
The Education Column
by

Juraj Hromkovič

Department of Computer Science
ETH Zürich

Universitätstrasse 6, 8092 Zürich, Switzerland
juraj.hromkovic@inf.ethz.ch

http://www.inf.ethz.ch
http://www.ethz.ch

Interdisciplinary Education inMathematics

and Informatics at Swiss High Schools

Urs Hauser
Department of Computer Science, ETH Zurich, Switzerland

urs.hauser@inf.ethz.ch

Dennis Komm
Department of Computer Science, ETH Zurich, Switzerland
Pädagogische Hochschule Graubünden, Chur, Switzerland

dennis.komm@inf.ethz.ch

Abstract

Informatics will be introduced as mandatory subject at schools in Switzer-
land within the next years, and the corresponding curricula are under devel-
opment. Mathematics and informatics have a lot of common ground, and
therefore generate synergies that can allow both subjects to profit. To this end,
we need a good coordination of mutual topics in form of an interdisciplinary
spiral curriculum, which acts as a bridge between the two subjects. In this
article, we supply some ideas by giving examples for Swiss high schools
(grades 7 through 12).

1 Introduction

With finally making informatics a mandatory subject at Swiss high schools, re-
sources are created that allow teaching the fundamental concepts in a sustainable
way. Additionally, we now have the chance to coordinate mathematics and infor-
matics such that both subjects profit from synergies. This article is organized as
follows. In Section 2, we formulate general didactical reflections on both sub-
jects as well as the underlying basic principles of our approach. In Section 3, we
then give concrete examples that follow the idea of an interdisciplinary spiral
curriculum. Section 4 contains concluding remarks.

urs.hauser@inf.ethz.ch
dennis.komm@inf.ethz.ch

2 Didactical Reflections

Mathematics and informatics are at the same time symbiotic and complementary.
On the one hand, mathematics is an axiomatic-deductive discipline. It provides
an exact language that allows us to explore and describe fundamental concepts of
informatics. On the other hand, informatics is more of a descriptive-constructive
discipline that strengthens problem solving and abstraction abilities, which are two
of the core competencies of mathematics.

However, mathematics classes mostly facilitate constructive and algorithmic
aspects of the subject; for instance, how to add two fractions, how to solve linear
or quadradic equations, how to multiply 10-digit numbers, or how to deal with cal-
culus of interest and compound interest. Obviously, such algorithmic calculations
blend in very well with informatics, which has its focus on algorithms and their
analysis. Instead of executing mathematical calculations (without comprehension),
informatics provides an opportunity to design and implement algorithms, and
consequently also to understand the calculation process in detail.

Both subjects are ideally taught in a problem-oriented way, and pupils are
enabled and encouraged to develop, test, evaluate, implement, and optimize their
own solution strategies. Through discovery learning in the context of the subject’s
history and genesis of specific notions, pupils are lead to a stepwise understanding
of modern concepts. One possibility to reach this goal is an interdisciplinary
spiral curriculum that captures notions of the respective other subject and gradually
intensifies their study.

2.1 Basic Design Principles

We follow the basic design principles of mathematics classes as fomulated in
“Homo Informaticus” [6]; they are also valid for informatics classes.

1. Focus on the genesis of the fundamental notions (concepts). The focus should
not lie on conveying complex modern concepts which have been developed
and optimized over a long period, since this prevents pupils from capturing the
purpose of (or even the need for) these concepts.

2. Concrete examples first, abstraction as a final discovery. As a first step, a con-
crete problem, or even problem instance, should be introduced using discovery
learning; then a strategy towards solving this task should be developed before a
general method is implemented.

3. Teach algorithmics instead of training calculation methods. As mentioned
above, pupils should have the opportunity to develop, test, evaluate, implement,
and optimize their own problem solving methods.

3 Building Bridges

Mathematics and informatics are indeed strongly related and partly study the same
notions. Our metaphor of “building bridges” refers to the design of both classes and
curricula; and our goal is a coordinated spiral curriculum instead of two subjects
held completely independently. Unfortunately, there is quite some risk to end
up with such a curriculum as demonstrated with the subjects of mathematics and
physics. It is a nontrivial challenge for curriculum designers to come up with
curricula and topics that are well coordinated.

In what follows, we provide a few examples of topics that achieve this goal
using a spiral approach; of course, these suggestions cannot always be implemented
in a one-to-one fashion, but have to be fine-tuned according to the given curricula
and other circumstances. More detailed examples are found in the textbooks
“Einfach Informatik” [7, 8, 10].

3.1 Building Bridges with a Turtle

The concept of turtle graphics is in many respects very well suited to implement the
basic design principles stated in Section 2.1 within a spiral curriculum throughout
high school (Figure 1).

grade mathematics informatics

7

8

9

10

11

12

Tu
rt

le
 g

ra
ph

ci
s

Co
nc

ep
to

fa
ng

le

Sequences Pr
og

ra
m

m
in

g
co

nc
ep

ts

Fractals

Polygons

Recursion, Iteration

Circle

Iteration
Modular Design

Basic commands

Parameters, VariablesSimilarity

Congruence
2D Transformations (Translation, Rotation)

Vectors

Animations, SimulationsTrigonometry

2D Transformation (Scaling)

Functions

Array/Matrix
3D-Transformations

Figure 1: Turtle graphics from 7th to 12th grade

The immediate visual feedback and constructivistic approach of turtle graphics
make it a perfect fit for the introduction of programming concepts such as a modular
design, iteration, selection, parameters and variables etc.; note however, that we

have to be careful with the concept of variables in mathematics and variables
in informatics [11]. Moreover, turtle graphics allows for a very vivid approach
towards viewing mathematical concepts (mainly from geometry) from a di↵erent
angle. Geometry classes of 7th and 8th grade are suited very well to be taught in
combination with turtle graphics.

The notion of an angle constitutes a very challenging topic as it has a number of
di↵erent manifestations [4, 14]. The angle as the result of two rays with a common
starting point from elementary geometry is joined by the angle as the rotation of a
ray around its starting point. It has been demonstrated that pupils develop flawed
conceptions and thinking patterns, which is why the notion of an angle should be
investigated both systematically and holistically in school [15]; and turtle graphics
lends itself as an extremely fruitful investigation tool. A classical example from 8th-
grade mathematics is the interior angle theorem and its generalization to (convex)
polygons. The preparation for approximating circumferences is typically done by
studying the regular n-gon. Drawing such a polygon introduces the concept of
iteration and also gives the pupils the opportunity to understand outer angles as
rotations. Furthermore, the pupils make the discovery that the Turtle rotates n times
by the same angle ' (using the command left(')) and ends up at its starting
position; see Figure 2b. This leads to the observation that, in this case, the sum of

#

180��#
2

(a) Approach using basic triangles

'

(b) The Turtle on its way via exterior angles

Figure 2: Drawing n-gons with the Turtle

all outer angles amounts to 360�(= n · '), and the sum of the inner angles can be
formulated as n(180� � ') = n·180� � n·' = n·180� � 360� = 180�(n � 2). The
classical approach arguing by using the angles of the (isosceles) “basic triangles”
(as shown in Figure 2a) provides a less intuitive access; of course, it is desirable to
have the pupils discover it as an alternative.

Pupils who want to draw a circle using the Turtle will use the same technique
that is used for a regular n-gon; using a number of corner points that is as large as

possible. This leads to discovering the principle of limit processes and the relation
between the circumference and the perimeter of regular n-gons (with a large number
of corner points). There are many other common concepts in the curricula of both
subjects, such as similarity transformations (mappings that preserve distances and
angles, for instance scaling) and animating a growing figure using parameters and
variables.

Turtle graphics can also be used for advanced classes and topics. Sequences and
series and fractals can be very nicely explained together with (new) programming
concepts such as iteration and recursion, and again give pupils the opportunity
to discover and study these notions on their own; see Figures 3a, 3b and 3d. The
Turtle recursively drawing a tree on the screen can be observed and studied step by
step. On top of that, graphics that are almost impossible to describe algebraically
can now be implemented; for instance, cycloids; see Figure 3c. Usually, pupils
have fewer problems with visualizing recursive processes than with their formal
definition.

(a) Arithmetic and Geometric Sequences (b) Recursion

(c) Epizycloid (d) Sierpinski Triangle
Figure 3

For higher grades, turtle graphics o↵ers a great alternative to using coordinate
systems (as is done in algebraic geometry), enabling pupils to describe geometric
objects using simple commands like forward() and right(). Designing a figure
using turtle graphics gives a local description of an object, as the Turtle always acts
on its current position, instead of a description within a global coordinate system.
A geometrical object is described using a dynamic process instead of an equation

or a system of equations; for instance, instead of the formula x2+y2 = r2, we obtain
an algorithm that uses the Turtle to draw a circle. As a result, in higher grades,
turtle graphics allows to create vivid animations and simulations (independent
of a coordinate system) that allow making areas like trigonometry and vector
geometry more comprehensible. Excellent inputs can be found in the textbook
“Turtle Geometry” [1].

3.2 Building Bridges with Euclid

In primary school, pupils learn how to calculate with fractions, which is then
resumed in grades 7 and 8 when the notion of divisibility is introduced; see Figure 4.
At this point, mathematics classes include calculating the greatest common divisor
(gcd) of two natural numbers, and, of course, prime numbers. However, while most

grade mathematics informatics

7

8

9

10

11

12

Euclid‘s algorithmGCD

Al
go

rit
hm

s

Prime numbers Sive of Erathostenes

Divisibility

Time complexity /correctnessFibonacciSequences

Cryptology (Public Key)

Similarity
Radicals Primality Test

Probability, Combinatorics

Euklid‘s Theorem Proofs (dir./ind.)

Figure 4: Euclid, prime numbers, and algorithms

pupils still know the definition of prime numbers years after having finished school,
they are usually not aware of why these numbers are so important or of how to
check whether a given (large) number is prime. Prime numbers are perceived as
bookish and to be not much more than a tool to compute, for instance, the gcd. A
well-coordinated curriculum is able to fix this.

Euclid’s algorithm plays an important role in the genesis of both subjects.
The exact formalization of a “method to compute the gcd” builds a bridge to the
notion algorithm. After all, this systematic method is about 2 000 years old and is
therefore considered to be one of the oldest nontrivial algorithms we know. Due
to time constraints, in mathematics classes, the focus is usually put on the simple

calculation of the gcd. Conversely, in parallel informatics classes, the emphasis
can be placed on a primality testing algorithm, which can then be implemented as
a computer program.

The mathematical concept of divisibility automatically leads to the notion of
prime numbers. The sieve of Eratosthenes allows for a very intuitive approach
towards prime numbers; here, the pupils can do mathematics in an independent
and empirical way. In primary school, pupils have been dealing with multiplication
tables, and at this point they learn an algorithm to find prime numbers. The sieve
of Eratosthenes, as an algorithm, gives a starting point for interesting questions for
advanced classes.

According to Wagenstein, Euclid’s proof that there are infinitely many prime
numbers is an “indispensable piece of any mathematics curriculum” [16]. Studying
it, pupils can learn about an example of direct and indirect proofs, which they again
discover themselves. Euclid himself used a direct approach, whereas today the
proof is mostly given using contradiction.

From grade 9 on, the concept behind a simple primality algorithm is compre-
hensible, and even first steps towards optimization (for instance, only testing up to
the square root of the input number) can be understood. Doing so, the pupils not
only revisit the notion of the square root, but while implementing the algorithm also
learn about the modulo operation as an extension of the already known division
with remainder. One of the benefits is to discover that even the computer struggles
with testing larger prime numbers. With this, the students get a first idea of what
“e�ciency” refers to, and that even small changes in an algorithm, such as only
testing until b

p
Nc instead of N � 1, for an input number N, makes a di↵erence [13].

One of the most important points is how important prime numbers are for our
digital society. Every teacher of mathematics will remark that prime numbers
are critical in data encryption, and thus online banking etc.; but this is just an
abstract note so far. Thanks to informatics, prime numbers and their applications
and importance become a lot more tangible and their study constitutes an exciting
challenge.

From grade 11 on, Euclid’s algorithm can be revisited; this time, we can
formally prove why the algorithm indeed solves the task of computing the gcd
of two given numbers; that is, we give a correctness proof. When dealing with
complexity, we can again follow the genesis of the question of e�cient algorithms.
In 1841, the French mathematician Jacques Binet for the first time investigated
the e↵ort of executing Euclid’s algorithm. It turned out that the worst case is met
when two consecutive Fibonacci numbers are given as input; this can be made to
fit well into the content of both grade 9 and 11. As mentioned above, in 12th-grade
cryptography classes, prime numbers can be studied once again when discussing,
for instance, public-key cryptography.

Algorithms and Complexity. Instead of starting with Euclid’s algorithm, an
alternative entry to complexity theory can start with fast exponentiation and the
square-and-multiply algorithm, which builds a bridge to the mathematics topic of
exponentiation. Here, the pupils discover that a certain number of multiplications
seems necessary in order to compute an.

From grade 11 on, pupils know about logarithms and should be able to dis-
cover the bound dlog2 ne themselves. Then again, logarithms and computing them
intimidates quite a number of pupils. On the one hand, this is due to an abstract
introduction to logarithms in mathematics classes, which defines logarithms as
the operation inverse to exponentiation (which was only developed by Euler). On
the other hand, computing logarithms is usually done using exercises that involve
exponentiation within growth or decay functions; here, commonly at an early stage,
the natural logarithm (with base e ⇡ 2.7181) is considered, which is even more of a
mystery. In such situations, pupils tend to memorize ways to solve such problems
without really understanding what is behind.

A more tangible introduction to logarithms can be achieved using, for instance,
binary search, where an initially given problem of size n is reduced by a factor of 2
in each iteration. Another approach is to use a binary tree modelling the rounds of
a game, where n players compete in a knockout tournament. The relation between
the rounds and the number of players is then given as the binary logarithm log2 n.
Moreover, the binary logarithm is used frequently in the analysis of algorithms.
This is not simply the result of computing with binary numbers, but also, for
instance, due to analyzing strategies that use some sort of 2-way branching. If
some problem allows for n possible outcomes (solutions), then each iteration again
(as in binary search) divides this number by a factor of 2; see Figure 5. Therefore,
the number of iterations until a solution is found can be computed by

n
2i = 1 () i = log2 n .

For pupils of grade 12, it is already possible to understand the basic principle of
the big-O notation if it is explained carefully and using examples; furthermore,
the quantifiers have to be used in a nonformal way. The benefit is the repetition
of the graphical representation of di↵erent functions such as O(log n), O(

p
n),

O(n log n), O(n), O(n2), and O(2n) and their behavior, as shown in Figure 6. It
gets particularly interesting when comparing two examples in O(n) and O(n2),
respectively, where the quadratic function is smaller up to a specific number of
operations. In general, sorting algorithms (selection sort and insertion sort for
grade 9, mergesort or quicksort for grade 11) are very good examples to study
concepts such as complexity or recursion.

In the context of both primality testing and sorting algorithms, turtle graphics
can also be used to investigate algorithmic complexity [12].

number of
verifications

1

2

3

4

i

size of list

n

n/2

n/4

n/8

n/2i

Figure 5: Binary search

f (n)
n

10 100 1000

log2 n 3.32 6.64 9.97
n 10 100 1000

0.5n2 50 5000 5·106

2n 1024 1.3·1030 1.1·10301

2n 0.5n2

n

log2 n

Input size n

R
un

ni
ng

tim
e

f(
n)

Figure 6

Numerical Methods. Numerics is a branch of mathematics that is inconceivable
without computer aid. However, it is unfortunately not a fixed part of mathematics
curricula, although it is commonly used in specialization (higher-level) subjects
(Schwerpunktfach) and physics (error analysis); and it would thus be desirable to
strengthen the pupils’ basic knowledge of numerical methods. In informatics, the
most important algorithms can be treated also in their historical context. As an
example, in 11th-grade calculus, their concrete implementation can provide a very
vivid approach towards limits and approximations. These topics are very com-
plex for pupils as they have to imagine limits in an abstract fashion or witnessing
them using trivial examples, but without truly experiencing the e↵ects. Instead of
memorizing derivation and integration rules, laws of symbolic di↵erentiation and
integration can be discovered experimentally. Other important numerical meth-
ods are approximating square roots by Heron’s method, approximating roots of
functions using the regula falsi method, Newton’s method, the Gaussian elimina-

tion method, or Horner’s method, up to computing Taylor series and di↵erential
equations. It is very desirable to see some of these important topics that connect
mathematics and physics being introduced to all pupils; not only those with spe-
cialization in higher-level subjects (Schwerpunktfach). More excellent examples
are provided by the textbook “Computer-Mathematik” [3].

Cryptology. Studying ciphers and how to break them o↵ers an incredibly large
variety of synergies to mathematics, which we will only outline in what follows.
Following our basic design principle of mimicking the genesis of the topic (see
Section 2.1), we can start with simple cryptographic protocols in grades 7 and 8,
such as caesar, skytale, and polybus; as an application of percentage calculation,
an easy cryptanalysis (more specifically, a frequency analysis) can be conducted [7].
If someone wants to improve the caesar cryptosystem so that letters are mapped to
arbitrary letters, valid keys correspond to permutations of the 26 letters, given that
each letter may only appear once. With this, it is therefore possible to introduce
basic notions of combinatorics. When encrypting through masking (e.g. One-
time pad), the pupils can also discover the binary representation of numbers and
eventually even the (secure) cryptosystem one-time pad. Modular arithmetic and
frequency analysis are ideal applications of mathematics classes.

What happens if a fault (for instance, accidentally inverting a single bit) occurs
while encrypting using One-time pad? This and related questions can be discussed
addressing error-correcting codes [9]. In grade 12, public-key cryptosystems can
provide exciting insights into both algorithmic and mathematical considerations
that are crucial for our everyday life [2].

4 Conclusion

With the elaboration of the new curricula, we should take the chance of building
bridges and using synergies between mathematics and informatics. The content
should be interdisciplinary and implemented into classes using a spiral curriculum.
Mathematics is both a research tool and a precise language that allows us to
formalize and verify fundamental informatics concepts; concepts that are not
simply presented as complete methods one has to memorize, but that are developed
and discussed with respect to their genesis. There are numerous other topics we
could have described here. Of course, it is impossible to coordinate everything,
but it surely is a step in the right direction to implement a selected number of
examples. If we succeed to coordinate and link mathematics and informatics in
a spiral approach, both subjects will greatly benefit, and the topics covered will
become an exciting journey of discovery.

References

[1] H. Abelson and A. diSessa: Turtle geometry: The computer as a medium for
explaining mathematics. Boston MIT Press, 1986.

[2] K. Freiermuth, J. Hromkovič, L. Keller, and B. Ste↵en: Einführung in die Kryptologie.
Vieweg+Teubner Verlag | Springer 2011.

[3] W. Gander: Computer-Mathematik. Birkhäuser Verlag, 1986.

[4] H. Hadas, R. Hershkovitz, and B. Schwarz. The role of contradiction and uncertainty
in promoting the need to prove in dynamic geometry environments. Educational
Studies in Mathematics 44:127–150, 2000.

[5] J. Hromkovič: Berechenbarkeit. Vieweg+Teubner Verlag | Springer 2011.

[6] J. Hromkovič: Homo Informaticus. EATCS Bulletin 115, 2015.

[7] J. Hromkovič: Einfach Informatik – Strategien entwickeln. Klett & Balmer Verlag,
Baar 2018.

[8] J. Hromkovič: Einfach Informatik – Daten darstellen, verschlüsseln, komprimieren.
Klett & Balmer Verlag, Baar 2018.

[9] J. Hromkovič, L. Keller, D. Komm, G. Serafini, and B. Ste↵en: Entdeckendes Lernen
am Beispiel fehlerkorrigierender Codes. Log-in 168:50–55, 2011.

[10] J. Hromkovič and T. Kohn: Einfach Informatik – Programmieren. Klett & Balmer
Verlag, Baar 2018.

[11] T. Kohn: Variable Evaluation: an Exploration of Novice Programmers’ Understand-
ing and Common Misconceptions. In Proc. of SIGCSE 2017, pages 345–350.

[12] T. Kohn and D. Komm: Teaching programming and algorithmic complexity with
tangible machines. In Proc. of ISSEP 2018, to appear in Lecture Notes in Computer
Science, Springer-Verlag 2018.

[13] D. Komm and T. Kohn: An introduction to running time analysis for an SOI workshop.
Olympiads in Informatics 11:77–86, 2017.

[14] I. Kontorovich and R. Zazkis: Turn vs. shape: teachers cope with incompatible
perspectives on angle. Educational Studies in Mathematics 93:223–243, 2016.

[15] K. Krainer: Lebendige Geometrie. Überlegungen zu einem integrativen Verständnis
von Geometrieunterricht anhand des Winkelbegri↵s. Doctoral Thesis, Universität
Klagenfurt 1989.

[16] M. Wagenschein: Naturphänomene sehen und verstehen. Genetische Lehrgänge. Das
Wagenschein Studienbuch. H. Chr. Berg (editor), pages 220–227, 2009.

	Introduction
	Didactical Reflections
	Basic Design Principles

	Building Bridges
	Building Bridges with a Turtle
	Building Bridges with Euclid

	Conclusion

