for phase 1.
Phase 1 proceeds in the same way (as phase 0), except that its degree and threshold parameters
are deg1 = n 21

 and �1 = �0/✏1. This is also the case for phases i � 1, that have degi = n 2i
 and

�i = �0/✏ i. When the algorithm reaches phase ` � 1, all clusters of P`�1 are already of the size
at least n 2`�1�1

 = n �1
2 . (By the same argument as in Section 2.1.2.) Hence |P`�1|  n +1

2 (because
the clusters are disjoint). So the superclustering step of phase ` � 1 is skipped. Instead the
algorithm proceeds directly to interconnecting all pairs of clusters of P`�1. (We also setU`�1 =

P`�1, to reflect the intuition that all clusters of phase `�1 are uncovered.) By “interconnecting"
a pair (C,C0) of clusters, we again mean inserting into the hopset the edge (rC, rC0) between
their respective centers, with weight !((rC, rC0)) = dG(rC, rC0).

This concludes the description of the algorithm. The analysis of |H0| (the size analysis) is
analogous to the size analysis of the near-additive spanner from Section 2.1.2. We omit it. The
size bound is |H| = O(n1+1/). We next sketch the analysis of its stretch and hopbound.

Consider a pair u, v 2 V of vertices such that dG(u, v) 2 [R, 2R], and let ⇡ = ⇡(u, v) be
a shortest path between them. Observe that the sets {Ui | 0  i  ` � 1} form a partition
of V , exactly as in the case of near-additive spanners. We also write U(i) =

S
jiU j, for all

i 2 [0, ` � 1].
Next we provide upper bounds Ri on the radii of clusters of Ui. Clusters of U0 are sin-

gletons, and thus R0 = 0. In general, for i 2 [0, ` � 2], we have Ri+1 = 3Ri + �i. Hence we
have

Ri+1 =

iX

j=0

3 j�i� j = �0/✏
i

iX

j=0

(3✏) j  �0/✏
i 1
1 � 3✏

.

For ✏  1/6, we have Ri+1  2�0/✏ i. In particular, R`�1  2�0(1/✏)`�2 = 2R✏. (Recall that
R = �0/✏`�1.)

Moreover, it is easy to verify (by induction on i) that the radius of each cluster of Ui, for all
i 2 [0, ` � 1], is attained by at most i hops.

Let z and w be the leftmost and the rightmostU`�1-clustered vertices on ⇡, respectively. Let
Cz and Cw be theU`�1-clusters of z and w, respectively, and let rz and rw denote their respective
centers. Observe that the hopset H0 contains a z�w path obtained by going from z to rz in `� 1
hops or less, from rz to rw via direct edge of H0, and from rw to w in at most ` � 1 additional
hops. The length of this path is at most

2R`�1 + dG(rz, rw)  2R`�1 + dG(z,w) + 2R`�1 = dG(z,w) + 8�0 · (1/✏)`�2 .

Moreover, let z0 be the left neighbor of z on ⇡, and w0 be the right neighbor of w on ⇡. Then the



path in G [ H0 between z0 and w0, that starts with G-edge (z0, z), then takes the above hopset’s
z�w path, and finally uses the G-edge (w,w0), has length at most dG(z0,w0)+ 8�0 · (1/✏)`�2, and
uses at most 2+ 2(`� 1)+ 1 = 2`+ 1 hops. Hence the overhead of 8�0 · (1/✏)`�2 can be charged
to the length of ⇡(u,w), which is at least R = �0 · (1/✏)`�1. This is a multiplicative overhead of
1 + 8✏.

Note also that the segments u�z0 and w0�v of ⇡(u, v) contain vertices which are all clustered
in U(`�2). (In other words, no vertex in these subpaths is U`�1-clustered.) We divide these
segments into subsegments of length at most R · ✏ = �0 · (1/✏)`�2 = �`�2.

In the case of hopsets this step requires more care than in the case of near-additive spanners,
because in the latter case we dealt with unweighted graphs. Here the first segment starts at
u = x0, and ends in the last vertex y = y0 along ⇡ such that dG(x0, y0)  R✏. If dG(x0, y0) < R✏,
then the next segment starts in the right neighbor (with respect to ⇡) x1 of the vertex y0. The
edge (y0, x1) is called a connecting edge between the two consecutive segments x0 � y0 and
x1�y1. Otherwise (if dG(x0, y0) = R✏), we set x1 = y0. Then again y1 is defined as the rightmost
vertex with dG(x1, y1)  R✏ along ⇡, etc. This process continues until we reach z0. The subpath
between w0 and v is divided into segments and connecting edges in the same manner.

In each such a segment (x, y), we find the leftmost and the rightmostU`�2-clustered vertices
z`�2 and w`�2. Let Cz and Cw be their respective clusters, and rz and rw be their respective cluster
centers. Observe that the distance between Cz and Cw is at most R✏ = �`�2, and thus their
centers rz and rw were interconnected by a direct hopset edge (rz, rw) in the interconnection step
of phase ` � 2. The length of this hopset edge is

!(rz, rw) = dG(rz, rw)  dG(rz, z`�2) + dG(z`�2,w`�2) + dG(w`�2, rw)  dG(z`�2,w`�2) + 2R`�2 .

Hence there is a z � w path in the hopset that goes from z to rz, uses the edge (rz, rw), and goes
from rw to w. Its length is at most

dG(z`�2,w`�2) + 4R`�2  dG(z`�2,w`�2) + 8�0(1/✏)`�3 ,

and it uses at most 2(` � 2) + 1 = 2` � 3 hops. Define z0`�2 to be the left neighbor of z`�2 on
⇡, and w0`�2 to be the right neighbor of w`�2 on ⇡. Then we also obtain a z0`�2 � w0`�2 path in
G [ H0 with at most 2` � 1 hops and length at most dG(z0`�2,w

0
`�2) + 8�0(1/✏)`�3. We charge

the overhead of 8�0(1/✏)`�3 to the length �0 · (1/✏)`�2 = R✏ of the segment between x and y.5
As a result the incurred stretch is at most 1 + 8✏ (on top of the stretch 1 + 8✏ incurred on the
top-most, (` � 1)st, level of the stretch analysis).

The number of hops incurred on the (` � 2)nd level of the stretch analysis can be upper-
bounded as follows. There are 1/✏ segments, and on each of them 2`� 1 = O(`) hops are used.
(In addition, one hop per segment is used for connecting edges, but this is swallowed in the
O-notation.) Hence the number of hops used by this level of stretch analysis is O(`/✏).

We then continue the stretch analysis in the same way, by zooming in into each of the
subsegments x � z0`�2 and w0`�2 � y. Their vertices are U(`�3)-clustered, and thus on the next
level of the stretch analysis we consider the leftmost and the rightmostU`�3-clustered vertices
on each subsegment of length at most R · ✏2 = �`�3, etc.

The overall accumulated stretch on all the ` levels of the stretch analysis is thus 1 + 8✏`,
and the overall number of hops can be crudely upper-bounded by O(`) · (1/✏)`�1. (To see this
upper bound, observe that eventually we partition the path into O((1/✏)`�1) segments. The

5Strictly speaking, one needs also include the connecting edge incident on y in the segment.



above analysis shows that on each segment at most O(`) hops are used. To have a more precise
bound, one notes that in fact on lower levels of the stretch analysis less hops per segment are
used. This leads to a bound of O((1/✏)`�1).)

We also remark that no additive error is present here, even though the last segment may be
shorter than R✏. This is because the entire path that we consider has length ⇥(R), and thus the
additive error of the last segment is swalllowed in the multiplicative stretch of 1 + O(✏). (This
is unlike the case of near-additve spanners, where the original path may be very short, and so
the additive error cannot be charged to the length of the original path.)

We now rescale ✏0 = O(✏`), and obtain stretch of 1 + ✏0 and hopbound � = O
⇣

log 
✏0

⌘log(+1)�2
.

We summarize the result in the next theorem.

Theorem 2.2. [22] For every pair of parameters ✏ > 0 and  = 1, 2, . . ., there exists � =
�(✏, ) = O

⇣
log 
✏

⌘log(+1)�2
, such that for every weighted undirected n-vertex graph G = (V, E,!),

there exists a (1 + ✏, �)-hopset with O✏,(n1+1/ log⇤) edges.

As was remarked above, the log⇤ factor in the size can be replaced by log n (see [22]).
Note the striking similarity between Theorems 2.1 and 2.2.

3 Scale-Free Hopsets and Spanners
In this section we present a universal extension of constructions from [25, 22], described in
Section 2. They were developed in [41, 24, 29].

3.1 Construction
Let G = (V, E) be a graph with n vertices (possibly with non-negative weights w : E ! R on
the edges). Fix an integer parameter  � 1 (it will be convenient to assume  = 2` � 1 for some
integer ` � 1). Denote ` = log( + 1). Let A0, . . . , A` be sets of vertices such that A0 = V ,
A` = ;, and for 0  i  `� 2, Ai+1 is created by sampling independently every vertex of Ai with
probability qi = n�2i/.

For every v 2 V and 0  i  ` � 1, define the pivot pi(v) as the closest vertex in Ai to v,
breaking ties in a consistent matter. For every 0  i  ` � 1 and every u 2 Ai \ Ai+1 define the
bunch

Bunch(v) = B(u) = {v 2 Ai : dG(u, v) < dG(u, Ai+1)} [ {pi+1(u)} .
That is, the bunch B(u) contains all the vertices which are in Ai and closer to u than pi+1(u),

and the level i + 1 pivot. We then define the emulator (and the hopset) H = {(u, v) : u 2 V, v 2
B(u)}, where the length !0(u, v) of the edge (u, v) is set as dG(u, v).

Size Analysis. Fix any 0  i  ` � 2 and u 2 Ai \ Ai+1, and consider the expected size of
B(u). If one orders the vertices of Ai by their distance to u, then B(u) contains the prefix of all
the vertices in that ordering until the first one sampled to Ai+1. As this is a geometric random
variable with parameter qi, its expectation is 1/qi = n2i/. In addition, each vertex is connected
to at most ` pivots, adding a term of `n.



Note that each v 2 V is included in Ai with probability
Qi�1

j=0 qj. These choices are indepen-
dent for di↵erent vertices, so the expected size of Ai is:

Ni := E[|Ai|] = n
i�1Y

j=0

qj = n1�(2i�1)/ .

So for each 0  i  `�2, we have Ni/qi = n1+1/. In addition, N`�1 = n1�(2`�1�1)/ = n(1+1/)/2,
and it can be checked that

E[|A`�1|2]  O(n1+1/) .

Note that for u 2 A`�1 we have B(u) = A`�1, thus the expected size of the hopset H is

`�2X

i=0

Ni/qi + E[|Ak�1|2] + `n = O(log  · n1+1/) .

We remark that a more refined choice for the probabilities qi (and connecting to just 1
pivot, rather than all of them), can lead to size O(n1+1/), essentially without a↵ecting the other
parameters.

3.2 Stretch Analysis of the Emulator
In this section we show that the edge set H constructed above can serve as a universal near-
additive emulator for G.

Consider a pair of vertices u, v 2 V . Let ⇡(u, v) be a shortest u� v path. For some ✏ > 0, we
partition the path into segments of length (1/✏)`�1, except the last segment that may be shorter.
Each such a segment x � y will be called a level-(` � 1) segment. It will be further subdivided
into level-(` � 2) segments of length (1/✏)`�2, etc. In general, for any 0  i  ` � 1, level-i
segments have length (1/✏)i.6

Lemma 3.1. There exist two universal constants c, c0 > 0, such that for any i, 0  i  ` � 1,
any i-level segment x � y is either successful, i.e., satisfies

(1) dH(x, y)  dG(x, y) + c · i · (1/✏)i�1 ,

or fails, i.e., satisfies
(2) dG(x, pi+1(x))  c0 · (1/✏)i .

Proof: The proof is by induction on i.
Base: (i = 0)
Level i = 0 segments have length 1, i.e., (x, y) 2 E is an edge. If x 2 A1, then p1(x) = x,

and so the segment fails (dG(x, p1(x)) = 0). Otherwise x 2 A0 \ A1.
Then either (x, y) 2 H, and then the segment is successful, as condition (1) holds with 1 at

the right-hand-side. Or, alternatively, (x, y) < H, i.e., y < Bunch(x). But then dG(x, p1(x)) 
dG(x, y) = 1, proving condition (2) (i.e., the segment fails).

Step:
6Except possibly one level-i subsegment of the possibly shorter level-(` � 1) segment; but this technicality has

no real e↵ect on the analysis.



Suppose that the assertion holds for all level-i segments, for some 0  i  ` � 2. Consider
a level-(i + 1) segment x � y. If all its level-i subsegments are successful, then we concatenate
the emulator’s substitute paths for them. In the case that all its level-i subsegments have length
exactly (1/✏)i, the length of the resulting path in the emulator can be bounded by

dH(x, y)  1/✏ · ((1/✏)i + c · i · (1/✏)i�1)
= (1/✏)i+1 + c · i · (1/✏)i .

In the general case, one obtains here an upper bound of dG(x, y)+ c · i · (1/✏)i, by essentially the
same argument. Hence in this case the segment u � v is successful as well.

Otherwise there are some failing level-i subsegments of x� y. Let xL� yL and xR� yR be the
leftmost and the rightmost such subsegments. Let zL = pi+1(xL), zR = pi+1(y). By the inductive
hypothesis, we have dG(xL, zL), dG(yR, zR)  c0 · (1/✏)i. Then

dG(zL, zR)  dG(zL, xL) + dG(xL, yR) + dG(yR, zR)
 dG(xL, yR) + 2c0 · (1/✏)i .

Observe that the edges (xL, zL), (yR, zR) belong to the emulator H. If (zL, zR) 2 H as well, then

dH(xL, yR)  dH(xL, zL) + dH(zL, zR) + dH(zR, yR)
= dG(xL, zL) + dG(zL, zR) + dG(zR, yR)
 dG(xL, yR) + 2(dG(xL, zL) + dG(zR, yR))  dG(xL, yR) + 4c0 · (1/✏)i .

Also, note that each of the level-i segments of the subpaths x � xL and yR � y of the segment
x � y are successful, and there are

dG(x, xL) + dG(yR, y)
(1/✏)i

such segments. Hence

dH(x, xL) + dH(yR, y)  dG(x, xL) + dG(yR, y)
(1/✏)i · ((1/✏)i + c · i · (1/✏)i�1)

= (dG(x, xL) + dG(yR, y)) · (1 + c · i · ✏) .

Thus we have

dH(x, y)  dH(x, xL) + dH(xL, yL) + dH(yR, y)
 (dG(x, xL) + dG(yR, y)) · (1 + c · i · ✏) + dG(xL, yR) + 4c0 · (1/✏)i

 dG(x, y)(1 + c · i · ✏) + 4c0 · (1/✏)i .

Observe that dG(x, y) = (1/✏)i+1, i.e., 4c0(1/✏)i = 4c0✏ · dG(u, v). Hence in this case

dH(x, y)  (1 + c · i · ✏ + 4c0 · ✏) · dG(x, y) .

For c = 4c0, we obtain that

dH(x, y)  (1 + c(i + 1)✏)(1/✏)i+1 ,



and thus the segment x � y is successful.
Otherwise (zL, zR) < H, i.e., zR < Bunch(zL). Then we have

dG(zL, pi+1(zL))  dG(zL, zR)  dG(xL, yR) + 2c0(1/✏)i .

Hence

dG(x, pi+1(x))  dG(x, pi+1(zL))  dG(x, xL) + dG(xL, zL) + dG(zL, pi+1(zL))
 dG(x, xL) + c0 · (1/✏)i + dG(xL, yR) + 2c0(1/✏)i

 dG(x, y) + 3c0(1/✏)i = (1/✏)i+1 + 3c0(1/✏)i  c0(1/✏)i+1 .

The last inequality holds for c0 � 1
1�3✏ . Hence if we set c0 � 2, it holds for all ✏ < 1/6.

This completes the proof.
Observe that an (` � 1)-level segment x � y cannot fail, and thus we have dH(x, y) 

dG(x, y)(1 + c(` � 1) · ✏. By concatenating the emulator’s substitute paths for all the segments,
we obtain that for any u, v 2 V ,

dH(u, v)  (1 + c(` � 1) · ✏)dG(u, v) + O(c(` � 1)(1/✏)`�1) .

(Exactly as in Section 2, the additive term is because of the last segment.)
By rescaling ✏0 = c(`�1)✏, we obtain that the stretch of the emulator is (1+✏,O

⇣
log 
✏

⌘log(+1)�2
).

Note also that this construction does not accept ✏ as a parameter, and thus applies to all ✏ > 0.
We summarize this analysis with the following theorem due to [41]. (The proof that we

provided is however di↵erent from the original proof from [41].)

Theorem 3.2. [41] For any  = 1, 2, . . ., and any n-vertex graph G = (V, E), the graph G0 =
(V,H,!0) constructed as above is a (1+ ✏, �(✏, ))-emulator for G with O(n1+1/) edges, for all
✏ < 1/6, where � = �EP.

3.3 Stretch Analysis of the Hopset
In this section we show that the very same edge set H constructed in the beginning of this
section provides a (1 + ✏, �)-hopset (naturally, of the same size), even for weighted graphs.

Again, consider a shortest u � v path ⇡(u, v). Denote L = !(⇡(u, v)). We partition it into
1/✏ segments of length L✏ each. (Suppose for simplicity that it can be divided into segments of
precisely this length. If it is not the case, it can be taken care of, essentially without a↵ecting
the analysis.) Those segments are again subdivided to 1/✏ subsegments of length L · ✏2 each,
etc, for `�1 levels. Segments of length (L · ✏`�1) · (1/✏)i are the i-level segments. So, in a sense,
� = L · ✏`�1 is the “distance unit" of the construction. See also Section 2.

One can assume that all weights are greater or equal to 1. Assume also that L � (1/✏)`�1.
If it is not the case, the graph G itself has a u � v path of length dG(u, v) with at most (1/✏)`�1

hops.
The next lemma is completely analogous to Lemma 3.1.

Lemma 3.3. There exist universal constants c, c0 > 0 such that for any 0  i  `�1, any i-level
segment x � y is either successful, i.e., satisfies

(1) d(1/✏)i)
H (x, y)  � ·

⇣
(1/✏)i + ci · (1/✏)i�1

⌘
,

or fails, i.e., satisfies
(2) dG(x, pi+1(x))  � · c0 · (1/✏)i .



Figure 2: An illustration for the 1 + ✏ stretch version. Above are the two cases when considering an
interval [a, b] of length L at level i, which is divided to 1/✏ sub-intervals (the case when all sub-intervals
are successful is omitted). The dashed line represents the path in G [ H we find. On the left is the case
that some sub-intervals failed, and there is an hopset edge between the level i pivots of the leftmost and
rightmost failed intervals’ endpoints; in this case we have a 1/✏i-hops path with stretch 1 + ci✏. The
other case is that there is no such edge, but then we see a level i + 1 pivot at distance at most c0L.

Proof: The proof is again by induction on i.
Base: (i = 0)

If x 2 A1, then the segment satisfies (2) with 0 in the right-hand-side. Otherwise x 2 A0 \ A1.
If (x, y) 2 H then the segment is successful. Otherwise, dG(x, p1(x))  dG(x, y) = �, and the
segment fails. In both cases the assertion of the lemma holds.

Step: The proof of the induction step is completely analogous to the proof of the induction
step of Lemma 3.1, except that all expressions need to be scaled up by a factor of �. An
illustration is provided in Figure 2.

Lemma 3.3 implies the following theorem.

Theorem 3.4. [24, 29] For any  = 1, 2 . . ., and any n-vertex weighted graph G = (V, E,!),
the graph G0 = (V,H,!0) constructed above is a (1 + ✏, �)-hopset for G with O(n1+1/) edges,
and � = �EP.

4 Conclusions and Open Problems
As we have seen, there is a striking similarity not just between the results concerning near-
additive spanners for unweighted graphs and near-exact hopsets for weighted ones, but also
between the techniques used to construct them and to analyze these constructions. Specifically,
the superclustering and interconnection approach (see Section 2) due to [25] gives rise to very
similar constructions of these two objects [25, 22], and this is also the case with its scale-free
extension due to [41] (see [24, 29] and Section 3).

The situation is similar in the case of Cohen’s approach [15] that relies on pairwise covers
[14, 2]. This approach also gives rise to closely related constructions and analyses for both
near-exact hopsets [15] and near-additive spanners [20, 26]. This approach was left out of the
scope of the current survey.



A very interesting open problem is to explain the relationship between near-additive span-
ners and near-exact hopsets rigorously, i.e., by providing a reduction between these two objects.

Another major open question is to determine the correct dependency of � on ✏ and  for
both spanners and hopsets. Can one achieve � polynomial in  for near-additive spanners
and/or near-exact hopsets?

Numerous related open problems arise if one allows a larger stretch than 1 + ✏. Currently
there are known constructions with stretch 3+ ✏ and � polynomial in  [34, 19, 10]. Can this be
achieved with stretch smaller than 3? What is the right three-way tradeo↵ between the sparsity
parameter , the multiplicative stretch ↵ and the hop-bound (or additive stretch) �?

We have also pointed out that the current state-of-the-art constructions of universal near-
additive spanners (see Section 3) lag behind their non-universal counterparts. Specifically, the
state-of-the-art bound on the parameter � in the universal constructions [23, 34] is �log4/3 2

EP , where
�EP =

⇣
log 
✏

⌘log �2
is the state-of-the-art bound for non-universal constructions [25]. Narrowing

this gap, or proving a lower bound precluding this, is an open problem.
In this survey we focused on existential, i.e., combinatorial properties of near-additive span-

ners and near-exact hopsets. However, for many applications it is important to compute them
e�ciently in various computational models. For example, in the centralized model of com-
putation one introduces a control parameter ⇢ > 0, and can obtain (1 + ✏, �)-spanners with
O✏,(n1+1/) edges and

� =

 
log ⇢ + 1/⇢

✏

!log ⇢+1/⇢

in time O(|E| ·n⇢) [22, 23, 20, 26]. The tradeo↵ looks similarly in other models of computation,
i.e., the overhead of n⇢ in the running time at the expense of larger � is persistent. Improving
upon this tradeo↵ is an open problem. Its positive resolution is likely to lead to improved al-
gorithms for the computation of approximate shortest paths, distributed routing tables, parallel
distance oracles, and other applications.

Finally, in many applications of hopsets one needs not just approximate distances, but also
paths that implement these distances. For this aim, path-reporting hopsets, i.e., hopsets from
which approximate paths can be readily retrieved were introduced in [22]. Their parameters
are, however, somewhat inferior to those of their non-path-reporting counterparts. Devising
path-reporting hopsets with improved parameters is also an interesting open problem.
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