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Hardness-Randomness Tradeoffs for
Algebraic Computation

Mrinal Kumar∗ Ramprasad Saptharishi†

Abstract
The interplay between the question of proving lower bounds and

that of derandomization, in various settings, is one of the central themes
in complexity theory. In this survey, we explore this phenomenon in
the area of algebraic complexity theory. Enroute, we discuss some of
the classical results, as well as some recent ones, that establish a close
connection between the question of proving algebraic circuits lower
bounds and that of derandomizing polynomial identity testing. We
also talk about an application of thismachinery to the phenomenon of
bootstrapping for polynomial identity testing and mention some open
problems.

1 Introduction
The quest of proving lower bounds for explicit functions for various com-
putational models and that of obtaining deterministic algorithms for prob-
lems which can be solved e�ciently with randomness are two of the most 
fundamental themes of study in theoretical computer science in general, 
and computational complexity in particular. The P vs NP question is per-
haps the most well known instance of the former question where as the P 
vs BPP question is a canonical instance of the latter. An equally intriguing 
and signi�cant line of research is the interaction of these themes of hard-
ness and randomness in various contexts. We begin with a brief (and rather 
incomplete) discussion of some of the classical results of this kind in the 
set up of Boolean computation before moving on to the algebraic set up, 
which is the focus of this survey.
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1.1 Hardness vs Randomness in the Boolean setting
The connection between hardness and randomness in the Boolean setting
goes via the notion of a pseudorandom generator, which we now de�ne.
De�nition 1.1 (Pseudorandom generators). A family of functions {Genk :
{0, 1}k → {0, 1}n(k)} is said to be an ε-pseudorandom generator (PRG) with seed
length k and time complexity t(k) for a class C of Boolean circuits if, for all suf-
�ciently large k ∈ N, we have that Genk(x) can be computed by a deterministic
Turing machine in time t(k), and for every C ∈ C which takes n(k) inputs,∣∣∣∣ E

y∈{0,1}n
(C(y))− E

x∈{0,1}k
(C(Genk(x)))

∣∣∣∣ < ε

♦

Intuitively, the idea is that for a random string x ∈ {0, 1}k, the behavior
of a circuit in the class C on input Genk(x) closely captures its behavior on a
completely random input. For kmuch smaller than n, this gives a substan-
tial saving on the number of random bits needed to gauge the behavior of
any circuit C ∈ C on average. For instance, if C ∈ C is a bounded error ran-
domized algorithmwhichwe seek to derandomize, then instead of feeding
it a random seed, we can run the algorithm for all 2k strings in the output of
the generator Genk, and output the majority answer. The guarantee on the
generator ensures the correctness of this procedure. Thus, it is desirable
to have k, the seed length of the generator to be as small as possible when
compared to n.

A well-known paper in the research on hardness vs randomness is the
landmark work of Nisan & Wigderson [22]. Their results showed that the
question of proving lower bounds on the size of Boolean circuits which
approximate an explicit1 function is essentially equivalent to the question
of constructing fast enough pseudorandom generators for Boolean circuits.

This framework together with the average case lower bounds for the
function PARITY for constant depth Boolean circuits (AC0 circuits) due to
Håstad [13] then immediately implied a construction of pseudorandom
generators for AC0 circuits with polylogarithmic seed length.

It was noted in [22] that while the results in [21, 22] were perhaps one
of the �rst instances in computational complexity where lower bounds had
been used for pseudorandomness, this idea had its roots in Cryptography.
Nisan andWigderson [22] attribute this idea to a work of Shamir [26] from

1Here, by explicit, we just mean that the function can be computed in exponential time
in its input length.



a few years earlier, where he had used the security of the RSA cryptosys-
tem to construct cryptographic pseudorandom generators (a close cousin
of the objected de�ned in De�nition 1.1). In another work around the same
time, Blum & Micali [4] had shown a construction of cryptographic pseu-
dorandom generators using the hardness of the Discrete Logarithm func-
tion. This line of work saw a vast generalization in the work of Yao [29] and
that of Håstad, Impagliazzo, Levin and Luby [14] where it was shown that
cryptographic pseudorandom generators can be constructed using any one
way function.

It is worth noting that the pseudorandomgenerators constructed in this
line of work were cryptographic in nature, where the complexity of the
generator itself was much smaller than the complexity of the adversary it
is fools. On the other hand, our focus in this survey is on the complexity
theoretic setting, where the complexity of the generator itself is allowed to
be larger than the complexity of the circuit classes it is expected to fool. In
particular, due to the weaker requirements, one can hope to have construc-
tions of complexity theoretic pseudorandomgenerators frommuchweaker
assumptions than the existence of one way functions. This is all the more
true if we are looking for pseudorandom generators for very structured
classes of Boolean functions, and Nisan and Wigderson’s generator [22]
for for AC0 circuits is one such instance. For a more thorough and detailed
discussion on pseudorandom generators of both complexity theoretic and
cryptographic �avor, we refer the reader to an excellent survey by Oded
Goldreich [12].

1.2 Hardness vs Randomness in Algebraic Complexity
In algebraic complexity, the primary objects of study are multivariate poly-
nomials, and the key model of computation is that of an algebraic circuit,
which we now de�ne.
De�nition 1.2 (Algebraic circuits). An algebraic circuit is a directed acyclic
graph whose leaves (in-degree zero nodes) are labeled by formal variables or �eld
constants, and internal gates are labeled by + and ×. Semantically, such a graph
naturally computes polynomials of the input variables at each gate in the natural
way. The root(s) (nodes of out-degree zero) are set to be the output(s) of the circuit.

The size of an algebraic circuit is de�ned as the number of gates in the graph.
♦

In the algebraic setting, the hardness randomness tradeo�s study the
connection between the questions of proving algebraic circuit lower bounds
for an explicit polynomial family and that of designing e�cient determin-



istic algorithms for the question of Polynomial Identity Testing (PIT) i.e.
the task of testing if a given algebraic circuit computes the identically zero
polynomial. The PIT question is often asked in two �avours— thewhitebox
settingwhere an algorithm is allowed to look inside the wiring of the input
circuit to test its zeroness, or the blackbox setting where the algorithm just
has query access to the algebraic circuit. The well known Polynomial Iden-
tity Lemma2 (see Lemma 4.1) gives a very simple randomized algorithm for
PIT in the blackbox setting, which proceeds by just querying the given in-
put circuit at a random point on a large enough grid. Derandomizing this
algorithm is one of the most fundamental open questions in complexity
theory. And as we shall see, this question has intimate connections to the
question of proving algebraic circuit lower bounds.

One of the �rst connections between PIT and algebraic circuit lower
bounds was discovered in the work of Heintz and Schnorr [15], who in
some sense formulated the question of PIT in the current form, even though
in its various incarnations, the problem had been studied in multiple con-
texts since a much earlier time (e.g. Lemma 4.1)) and asked for e�cient
deterministic algorithms for this problem. They also showed that given an
e�cient deterministic algorithm for PIT in the blackbox setting, it is easy
to give an explicit construction of polynomial families which do not have
small algebraic circuits. In other words, they showed that derandomizing
PIT (in the blackbox setting) implies algebraic circuit lower bounds!

This connection between hardness and randomness in the algebraic set-
ting was further strengthened in an very in�uential work of Kabanets and
Impagliazzo [18], who showed that even slightly non-trivial PIT algorithms
(even in the supposedly weaker whitebox setting) implies circuit lower
bounds3 far beyond our current state of art. They also showed a connec-
tion in the opposite direction, by showing that an algebraic analogue of the
Nisan-Wigderson pseudorandom generator can be used to get improved
PIT algorithms from algebraic circuit lower bounds.

1.3 Organization of the survey
The goal of this survey is to discuss these results as well as a few more,
and to mention some of the questions that remain open in this line of re-
search. In particular, we elaborate on the consequences of deterministic

2often referred to as a (suitable subset of) Ore-DeMillo-Lipton-Schwartz-Zippel
lemma; the name ‘Polynomial identity lemma’ for this classical result is attributed to Lás-
zló Babai.

3Kabanets and Impagliazzo [18] showed that we either get better Boolean circuit lower
bounds or better algebraic circuit lower bounds as a consequence.



PIT algorithms towards lower bounds for algebraic circuits in Section 3 and
discuss how algebraic circuit lower bounds imply non-trivial deterministic
PIT in Section 4. To prepare for these, we set up some notation and discuss
some preliminaries in Section 2.

2 Notations and Preliminaries
• We use boldface letters like x, y, z to denote tuples of variables. The

number of variables in such a tuple will be clear from from the con-
text.

• Unless otherwise stated, we con�ne our discussion to algebraic com-
putation over �elds of characteristic zero.

• We have already de�ned algebraic circuits in De�nition 1.2. An alge-
braic circuit is said to be an algebraic formula if the underlying graph
is a tree.

• Sometimes, it is convenient to also allow �eld constants on the edges
of an algebraic circuit to indicate a scaling of the argument before
feeding in to a gate. This allows, for example, the computation of
arbitrary linear combinations of gates using a single + gate.

• A polynomial f(x) is said to have individual degree at most d, if for
every variable xi, the degree of f , when viewed as a univariate in xi
(with coe�cients coming from the �eld of rational functions in the
remaining variables) is at most d.

• A function f : N → N is said to be at most poly(n) if there exists a
constant c such that for all large enough n, f(n) ≤ nc.

Homogeneity and Homogenisation
De�nition 2.1 (Homogeneity). A polynomial f(x) is said to be homogeneous if
every monomial of f has the same total degree.

An algebraic circuit is said to be homogeneous if every gate in the compute
computes a homogeneous polynomial. ♦

A well known result, due to Strassen, is that homogeneous compo-
nents of polynomials with small algebraic circuits have homogeneous cir-
cuits small size.



Lemma 2.2. Let f(x) be a (not necessarily homogeneous) polynomial of degree at
most d that is computable by a circuit of size s and let g(x) be the homogeneous
component of f of degree equal to k. Then, there is a homogeneous circuit of size
at most O(sk2) that computes g(x).

Hitting sets
As alluded to earlier, polynomial identity testing is typically studied in two
�avours — whitebox and blackbox PITs. In the blackbox setting, we only
have query access to the given circuit. Hence, blackbox PITs are essentially
constructions of hitting sets for the class.
De�nition 2.3 (Hitting sets). A hitting set for a class C of n-variate polynomials
is a set H ⊆ Fn such that, for any 0 6= P (x) ∈ C, we have P (a) 6= 0 for some
a ∈ H .

We shall say that a hitting set is t(n)-explicit if H can be computed in t(n)
time. ♦

A variant of the notion of a pseudorandom generator, called a hitting-
set generator will be a key object of study in Section 4. We postpone its
de�nition to the relevant section.

VP and VNP

Two natural complexity classes of polynomials which will �nd some men-
tions in this survey are VP and VNP. We de�ne them slightly informally
below, and refer the reader to the surveys of Shpilka and Yehudayo� [27] or
that of Saptharishi [24] for formal de�nitions of these complexity classes.

A family of polynomials {Pn} is said to be in VP, if there is a �xed con-
stant c such that for every large enough n, Pn has degree at most nc and
can be computed by an algebraic circuit of size at most nc. In a nutshell,
upto the degree condition, VP is a nonuniform algebraic analogue of the
complexity class P.

A family of polynomials {Pn} is said to be in VNP, if there is a family
of polynomials {Qm} in VP and a �xed constant c such that for every large
enough n,

Pn(x1, x2, . . . , xn) =
∑

a∈{0,1}nc

Q(x1, x2, . . . , xn, a1, a2, . . . , anc) .

VNP can be thought of an a nonuniform algebraic analogue of NP and in
this sense, the VP vs VNP question is the nonuniform algebraic analogue
of the P vs NP question.



3 Lower bounds from deterministic PIT
In this section, we focus our attention on results which show that non-
trivial deterministic PIT algorithms imply algebraic circuit lower bounds.
As alluded to in the introduction, the �rst connection of this �avour was
a result of Heintz and Schnorr [15] (also observed by Agrawal [1]) who
showed that non-trivial deterministic PIT algorithms in the blackbox set-
ting imply algebraic circuit lower bounds. Showing a similar lower bound
implication of non-trivial PIT algorithms in thewhitebox setting turned out
to bemuchmore non-trivial, and this was eventually done in an in�uential
work of Kabanets and Impagliazzo [18].

We startwith a discussion of the result ofHeintz and Schnorr [15] before
moving on to the results in [18].

3.1 Lower bounds from blackbox PIT algorithms

Theorem 3.1 (Heintz and Schnorr [15], Agrawal [1]). Let H(n, d, s) be an
explicit hitting set for circuits of size s, degree d in n variables. Then, for every
k ≤ n and d′ such that d′k ≤ d and (d′ + 1)k > |H(n, d, s)|, there is a nonzero
polynomial on n variables and individual degree d′ that vanishes on the hitting set
H(n, d, s), and hence cannot be computed by a circuit of size s.

Proof-sketch. From the de�nition of a hitting set, any nonzero polynomial
in the class of interest must evaluate to a nonzero value at some point on
the hitting set. Hence, any nonzero polynomial that evaluates to zero on
every point on the hitting set must necessarily not lie in the class. We can
�nd such a polynomial via interpolation, or solving a systemof linear equa-
tions, as we now elaborate on.

For every k, d′, a k-variate polynomial P of individual degree at most d′
has (d′+ 1)k coe�cients. Let us consider all these coe�cients to be distinct
formal variables, which have to be determined. Now, for every a ∈ Fk, if
such a polynomial evaluates to 0 at a, then its coe�cients must satisfy a
homogeneous linear constraint. Adding such a homogeneous linear con-
straint for every point a ∈ H(n, d, s) gives us a system of |H(n, d, s)| homo-
geneous linear constraints on (d′ + 1)k variables. If (d′ + 1)k < |H(n, d, s)|,
then this system of homogeneous linear equations is under-determined,
and has a nonzero solution. Moreover, if k ≤ n, d′k ≤ d, then any such
nonzero solution gives us a polynomial of degree at most d on (at most) n
variables which vanishes on every point of the hitting set H(n, d, s), and
thus, cannot be computed by an algebraic circuit of size at most s.



Theorem 3.1 shows a direct connection between PIT algorithms and al-
gebraic circuit lower bounds. For instance, if we have a polynomial size
hitting set for circuits of size n5, then we can construct the interpolating
polynomial and that would require circuits of size more than n5. Further-
more, such a polynomial has a circuit of size poly(n). If we could �nd an
interpolating polynomial for a hitting set of size s = nω(1), then we would
have obtained superpolynomial lower bounds. Such a polynomial can cer-
tainly be found in exponential time, but is the interpolating polynomial
for a superpolynomial sized hitting set in VNP? If yes, the existence of
non-trivial hitting sets would imply that VP 6= VNP. This following very
natural question continues to be open.

Question 3.2 (Open problem 17 in Shpilka-Yehudayo� [27]). Does a poly-
nomial time deterministic PIT algorithm in the blackbox setting imply that VP 6=
VNP?

As Shpilka and Yehudayo� note in their survey [27], this question also
remains open for various sub-classes of algebraic circuits. In particular, if
we have e�cient deterministic PIT algorithm in the blackbox setting for
algebraic formulas, does this imply that the permanent polynomial does
not have small formulas?

3.2 Lower bounds from whitebox PIT algorithms
Theorem 3.1 saw a substantial extension in the work of Kabanets and Im-
pagliazzo [18] nearly twenty years after the work of Heintz and Schnorr
[15]. Kabanets and Impagliazzo [18] showed that non-trivial determinis-
tic algorithms for PIT, even in the whitebox setting have remarkable con-
sequences towards proving new lower bounds. They showed that such
algorithms show that either NEXP (Non-deterministic Exponential Time)
does not have polynomial size Boolean circuits or the Permanent polyno-
mial does not have polynomial size algebraic circuits. Connecting white-
box PIT algorithms to lower bounds turned out to be far more complicated
than connecting blackbox PIT algorithms to lower bounds and indeed, the
proof of [18] is muchmore involved than that in [15]. In particular, it relied
on a set of highly non-trivial results in complexity theory, whereas as we
already saw, the proof of Theorem 3.1 is completely elementary. A conse-
quence of this potpourri of ideas in the proof of Kabanets and Impagliazzo
is the somewhat surprising combination of Boolean and algebraic circuit
lower bounds in their conclusion. In addition to their technical contribu-
tion, the results in [18] also contributed to a slight change in the perception



about the hardness of derandomizing PIT (a problem believed to be ap-
proachable) by connecting it to proving strong circuit lower bounds (a prob-
lem widely perceived to be much harder).

We now state the result of Kabanets and Impagliazzo and outline the
main ideas in its proof.

Theorem 3.3 (Kabanets and Impagliazzo [18]). If there is a deterministic al-
gorithm for polynomial identity testing (PIT) which runs in subexponential time
(or even that PIT ∈ NSUBEXP), then at least one of the following is true.

• There is a language in non-deterministic exponential time which does not
have polynomial size Boolean circuits i.e., NEXP is not contained in P/poly.

• The permanent polynomial does not have polynomial size4 algebraic circuits.

Remark. There has unfortunately been a slight overloading of the term “subex-
ponential”. In classical complexity, a function f : N → R is said to be subex-
ponential if f(n) = 2o(n

ε)for every ε > 0. In algebraic complexity, sometimes
subexponential is used to refer to functions f(n) = 2O(nε) for some 0 < ε < 1.
In this article, we shall stick to the classical de�nition of subexponential wherein
we mean

f(n) is subexponential ⇔ ∀ε > 0 , f(n) = 2o(n
ε).

♦

Proof-sketch. The proof is via contradiction. Let us assume that we have
a subexponential time deterministic algorithm for PIT, the permanent has
polynomial sized algebraic circuits, and that NEXP ⊆ P/poly. A result of
Impagliazzo, Kabanets and Wigderson [16] shows that if NEXP ⊆ P/poly
implies NEXP = P#P. With this in hand, and assuming that permanent
has small circuits and that PIT has subexponential time deterministic algo-
rithm, we shall contradict the non-deterministic time hierarchy theorem.

Consider an arbitrary language L in NTIME(2n). The goal is to de-
sign a much faster algorithm to decide membership in L. Assuming that
NEXP ⊆ P/poly, the permanent has small algebraic circuits and that PIT
has a subexponential time deterministic algorithm, we now outline such a
non-deterministic algorithm for L.

4There is a subtle point to be made here. In this theorem, the size of the circuit is
measured in terms of the total description size, which includes the constants possibly
appearing on the wires. Typically, in algebraic complexity, size is de�ned only as the
number of gates and does not include the bit-complexity of the constants.



As discussed above, NEXP ⊆ P/poly implies that NEXP = P#P. Thus,
membership in L (which is in NEXP) can be decided by a polynomial time
algorithmwith a#P oracle. Due to the#P completeness of the permanent,
without loss of generality, we can assume that each of the oracle queries in-
volves a permanent computation. We now outline a procedure to simulate
this P#P algorithm by a non-deterministic algorithm which runs in subex-
ponential time.

• Let m = poly(n) be the largest sized permanent queries made by the
P#P algorithm to solve L on length n inputs. Guess polynomial sized
algebraic circuits C1, . . . , Cm such that Ca computes the a× a perma-
nent.

• Using the self-reducibility of the permanent and the faster algorithm
for PIT, check that C1(x) = x and

∀a ∈ {2, . . . ,m} , i ∈ [a] : Ca(M)−
a∑
j=1

Mi,j · Ca−1(M̂i,j) ≡ 0,

whereMi,j refers to the entry at (i, j) and M̂i,j refers to the matrix ob-
tained by removing the i-th row and j-th column. If all the above tests
succeed, use the circuits C1, . . . , Cm to simulate the P#P algorithm for
L.

Overall, the above sketch simulates anyL ∈ NTIME(2n) in non-deterministic
subexponential time, and this contradicts the non-deterministic time hier-
archy theorem.

4 Deterministic PIT from lower bounds
Wenowmove on to the other direction of this connection between hardness
and randomness and discuss the design of non-trivial deterministic PIT al-
gorithms for polynomials with small circuits assuming that we have access
to explicit hard polynomials. This direction of research, as noted in the in-
troduction started in the 80’s in the set up of Cryptography [26, 4, 29, 14]
where it was shown that pseudorandom generators can be constructed as-
suming the existence of one way functions. A strong motivation for sub-
sequent research on this problem has been driven by the goal of obtain-
ing the strongest possible derandomization conclusion from the weakest
possible hypothesis. Indeed, the existence of one way functions is a very



strong assumption, which in particular implies that P 6= NP and it is desir-
able to weaken this to a lower bound hypothesis to something that is more
approachable.

In algebraic complexity, an obvious plausible candidate statement to
aim for would be to show that there is an e�cient deterministic algorithm
for PIT assuming that we have algebraic circuit lower bounds. It would
be even nicer to have a �ne grained connection where to obtain PIT for a
class C of algebraic circuits, we only need explicit lower bounds for a class
C ′ which is close to C. For instance, we could take both C and C ′ to be small
algebraic formulas, and ask whether super polynomial lower bounds for
algebraic formula implies e�cient deterministic PIT algorithms for small
formulas. In fact, there is nothing speci�c about algebraic formulas here
and we could ask the same question for other natural classes of algebraic
circuits, like circuits of bounded depth and algebraic branching programs.

As of now, most of these questions remain far from settled. Neverthe-
less, as we shall see in the next few sections, substantial progress has been
made towards them. We now discuss at a high level, the ideas involved
in the results which obtain deterministic PIT from algebraic circuit lower
bounds. We start with the crucial notion of a hitting-set generator. Before
moving to a formal de�nition, we �rst discuss the role this notion plays in
the goal of obtaining an e�cient deterministic algorithm for PIT.

Themost naïve (although, ine�cient) deterministic algorithm for PIT is
an immediate consequence of the following well known Polynomial Iden-
tity Lemma, which can be seen as a higher dimensional generalization of
the fact that any nonzero degree d univariate polynomial over a �eld F has
at most d zeros. The lemma has been discovered multiple times and is at-
tributed tomany di�erent authors (see Bishnoi et al. [3] and also footnote 2).
Lemma 4.1 (Polynomial identity Lemma [23, 7, 25, 30]). Let F be an arbitrary
�eld with at least d+ 1 elements and let P ∈ F[x] be a nonzero polynomial of total
degree at most d onn variables. Then, for every subsetS ofFwith |S| ≥ d+1, there
is an element (b1, b2, . . . , bn) in the set Sn = {(a1, a2, . . . , an) : ∀i ∈ [n], ai ∈ S}
such that P (b1, b2, . . . , bn) is nonzero.

The lemma immediately gives a way to deterministically test if a given
algebraic circuit computing a degree d polynomial is nonzero — simply
evaluate the polynomial at every point on the grid Sn for an arbitrary sub-
set S of the �eld of size at least d + 1 5. Unfortunately, this deterministic
algorithm makes (d + 1)n queries to the circuit, and hence, is quite inef-
�cient. In some sense, we have not used anything apart from the degree

5We will always assume that the underlying �eld is large enough, else we will work
over a large enough extension.



of the input circuit so far in the algorithm, and in this generality, it is not
hard to argue that such a superpolynomial running time is necessary if we
con�ne ourselves to making non-adaptive queries to the circuit6.

However, we have more information about the input at our hands, one
of the most signi�cant being the fact that the input polynomial has a small
circuit, and in this setting a much faster blackbox algorithm is conceivable.

It is worth noting that the algorithm based on Lemma 4.1 has running
time exponential in n, the number of variables. At a high level, the condi-
tional PIT algorithms discussed later in this survey, and indeedmost of the
PIT algorithms that we know in literature 7 essentially aim to construct an
e�ciently computable polynomial map where every nonzero polynomial
with a small circuit is mapped to a nonzero polynomial with much fewer
variables and not too high degree. The next step is to just query the poly-
nomial output by this variable reduction procedure on a grid of appropri-
ate size. The correctness of the algorithm is ensured by the guarantees on
the variable reduction map, and Lemma 4.1. The absolutely crucial point
is that size the polynomial output by the variable reduction procedure has
very few variables and the degree hasn’t increasedmuch in the process, the
number of query points given by Lemma 4.1 is just exponential in a much
smaller quantity than the total number of variables in the input, which
might still be tolerable if the parameters are set appropriately. To make
this discussion formal, we start with the following de�nition.
De�nition 4.2 (Hitting-set generators). A polynomial mapG : Fk → Fn given
by G(z1, z2, . . . , zk) = (g1(z), g2(z), . . . , gn(z)) is said to be a hitting-set gener-
ator (HSG) for a class C ⊆ F[x1, x2, . . . , xn] of polynomials if for every nonzero
Q ∈ C, we have that Q ◦G = Q(g1, g2, . . . , gn) is nonzero.

Here k is called the seed length of the HSG and (n − k) is its stretch. The
maximum of the degrees of g1, g2, . . . , gn is the degree of the HSG and it is said to
be t(n)-explicit if, for any input a ∈ Fk, we can compute G(a) in deterministic
time t(n). ♦

Intuitively, for any class C of polynomials, it is desirable to have an HSG
which is e�ciently computable, has small seed length and degree and has
a large stretch. An intuitively nice range of parameters is to think of k as
being sublinear in n, degree of G to be poly(n) and G is poly(n)-explicit.

6An n-variate degree d polynomial has
(
n+d
d

)
coe�cients, and for any set H of points

in Fn of size at most
(
n+d
d

)
− 1, there exists a nonzero n-variate polynomial of degree at

most d which vanishes on all of H . Thus, an algorithm which decides nonzeroness only
on the basis of the values of the input polynomial on points inH makes an error on such
a polynomial.

7Many of them can be viewed in this form, even though their original presentation
might be in a slightly di�erent language.



The utility of an HSG to a PIT algorithm, which we discussed earlier in
this section stems from the following observation.

Lemma 4.3 (HSGs to hitting sets). LetG : Fk → Fn be a degreeD, t(n)-explicit
hitting-set generator for a class C of n-variate polynomials of degree at most d.
Then, there is a deterministic algorithm which runs in time (d(D + 1))k t(n) and
outputs a set H ⊆ Fn of size at most (d(D + 1))k such that for every nonzero
Q ∈ C, there is an a ∈ H that satis�es Q(a) 6= 0.

Thus, given a hitting-set generator, we just need to query the given in-
put circuit at points on the corresponding hitting setH to determine nonze-
roness. Our goal, for the rest of this section is to construct hitting-set gen-
erators for polynomial size algebraic circuits assuming that we have an ex-
plicit hard polynomial family. We discuss two seemingly di�erent con-
structions, the �rst is a beautiful result of Kabanets and Impagliazzo [18]
which can be thought of as an algebraic analogue of the classical pseuo-
drandom generator of Nisan and Wigderson [22] in the Boolean setting.
This construction inherits some of the inherent combinatorial nature of the
construction ofNisan andWigderson, and in particular relies on the notion
of combinatorial designs, which are large uniform set families with small
pairwise intersections. The second construction that we discuss is due to a
recent work of Guo, Solomon and the authors [10] and appears to be more
algebraic in nature. Even though these two hitting-set generators di�er
from each other, they can both be viewed as generalizations of the follow-
ing very simple hitting-set generator which stretches the seed by just one.
Moreover, the overall structure of the proof of correctness of this simple
construction will also be instructive and many of the ideas from here will
also be present in the generalizations. We start with the de�nition of the
toy generator.

4.1 Warming up: An HSG of stretch one
The �rst thing to attempt is to build a hitting-set generatorwith the smallest
non-trivial stretch. This construction is inspired by an important concept
from Boolean pseudorandomness called “next-bit-unpredictability”.

Next bit unpredictability. An important concept, often discussed in the
cryptography setting, is the notion of next bit unpredictability. This can be
seen in the work of Yao [29] and in the the context of the Nisan-Wigderson
pseudorandom generators [22]. From [29], it is known that a sequence of



bits is pseudorandom if and only if no small circuit can predict the next bit
in the sequence with non-trivial advantage.

The following de�nition can be seen as an algebraic analogue of coming
upwith a next-bit-unpredictable sequence by using a hard function to create
the correlation.
De�nition 4.4 (HSG of stretch 1). Let P (z) ∈ F[z1, . . . , zk] be any k-variate
polynomial. We de�ne the map Gen0

P : Fk → Fk+1 as

Gen0
P (z) = (z1, z2, . . . , zk, P (z)) . ♦

In other words, the �rst k coordinates of the generator G0(P ) are just
the original variables, and the last coordinate is the polynomial P (z). The
utility of this toy construction stems from the following theorem.

Theorem 4.5 (Generator of stretch 1). Let P (z) ∈ F[z] be a k-variate polyno-
mial that cannot be computed by algebraic circuits of size s. Then, for any circuit
C ∈ F[y1, . . . , yk+1] of size at most s′ and degree d that satis�es (s′d)5 < s, the
following is true:

C(y) = 0 ⇐⇒ C ◦ Gen0
P (z) = 0 ,

where, C ◦ Gen0
P (z) is the polynomial C (z1, z2, . . . , zk, P (z)). Moreover, if P is

t(k)-explicit, then Gen0
P (z) is O(t(k))-explicit.

In other words, if we have a hard enough P of not-too-high degree, we
have a hitting-set generator for k+1-variate circuits of low enough size and
degree. Intuitively, if P is a hard polynomial, then a small circuit C should
not be able to “discover” that zk+1 is actually P (z1, . . . , zk).

There is one key di�erence in the statement of Theorem 4.5 and these
earlier instantiations of next-bit-unpredictability; in Theorem4.5, we are re-
lying on the fact that P cannot be computed by small circuits (i.e. a notion
of worst case hardness) for Gen0

P (z) to be a hitting-set generator, whereas
in these earlier constructions, an average case hardness of P appears to be
needed. In fact, it isn’t clear what the right analogue of the notion of aver-
age case hardness would be for the algebraic setting since we are comput-
ing formal polynomials and not functions. We proceed with an overview
of the proof now, and shall return to this discussion later in this section.

Proof of Theorem 4.5. We prove Theorem 4.5 via contradiction. Let us start
with the assumption that Gen0

P (z) is not an HSG as claimed in the theorem,
that there is a k+1-variate circuitA of small enough size and degree, which
is nonzero, but vanishes on being composedwith Gen0

P (z). Wewill use this
circuit A to show that there is a small circuit B which computes P , thus
contradicting the alleged hardness of P .



For the sake of contradiction, let us assume that there is a circuit A(y)
on k + 1 variables of size at most s′ and degree d with (s′d)5 < s such
that A(y) is nonzero and A ◦ Gen0

P (z) is identically zero. Let us just relabel
the variable yi as zi for every i ∈ {1, 2, . . . , k}. This is an invertible linear
transformation of the coordinates and clearly preserves the nonzeroness
of A. Moreover, its circuit size and the degree also remain the same. Now
composing A with the generator Gen0

P (z) can be just viewed as replacing
the variable yk+1 in A(z, yk+1) by P (z). As per our assumption, A(z, yk+1)
is nonzero whereas A(z, P (z)) is identically zero. This implies that (yk+1−
P (z)) divides A(z, yk+1).

Using the fact that A has a small circuit, if we could conclude that P
must have a small circuit, thenwewould be done. In particular, if it was the
case that factors of polynomials computed by small circuits can indeed be
computed by small circuits, then we would have our contradiction. Mirac-
ulously, this is indeed true!

A deeply in�uential and surprising result of Kaltofen [17] showed that
if a low degree polynomial has a small circuit, then all8 of its factors also
have a small circuit. This truly algebraic fact is what distinguishes this
proof from its counterparts in the Boolean setting. We state the following
seemingly weaker version of Kaltofen’s result, which will be su�cient for
the applications here.

Theorem 4.6 (Kaltofen [17]). Let A(z1, z2, . . . , zk, y) be a nonzero
polynomial of degree d such that A has an algebraic circuit of size
s ≥ d. Let P (z) be a polynomial such that

A(z, P (z)) = 0 .

Then, P can be computed by an algebraic circuit of size at most9 (sd)5.

By Theorem 4.6, this implies that P is computable by a circuit of size at
most (s′d)5 < s, thereby contradicting its hardness.

4.2 The Kabanets-Impagliazzo hitting-set generator
The HSG construction in Theorem 4.5 is natural and intuitive, but it su�ers
fromonemajor drawback— it just stretches the seed by one. For the goal of

8There are some technical issues in the case of small characteristic �elds but let us not
get into that for now.

9Bürgisser [5, Theorem 1.2] shows that the circuit complexity of factors is upper
bounded by O(sd4 log d); we are using (sd)5 purely for brevity and the constant 5 is not
important here. All the applications of this result in this survey just rely on this bound
being poly(s, d).



derandomizing PIT, even somewhat e�ciently, we would need the stretch
to be a much faster growing function of the seed length.

A natural attempt is to de�ne the following new generator:

Gen0.5
P : Ftk → F(t+1)k

Gen0.5
P (z1, . . . , zt) = (z1, . . . , zt, P (z1), . . . , P (zt))

In other words, partition partition the coordinates of the seed variables z
into sets S1, S2, . . . , St and look at the polynomial map which maps z to
(z, P (z |S1), P (z |S2), . . . , P (z |St)), where z |Si

is the projection of z on the
coordinates in Si. It is fairly straightforward to see that this map is indeed
an HSG as its analysis easily reduces to that of Theorem 4.5. However, the
issue of stretch not being su�ciently large continues to linger, the primary
reason being that the subsets S1, S2, . . . , St are disjoint from each other and
we can only have (m/k) many pairwise disjoint k-sets from a universe of
sizem.

TheHSGofKabanets and Impagliazzo thatwe discuss next gets around
this issue by considering a family of subsets which are not disjoint, but
are almost disjoint in the sense that their pairwise intersections are much
smaller than their respective sizes. This allows them to take many more
subsets than the seed length, thereby giving an HSG with a much larger
stretch. The construction of the HSG in by Kabanets and Impagliazzo [18]
is precisely the same as that in the classical pseudorandom generator of
Nisan and Wigderson [22] in the Boolean setting and some of their ideas
in the analysis of the generator also carries over to the algebraic setting. It is
worth noting that that the HSG construction in [18] was one of the earliest
such constructions in the algebraic setting.

We start by de�ning the generator, for whichwe need the following the-
orem of Nisan and Wigderson [22] about the almost-disjoint set families.

Theorem 4.7 (Combinatorial designs [22]). Let n,m be positive integers such
that n < 2m. Then, there is a family of subsets S1, S2, . . . , Sn ⊆ [k] with the
following properties.

• |Si| = m, for each i ∈ [n],

• |Si ∩ Sj| ≤ log n, for all i, j ∈ [n] such that i 6= j,

• k = O( m2

logn
).

Moreover, such a family of sets can be constructed via a deterministic algorithm in
time poly(n, 2k).



The set families as de�ned in Theorem 4.7 are referred to as an (m, log n)
combinatorial design, which is a name we use in the rest of the discussion.
De�nition 4.8 (HSG of Kabanets and Impagliazzo [18]). Letm and n be pos-
itive integers such that n < 2m, and S1, S2, . . . , Sn ⊆ [k] be an (m, log n) combi-
natorial design with k = O (m2/ log n). Let P be anm-variate polynomial. Then,
the polynomial map Gen1

P : Fk → Fn is de�ned as

Gen1
P (z) = (P (z |S1), P (z |S2), . . . , P (z |Sn)) . ♦

Note that one way in which Gen1
P (z) di�ers from Gen0

P (z) is that the
original seed variables are not a part of the output. We remark that this is
completely super�cial. We could have appended the seed to the generator
and increased the stretch to n (as opposed to the current stretch of n − k),
and this would not a�ect any of the results that we discuss here. However,
for a slight ease of notation, we stick with way things are de�ned in De�-
nition 4.8.

A simple and key observation about the HSG above is about its explic-
itness, and is summarized below.

Observation 4.9. If the polynomial P is t(m)-explicit, then the polynomial map
Gen1

P (z) is poly(n, 2k, t(m))-explicit.

The following theorem, which is the focus of this section says that for a
hard enough explicit polynomial P , the map Gen1

P (z) is a hitting-set gener-
ator for circuits of low enough complexity. Together with Observation 4.9,
this implies that for any explicit and hard enoughP , Gen1

P (z) is a hitting-set
generator.

Theorem 4.10 (Kabanets and Impagliazzo [18]). Let P (z) ∈ F[z] be an m-
variate multilinear polynomial which cannot be computed by an algebraic circuit
of size s. Let C(y) ∈ F[y] be an n-variate circuit of size at most s′ and degree d. If
(s′nmd)5 < s then,

C(y) = 0 ⇐⇒ C ◦ Gen1
P (z) = 0 .

Proof. At a very high level, the proof of this theorem is essentially via a
reduction to Theorem 4.5. Analogous to the set up of the proof of The-
orem 4.5, we again start with the assumption that there is a nonzero n-
variate circuit C(y) of size s′ and degree d (which are small enough), with
C ◦ Gen1

P (z) being identically zero. And the eventual goal is to show that
this assumption implies that P has a small circuit, thereby contradicting
the hardness of P and completing the proof. This route of starting with
this assumption, and getting to the contradiction is a little more non-trivial



though, as compared to that in Theorem 4.5. In particular, it is far from
clear how Theorem 4.10 comes into the picture (and it does!). The keyword
to addressing this di�culty is hybrid argumentwhich we now discuss.

Hybrid Argument. For i = 1, 2, . . . , n, let Ci be the circuit obtained
from C(y) by substituting the variables y1, y2, . . . , yi by P (z |S1), P (z |S2

), . . . , P (z |Si
) respectively. Clearly, Cn ≡ C ◦ Gen1

P (z). We can view the
process of obtaining Cn from C one step at a time, where in the ith step,
the variable yi in the circuit Ci−1 is replaced by P (z |Si

). Now, from our
assumption, we know that C is nonzero and Cn is identically zero. Thus,
there must have been an intermediate step i, such that Ci is nonzero, and
Ci+1 is identically zero. It is this circuit Ci that we focus on next. Observe
that imust be at least one.
Reduction to Theorem 4.5. Recall that Ci is de�ned as

Ci = C (P (z | S1), . . . , P (z | Si), yi+1, . . . , yn) .

Thus, Ci has two sets of variables, namely z and {yi+1, yi+2, . . . , yn}. The
idea is to just focus on the relevant variables, which in this case are the vari-
ables z |Si+1

and yi+1. To this end, we set every y-variable apart from yi+1

and every z-variable outside z |Si+1
to a value in the underlying �eld which

keeps Ci nonzero. Since, Ci is a nonzero polynomial, in particular, a ran-
dom value for there additional variables picked from a large enough grid
will have this property. We just work with one such value. Let C ′i and C ′i+1

be the circuits obtained from Ci and Ci+1 respectively at the end of this
partial assignment. From the discussion above, we know that C ′i only de-
pends on the variables z |Si+1

and yi+1 and C ′i+1 which is identically zero
is obtained from C ′i by replacing yi+1 by P (z |Si+1

). We now claim that the
size of C ′i is not too largewhen compared to that of C.
Claim 4.11. The size of C ′i is at most O(s′ · n) and degree at mostmd.

For now, we use Claim 4.11 to complete the proof of Theorem 4.10 and
then move on to its proof. Observe that C ′i is a polynomial of circuit size
at most O(s′n) and degree at mostmd on the variables z |Si+1

and yi+1, and
the circuit obtained by replacing yi+1 by P (z |Si+1

) which equals C ′i+1 is
identically zero. Thus, we are in the setting of Theorem 4.6, which implies
that the circuit size of P (z |Si+1

) is at most (s′nmd)5 < s. Note that this
contradicts the hypothesis of Theorem 4.10, where we assumed that the
m-variate polynomial P cannot be computed by circuits of size less than s.
Thus, C ◦ Gen1

P (z) could not have been identically zero.

We now prove Claim 4.11. This would complete the proof of Theo-
rem 4.10.



Proof of Claim 4.11. Recall that the circuit C ′i was obtained from the circuit
C by replacing y1, y2, . . . , yi by P (z |S1), P (z |S2), . . . , P (z |Si

) respectively
(this gives us circuitCi) and then substituting all variables apart from z |Si+1

and yi+1 by some �eld elements. Note that since P is a hard polynomial, it
is not clear that the size of the circuit Ci is small. However, as we shall see
next, after the partial substitution involved in getting C ′i from Ci, we will
be able to argue that the size of C ′i is indeed small.

To see this, recall that from the pairwise intersection property of the sets
S1, S2, . . . , Sn, we know that |Si+1 ∩ Sj| ≤ log n for all j 6= (i+ 1). Thus, the
polynomial obtained from the polynomial P (z |Sj

) after setting all vari-
ables in z outside z |Si+1

to �eld elements is a multilinear polynomial in
only log n variables. Thus, such a polynomial is a sum of at most 2logn = n
monomials andhas a circuit of sizeO(n). Thus, the circuitC ′i can be directly
obtained from C by replacing the variables y1, y2, . . . , yi by polynomials of
circuit size at most n and the variables yi+2, yi+3, . . . , yn by �eld elements.
Therefore, the size of C ′i is at most O(s′n).

The bound on the degree just follows from the fact that the degree of
C is at most d and the degree of P is at mostm since it is multilinear onm
variables.

A particularly insightful regime of parameters to invoke Theorem 4.10
when we have access to a family of multilinear polynomials which require
superpolynomial size algebraic circuits is by setting10 m = log2 n. As a con-
sequence, it follows fromTheorem4.10 that the seed length of the generator
Gen1

P (z) can be taken to be at most m2/ log n which is at most log3 n. Now,
combining Theorem 4.10 with Lemma 4.1,we have the following (slightly
informally stated) theorem.

Corollary 4.12 ((Informal) [18]). Given a polynomial family {fn}, with fn being
an n-variate multilinear polynomial that requires 2Ω(n)-sized circuits, there exists
a deterministic algorithm for PIT which runs in 2poly(log s) time (where s is the size
of the input circuit).

We remark that there is really nothing special about having hard mul-
tilinear polynomial families. In fact, we can assume without loss of gener-
ality that the hard polynomial family is multilinear, up to an appropriate
tuning of parameters involved.

10We could have chosen m to be anything asymptotically large than log n for this dis-
cussion.



4.2.1 What more can we ask for ?

Given Corollary 4.12, we know that we can get deterministic quasipolyno-
mial time algorithm for PIT given access to explicit hard polynomial fami-
lies. To a large extent, this answers the question of derandomization from
algebraic hardness. However, some very natural questions in this context
continue to remain unanswered. We now focus on brie�y discussing some
of these.

Complete derandomization of PIT. Corollary 4.12 only gives a quasipoly-
nomial time algorithm for PIT, and not a truly polynomial time algorithm.
While the presentation in this survey is for a speci�c range of parameters,
it is not hard to verify that the hitting-set generator in Theorem 4.10 can-
not be used to get a polynomial time algorithm for PIT even if we have
access to a polynomial family which is optimally hard. To see this observe
that the stretch of Gen1

P (z) can be at most exponential in its seed length. In
other words, the seed length cannot be smaller than log n for the stretch to
be n. Thus, the application of the generator reduces a nonzero polynomial
of low degree and circuit size on n variables to a nonzero polynomial on
log n variables. Now to test the nonzeroness of this resulting polynomial,
we rely on Lemma 4.1, which gives us a hitting set of size Dlogn, where D
is the degree of the resulting circuit. Now, for any growing11 D, the �nal
size of the hitting set is always going to be superpolynomially growing in
n. Thus, a natural question is to understand is the following:

Question 4.13. Does a superpolynomial lower bound for algebraic circuits for
an explicit polynomial family imply that there is a deterministic polynomial time
algorithm for PIT?

Tradeo�s for natural subclasses of algebraic circuits. Yet another ques-
tion of interest which comes up in the light of Theorem 4.10 is if an ana-
logue of it is true for natural subclasses of algebraic circuits. For instance,
the following seems to be a natural question.

Question 4.14. Does superpolynomial lower bound for algebraic formulas for
an explicit polynomial family imply that there is a deterministic polynomial time
algorithm for PIT for algebraic formulas?

Remark 4.15. We note that a lower bound of nω(log d) for an n-variate degree d
polynomial for formulas implies algebraic circuit lower bounds. This is an imme-
diate consequence of a celebrated depth reduction result of Valiant et al. [28] which

11This is the interesting regime of parameters for the PIT problem.



shows that any circuit of size s circuit computing a polynomial of degree d can be
converted to a formula of size at most sO(log d). Thus, the above question is of inter-
est when the superpolynomial lower bounds for formulas are not strong enough to
imply superpolynomial algebraic circuit lower bounds. ♦

Perhaps the �rst course of action is to understand if, the proof of De�-
nition 4.8 just naturally carries over to the case of formulas thereby answer-
ing Question 4.14. And, most of the argument does indeed just carry over
to the case of formulas, up until the point where we invoke Theorem 4.10.
In particular, algebraic formulas are not known to be closed under taking
factors (or more speci�cally taking roots as in the case here). It is worth
noting that the question of closure of formulas or essentially any other nat-
ural class of polynomials is a very natural question on its own, even beyond
the immediate application to Question 4.14 and also continues to remain
open.

Beyond design based hitting-set generators. In the Boolean set up, it is
not hard to show that we cannot have a pseudorandom generator of seed
length k and stretch n which fools circuits of size larger than n2k. To see
this, observe that we can construct a circuit of size O(n2k) to identify the
range of the generator (consisting of 2k strings of length n each), and ac-
cept every input in the range while rejecting everything else. However,
this upper bound on the stretch does not seem to extend immediately to
the algebraic set up, though the argument above can be adapted to show
an upper bound of (dD)O(k) on the size of degree d algebraic circuits which
can be fooled by a HSG with seed length k, stretch n and degree D. Thus,
in principle, one could expect HSGs with stretch larger than 2k.

An intriguing feature of Theorem 4.10 is that even though it is a state-
ment which connects two inherently algebraic questions, namely the ques-
tion of proving strong lower bounds for explicit polynomial families and
designing e�cient deterministic algorithms for PIT, its proof crucially re-
lies on the notion of combinatorial designs. For aesthetic reasons, it seems
desirable to seek an alternate construction of a hitting-set generator from
algebraic hardness which is algebraic and does not crucially rely on com-
binatorial ideas.

4.3 Fine grained analogues of the KI generator
In this section we brie�y discuss some recent work broadly aimed at an-
swering Question 4.14, and while we are still far from fully answering the
question, there has been some interesting progress in this direction.



HSG for polynomials of low individual degree [9]. Dvir, Shpilka and
Yehudayo� [9] showed that an explicit family of polynomials which can-
not be computed by a small algebraic circuit of depth ∆ can be used to
derandomize PIT for algebraic circuits of depth (∆ − 5) of bounded indi-
vidual degree. Thus, for the case of circuits of bounded individual degree
and some loss in depth, they show that lower bounds for constant depth
circuits for an explicit polynomial family does imply deterministic PIT for
them. The hitting-set generator in [9] is precisely the same as the HSG
in De�nition 4.8. The key idea in the analysis is a statement about the com-
plexity of factors of polynomials of small individual degree which have
small constant depth circuits. They show that the analogue of Theorem 4.6
is true for constant depth circuits of bounded individual degree.12.

HSG using hardness of polynomials of low degree [6]. Yet another par-
tial result towards Question 4.14 was by Chou, Kumar and Solomon [6]
who showed that a family of explicit polynomials of low degree (degree at
most exp(O(

√
log k)) for a k-variate polynomial) which requires superpoly-

nomial size algebraic formulas implies a deterministic algorithm for PIT
for algebraic formulas. As in [9], the hitting-set generator in [6] is again
the same as that in De�nition 4.8, and the analysis again crucially relies
on a statement about the complexity of low degree factors of polynomials
with small formulas. Chou et al. show that factors of low enough degree of
polynomials of with small formulas have small formulas.

4.4 A hitting-set generator without designs
In this section, we discuss a construction of hitting generators from alge-
braic hardness due to Guo et al. [10]. The generator constructed here uses a
k-variate degree d polynomial which requires circuit size s, and has stretch
sΩ(1/k). For this range of parameters, we know from counting arguments
that there exist polynomial which require circuit size at least dΩ(k). The
hitting-set generator of Guo et al. uses such an explicit hard polynomial
to give a polynomial map which maps 2k variables to dΩ(1) variables, such
that the map preserves the nonzeroness of any circuit of not-too-large size.
The degree of this map is upper bounded by d. Thus, this generator an-
swers Question 4.13 in a slightly weakened setting. As we shall see in Sec-
tion 5, this generator also has a clean application to the phenomenon of
bootstrapping for PIT. We start by de�ning the generator.

12More precisely, Dvir et al [9] showed it only for roots as in Theorem 4.6. This was
generalized to arbitrary factors by Oliveira [8].



De�nition 4.16 (The generator). For any k-variate polynomial P (z), de�ne the
map Gen2

P : Fk × Fk → Fn+1 as follows:

Gen2
P (z,y) = (∆0(P )(z,y),∆1(P )(z,y), . . . ,∆n(P )(z,y)) ,

where∆i(P ) is the homogeneous degree i (iny) component in the Taylor expansion
of P (z + y), i.e.

∆i(P )(z,y) =
∑

e∈Nk,|e|1=i

ye

e!
· ∂P
∂ze

. (here, e! := e1! · · · ek!) ♦

The following theorem which is the focus of this section states that for
a su�ciently hard P , Gen2

P is a hitting-set generator.

Theorem 4.17 ([11, 10]). Assume that the underlying �eld F has characteristic
zero and letP be a k-variate polynomial of degree d. SupposeP cannot be computed
by algebraic circuits of size s̃ =

(
s ·D · d3 · n10k

)
for parameters n,D, s. Then,

for any (n+ 1)-variate algebraic circuit C(x0, . . . , xn) of size at most s and degree
at most D, we have

C 6= 0⇐⇒ C ◦ Gen2
P (z,y) 6= 0.

With a few more ideas on top of Theorem 4.17, the following slightly
stronger statement can be shown. The theorem essentially shows that for
any constant variate explicit polynomial family, a lower bound with poly-
nomial dependence on the degree implies e�cient deterministic PIT for
algebraic circuits.

Theorem 4.18 ([10]). Let k ∈ N and δ > 0 be arbitrary constants. Suppose
{Pk,d}d∈N is a family13 of explicit k-variate polynomials such that deg(Pk,d) = d
and Pk,d requires circuits of size at least dδ. Then, there are explicit hitting sets of
size sO(k2/δ2) for the class of s-variate, degree s polynomials that can be computed
by circuits of size s.

We remark that, analogous to the case of the Kabanets-Impagliazzo
generator (Gen1

P ), one could also include the original seed variables in the
output. This does not a�ect the correctness of Theorem 4.17. However, in
this case, the �rst 2k + 1 coordinates of the generator Gen2

P are

(z1, . . . , zk, y1, . . . , yk,∆0(P )) .

13We assume that the polynomial family contains a degree d polynomial, Pk,d, for every
positive integer d. For the purposes of this theorem, it su�ces to assume that the family is
su�ciently often in the following sense: There are absolute constants a, b such that for any
t ∈ N, there is some Pk,d in the family such that ta ≤ d ≤ tb.



From the de�nition of ∆0, note that this is the same as the tuple

(z1, z2, . . . , zk, y1, y2, . . . , yk, P (z)) .

This is essentially the generator Gen0
P up to some relabeling of variables.

Therefore, in this sense, the generatorGen2
P is also another generalization of

the generatorGen0
P . Aswe shall see, even though the proof of Theorem 4.17

does not directly use Theorem 4.6 as a blackbox as is used in Gen0
P , it does

rely on generalization of some of the ideas in the proof of Theorem 4.6.
In the rest of this section, we discuss the main ideas in the proof of The-
orem 4.17. In the interest of keeping the length of this survey short, we
will skip some of the formal details, and refer the interested reader to the
original papers [11, 10].

4.4.1 Reconstruction from annihilators

Rather than quickly dive into the proof of the correctness of this generator,
let us focus on how we might go about proving this; hopefully this would
shed more light on the correctness. Suppose we have a generator, built
using a hard polynomial P , of the form GenP = (P1, . . . , Pn) where each
Pi is related to P in some way. We wish to show that GenP is indeed a
hitting-set generator for the class of small-enough circuits.

The standard way we would argue this would be via contradiction. Let
us assume that there is indeed a circuitC such thatC 6= 0 butC ◦GenP = 0.
Then, we would like to somehow, using the circuit C, reconstruct a not-too-
large circuit for P thus contradicting its hardness. In other words, given
access to an annihilator C of GenP , we wish to reconstruct a circuit for P . In
the case of Theorem 4.5 and Theorem 4.10, we made minor modi�cations
to C to obtain a circuit C ′, showed that (y − P ) had to be a factor of C ′
and eventually appealed to Kaltofen’s factorisation result (Theorem 4.10)
to obtain a not-too-large circuit for P . With this in mind, the challenge of
constructing a hitting set generator can be viewed as the quest of construct-
ing a suitable map GenP such that any annihilator can be used to reconstruct
P !

This approach is akin to many algebraic decoding algorithms in coding
theory. For instance, the Reed-Solomon decoders proceeds by �rst con-
structing a suitable bivariate polynomial Q(x, y) (based on the received
message) such that all candidate messages m(x) satisfy Q(x,m(x)) = 0.
For Parvaresh-Vardy codes for instance, the algorithm proceeds by �nding
a polynomial Q(y, z0, . . . , zs) such that Q(x,m(x),m(x)h, . . . ,m(x)h

s−1
) =

0 (roughly speaking) and e�ciently recovering all m(x)’s that satisfy the
above equation. The generator Gen2

P is very closely related to the decoding



algorithm formultiplicity codes or derivative codes, due to Kopparty [19]. We
shall illustrate the key aspects of the proof of Theorem 4.17 by the follow-
ing related map instead which is essentially the list-decoding algorithm of
Kopparty [19].

Reconstruction for univariate derivatives maps: Let P (x) = p0 + p1z +

· · ·+pdzd ∈ F[z] be a univariate polynomial. We shall de�ne themap G̃enP :
F→ F3 as

G̃enP (z) = (P (z), P ′(z), P ′′(z)),

where P ′, P ′′ refers to the �rst and second order derivative of P respec-
tively. Suppose we are given a circuit C(x0, x1, x2) such that C ◦ G̃enP = 0,
how do we recover P from C?

Let us assume thatwe somehowknew the�rst three coe�cients p0, p1, p2.
The goal is to recover all the other coe�cients of P . The key observation is
the following:

0 = C(P, P ′, P ′′) = C(p0 + p1z + · · · , p1 + 2p2z + · · · , 2p2 + 6p3z + · · · )
= C(p0 + p1z , p1 + 2p2z , 2p2 + 6p3z) mod z2

= C(p0 + p1z , p1 + 2p2z , 2p2) +(
∂C

∂x2

)
(p0 + p1z, p1 + 2p2z, 2p2) · (6p3z) mod z2,

which is a linear equation in p3! This last step is just an application of
Taylor’s expansion to the polynomial C around the point (p0 + p1z, p1 +
2p2z, 2p2). Therefore,

p3 =

(
Coe�cient of z in C(p0 + p1z, p1 + 2p2z, 2p2)

6 · ∂x2C(p0, p1, 2p2)

)
Thus, if ∂

∂x2
(C)(p0, p1, 2p2) 6= 0, we can use the above equation to solve for

p3. Once we have found p3, the same argument can be used to �nd p4, and
so on, to recover all the coe�cients of P . Thus, we can indeed recover P
from C.

The proof of correctness of Theorem 4.17 is, to a large extent, a mul-
tivariate analogue of the above sketch but requires a careful navigation
around many subtleties. The most important of the subtleties is that we
need to keep track of the algebraic circuit complexity of the recovery process.
For instance, if recovering one additional coe�cient incurs a multiplicative
blow-up of just two in the circuit size, the eventual circuit size of the entire



recovery process becomes 2d, which is not helpful to contradict the hard-
ness of P . Fortunately, a careful analysis of the recovery process allows us
to infer that the increase in size is merely additive instead of multiplicative.
More details, we refer the interested reader to the original papers [11, 10].

5 Application: Bootstrapping for PIT
We saw in Section 3 that non-trivial deterministic algorithms for PIT are
known to imply lower bounds which are much better than the current
state of art. In this section, we discuss another somewhat surprising conse-
quence of even slightly non-trivial deterministic (blackbox) algorithm for
PIT. This line of research started with a work of Agrawal, Ghosh and Sax-
ena [2] who showed that PIT is amenable to the phenomenon of bootstrap-
ping.

Repeated applications of the KI generator ([2]). Let us revisit the argu-
ment of Kabanets and Impagliazzo. Suppose we wish to build a generator
for, say, circuits of size n2, computing n-variate polynomial of degree at
most n. Theorem 4.10 shows that if we have a hard multilinear polyno-
mial P onm variables that cannot be computed by circuits of size roughly
O(n10), and if we have an (m, log n)-design S1, . . . , Sn, then Gen1

P : Fk → Fn
is a hitting-set generator. And if m = c log n for some large enough c (say
100) and k = O(log2 n), then, indeed asking for an Ω(n10) lower bound
seems reasonable.

Now let’s consider the new circuit C ′ = C ◦ Gen1
P . This now computes

an k-variate polynomial, of degree Õ(n), that is computable by circuits of
size at most n10c. What is preventing us from running through the same
argument again? For starters, we are working with a larger circuit C ′ and
hence would require am′-variate polynomial P ′ with hardness n1000c or so,
withm′ � k. The issue is that any multilinear polynomial onm′ variables
trivially has a circuit of size 2m

′ and if this is much smaller than n1000c we
seem to be stuck. This is indeed the reasonwhy such an argument does not
work in the Boolean setting since any Boolean function on m′ has circuit
complexity at most 2m

′ .
The key observation here is that we can indeed havem′-variate polyno-

mials of any hardness that wewant becausewe have one additional param-
eter to play with — the degree of the polynomial! From the proof of Theo-
rem4.10, it is not hard to see thatmultilinearity is not essential for the proof,
andwe could haveworkedwith hard polynomials of higher individual de-
gree, and upto an appropriate change in the quantitative parameters, the



argument continues to be applicable. Thus, by considering polynomials of
suitable large degree, we can hope form′-variate polynomials of hardness
n1000c or whatever is required for the argument. This is essentially the idea
behind the hitting-set generator implicit in a work of Agrawal, Ghosh and
Saxena [2].

It appears that we need multiple families of hard polynomials for this
generator to work, with incrementally increasing hardness. This appears
to require many hard polynomial families as opposed to one as in Theo-
rem 4.10. But how do we obtain such collections of hard polynomial fam-
ilies? If we are promised that there is a slightly better than trivial explicit
hitting set, we can use Theorem 3.1 to get a hard polynomial from that! On
understanding the evolution of parameters on repeated use of the same
generator, we obtain following theorem of Agrawal, Ghosh and Saxena [2].

Theorem 5.1 (Agrawal, Ghosh and Saxena [2]). Let ε > 0 and let n be a large
enough constant. Suppose, for all s ≥ n we have that the class C(n, s, s) of n-
variate polynomials of degree at most s and circuit size at most s has an explicit
hitting set of size sn0.5−ε . Then, for all growing s, the class C(s, s, s) has hitting
sets of size sexp(exp(log∗ s)).

Here, log∗ s is the de�ned as the number of iterated logs required to
obtain a number less than 2. Subsequently, this result was strengthened by
Tengse and the authors [20] to the following form.

Theorem 5.2 (Kumar, Saptharishi and Tengse [20]). Let ε > 0 and let n be a
large enough constant. Suppose, for all s ≥ n we have that the class C(n, s, s) of
n-variate polynomials of degree at most s and circuit size at most s has an explicit
hitting set of size sn−ε. Then, for all growing s, the class C(s, s, s) has hitting sets
of size sexp(exp(log∗ s)).

Furthermore, the same result holds if the C is replaced by several natural sub-
classes of circuits such formulas, or algebraic branching programs etc.

In this section, we sketch a proof of the following result ofGuo et al. [10],
which is a further quantitative improvement on Theorem 5.2. Moreover,
the proof is a fairly direct consequence of Theorem 4.17 and we sketch the
details below.

Theorem 5.3 (Guo, Kumar, Saptharishi, Solomon [10]). Assume that the un-
derlying �eldF has characteristic zero. Let k ∈ N and δ > 0 be arbitrary constants.
Suppose that, for all large enough s, there is an explicit hitting set of size (s+1)k−1
for the k-variate algebraic circuits of size at most sδ and individual degree at most
s. Then for all large enough s, there is an explicit hitting set of size sO((k/δ)2) for
s-variate circuits of size and degree at most s.



Observe that it is not very hard to construct an explicit hitting set of size
at most (s + 1)k for k-variate polynomials of individual degree at most s.
In particular, for every subset S of the �eld F of size at least s+ 1, the set of
points in Sk forms a hitting set of size (s+ 1)k for k-variate polynomials of
individual degree at most s. This is a fairly straightforward consequence of
the usual induction based proof of Lemma 4.1. Thus, Theorem 5.3 says that
if we can even save a single point from this trivial hitting set for constant
variate polynomials, then we get a truly polynomial time deterministic al-
gorithm for PIT. In the rest of this section, we present the fairly short and
succinct proof of Theorem 5.3 which is based on the hitting-set generator
in Theorem 4.17.

Proof of Theorem 5.3. Let s be large enough and let Hs be the hitting set for
k-variate circuits of size sδ and individual degree at most s. From the hy-
pothesis of the theorem, we know that |Hs| ≤ (s+1)k−1 < (s+1)k andHs

is explicit. From Theorem 3.1, we can obtain a polynomial Ps(z1, . . . , zk) of
individual degree at most s that cannot be computed by circuits of size sδ.
In other words, we get that Ps is a degree d ≤ ks polynomial that requires
circuits of size at least (

d

k

)δ
� dδ/2.

Thus, {Ps} is an explicit family of k-variate, degree-d polynomials that re-
quire circuits of size dδ/2. Now, applying Theorem 4.18 with this hard poly-
nomial family, we get an explicit sO((k/δ)2)-size hitting set for s-variate cir-
cuits of size and degree at most s.

6 Conclusion and open problems
In this survey, we studied the interplay between hardness and derandom-
ization in algebraic complexity.

• We know from Theorem 3.1 that construction of explicit hitting sets
for a class of circuits imply lower bound for the same class.

• Theorem 4.10 and Theorem 4.17 shows that suitably hard polynomi-
als can also be used to construct hitting-set generators.

• Theorem 5.1 and Theorem 5.2 used both directions of the hardness-
randomness interplay to show that even slightly non-trivial hitting
sets can be bootstrapped to yield nearly optimal hitting sets.



• Theorem 5.3 showed that even saving one point from the trivial hit-
ting set in the constant-variate setting would yield a complete deran-
domization of PIT.

Althoughwe havemade considerable progress in our understanding of
this interplay, several natural questions remain open. In particular, Ques-
tion 3.2, Question 4.13 and Question 4.14 which we restate below.

Question. Does a polynomial time deterministic PIT algorithm in the blackbox
setting imply that VP 6= VNP?

Theorem 3.1 yields a lower bound, but the polynomial obtained is not
known to be in VNP and hence the above question continues to remain
open.

Question. Does a superpolynomial lower bound for algebraic circuits for an ex-
plicit polynomial family imply that there is a deterministic polynomial time algo-
rithm for PIT?

Theorem 4.18 provides an answer to a related question where the hy-
pothesis provides a suitable lower bound for a family of constant-variate
polynomials where the growing parameter is the degree. Thus, the above
statement, as stated, continues to remain open.

Question. Does superpolynomial lower bound for algebraic formulas for an
explicit polynomial family imply that there is a deterministic polynomial time al-
gorithm for PIT for algebraic formulas?

In the case of Theorem 4.10, the theorem is not known to extend to the
class of algebraic formulas since we do not know if Kaltofen’s factorisation
result (Theorem 4.6) extends to algebraic formulas. In the setting of The-
orem 4.17, the reconstruction argument heavily reuses prior computation
and hence does not seem to be adaptable to the class of algebraic formulas.

Another nagging open question is that several of the results discussed
in this survey require the underlying �eld to be of characteristic zero or
larger than the degree of the polynomials involved. This is primarily due
to the ubiquitous use of partial derivatives in both Kaltofen’s factorisation
result ( Theorem 4.6) in the case of Theorem 4.10 and Theorem 5.1, and
both the construction and proof argument in generator of Theorem 4.17.
An exception to this is the result of Tengse and the authors Theorem 5.2
[20] which continues to hold over all �elds.

Question. Are there results analogous to Theorem 4.10, Theorem 4.17 over �elds
of small characteristic ?



We are hopeful that the next few years will bring to resolution at least
some of the above questions.
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