Hypergraphic Degree Sequences are Hard

Antoine Deza
McMaster University, Hamilton, Ontario, Canada
deza@mcmaster.ca
Asaf Levin
Technion - Israel Institute of Technology, Haifa, Israel
levinas@ie.technion.ac.il
Syed Mohammad Meesum
University of Wrocław, Poland
meesum.syed@cs.uni.wroc.pl
Shmuel Onn
Technion - Israel Institute of Technology, Haifa, Israel
onn@ie.technion.ac.il

Abstract

In their celebrated 1960 paper Erdős and Gallai give an effective characterization of degree sequences of graphs. The analog problem for 3-hypergraphs has been open ever since. We solve it by showing that deciding degree sequences of 3-hypergraphs is NP-complete.

A k-hypergraph on $[n]$ is a subset $H \subseteq\{0,1\}_{k}^{n}:=\left\{x \in\{0,1\}^{n}:\|x\|_{1}=k\right\}$. The degree sequence of H is the vector $d=\sum H:=\sum\{x: x \in H\}$. We consider the following decision problem: given k and $d \in \mathbb{Z}_{+}^{n}$, is d the degree sequence of some hypergraph $H \subseteq\{0,1\}_{k}^{n}$. For $k=2$, that is for graphs, the celebrated work of Erdős and Gallai [3, 1960] implies that d is a degree sequence of a graph if and only if $\sum d_{i}$ is even and, permuting d so that $d_{1} \geq \cdots \geq d_{n}$, the inequalities $\sum_{i=1}^{j} d_{i}-\sum_{i=l+1}^{n} d_{i} \leq j(l-1)$ hold for $1 \leq j \leq l \leq n$, yielding a polynomial time algorithm. For $k=3$ the problem has been open ever since, was formally posed over 30 years ago by Colbourn, Kocay, and Stinson [1 1986, Problem 3.1], and was recently solved by Deza, Levin, Meesum, and Onn [2, 2018].

Here is the statement and its short proof.

Theorem It is NP-complete to decide if $d \in \mathbb{Z}_{+}^{n}$ is the degree sequence of a 3-hypergraph.

Proof. The problem is in NP since if d is a degree sequences then a hypergraph $H \subseteq\{0,1\}_{3}^{n}$ of cardinality $|H| \leq\binom{ n}{3}=O\left(n^{3}\right)$ can be exhibited and $d=\sum H$ verified in polynomial time.

We consider the following three decision problems where $\mathbf{1}$ denotes the all-ones vector.
(1) Given $a \in \mathbb{Z}_{+}^{n}, b \in \mathbb{Z}_{+}$with $31 a=n b$, is there an $F \subseteq\left\{x \in\{0,1\}_{3}^{n}: a x=b\right\}$ with $\sum F=\mathbf{1}$?
(2) Given $w \in \mathbb{Z}^{n}, c \in \mathbb{Z}_{+}^{n}$ with $w c=0$, is there a $G \subseteq\left\{x \in\{0,1\}_{3}^{n}: w x=0\right\}$ with $\sum G=c$?
(3) Given $d \in \mathbb{Z}_{+}^{n}$, is there an $H \subseteq\{0,1\}_{3}^{n}$ with $\sum H=d$?

Problem (1) is the so-called 3-partition problem which is known to be NP-complete [4]. First we reduce (1) to (2). Given a, b with $31 a=n b$, let $w:=3 a-b \mathbf{1}$ and $c:=\mathbf{1}$. Then $w c=0$. Now, for any $x \in\{0,1\}_{3}^{n}$ we have $w x=3 a x-b \mathbf{1} x=3(a x-b)$ so x satisfies $a x=b$ if and only if $w x=0$. So the answer to (1) is YES if and only if the answer to (2) is YES. Second we reduce (2) to (3). Given w, c, with $w c=0$, define $d:=c+\sum S_{+}$, where $S_{\sigma}:=\left\{x \in\{0,1\}_{3}^{n}: \operatorname{sign}(w x)=\sigma\right\}$ for $\sigma=-, 0,+$. Suppose there is a $G \subseteq S_{0}$ with $\sum G=c$. Then $H:=G \cup S_{+}$satisfies $\sum H=d$. Suppose there is an $H \subseteq\{0,1\}_{3}^{n}$ with $\sum H=d$. Then
$w \sum S_{+}=w\left(c+\sum S_{+}\right)=w \sum H=w \sum\left(H \cap S_{-}\right)+w \sum\left(H \cap S_{0}\right)+w \sum\left(H \cap S_{+}\right)$ which implies $H \cap S_{-}=\emptyset$ and $H \cap S_{+}=S_{+}$. Therefore $G:=H \cap S_{0}$ satisfies $\sum G=\sum H-\sum S_{+}=c$. So the answer to (2) is YES if and only if the answer to (3) is YES.

References

[1] Colbourn, C.J., W.L. Kocay, W.L., Stinson, D.R.: Some NP-complete problems for hypergraph degree sequences. Discrete Applied Mathematics 14:239-254 (1986)
[2] Deza, A., Levin, A., Meesum, S.M., Onn, S.: Optimization over degree sequences. SIAM Journal on Discrete Mathematics 32:2067-2079 (2018)
[3] Erdős, P., Gallai, T.: Graphs with prescribed degrees of vertices (in Hungarian). Matematikai Lopak 11:264-274 (1960)
[4] Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman (1979)

