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Abstract

Game theory provides a powerful framework to study strategic interac-
tions among agents of a system. The assumption about the “rationality” of
the agents is at the heart of classical solution concepts like Nash equilib-
ria. However, in several scenarios those solution concepts often fall short
of expectations when used to make predictions. The Logit dynamics is a
model for strategic interactions among players with limited rationality; it is
inspired by statistical mechanics and uses “randomness” to model the uncer-
tainty about the rationality level of the agents.

In the first part of this paper we will sum up our research program on
the Logit dynamics for strategic games, in which we proposed to consider
the unique stationary distribution of the induced ergodic Markov chain as the
long-term solution concept for the game, we analyzed the mixing time of the
chains for some classes of games, and we defined the concept of metastable
probability distribution for Markov chains with exponential mixing time.

The usefulness of reasoning about “metastability” goes beyond the realm
of game theory and Markov chains. In the second part of the paper, we will
discuss part of a recent work where the analysis of the metastable phase of
a simple dynamics allowed us to come up with an efficient fully-distributed
algorithm for the community detection problem.

1 Introduction
Imagine you are sitting in a room with a large number of people attending a con-
ference and the organizers give you and all the other persons a small piece of
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paper, asking each one to write down a number between 0 and 100. All the num-
bers will then be collected and a prize will be given to the person who wrote the
closest number to half of the average of all the numbers. What number would you
write on your piece of paper?

Game theory [17] provides a powerful and elegant framework to predict the
outcome of situations like the one described above. Intuitively speaking, in order
to choose a number to write on her piece of paper, a person in the room could
think as follows: Since numbers are to be between 0 and 100, their average will
be between 0 and 100 as well, so half of the average will be a number between
0 and 50; hence, if I am rational I would definitely not write a number larger
than 50. Now, if everyone in the room is rational and writes a number not larger
than 50, then the average itself will not be larger than 50 and half of the average
will not be larger than 25; so, if I am rational and I believe that all other people
in the room are rational, I would not write a number larger than 25. If everyone
writes a number not larger than 25, then the average itself. . . A few more steps in
this direction and we have the game theoretic prediction of the outcome: “Every
person in the room writes 0 on her piece of paper”. This is indeed the unique Nash
equilibrium [15] of that game. However, if you try it out in any real scenario,
you will see by yourself how far from the truth is such a prediction. The main
reason is that it relies on the assumption that rationality is common knowledge [6]
among the agents (everyone is rational, everyone knows that everyone is rational,
everyone knows that everyone knows that everyone is rational, and so forth).

Rationality and Randomness. An approach for modeling agents with limited
rationality that borrows ideas from statistical mechanics originated from [8]: Logit
dynamics. Roughly speaking, the assumption about the rationality of the agents
is mitigated by the introduction of some degree of randomness, tuned by one
single parameter that plays the role that “temperature” has in physical systems.
This modeling idea, if applied to the simple game described above, could turn
out as follows: To predict the value of half of the average of all the numbers, I
would assume that the number chosen by each player is a random variable X such
that for each number k = 0, 1, . . . , 100 the probability P [X = k] is proportional
to e−βk, where β > 0 is the tuning parameter (notice that if β = 0, then X is
uniformly distributed over {0, 1, . . . , 100}, while for β → ∞ the distribution of X
is concentrated in 0; hence, in that setting β somehow represents the belief about
the rationality level of the system of agents as a whole). Then I would bet on a
number close to (1/2)E [X] and rely on the law of large numbers.

From Logit dynamics to distributed community detection. The Logit dy-
namics for a strategic game defines an ergodic Markov chain over the set of strat-



egy profiles of the game. In [5] we proposed to use the stationary distribution of
the Logit dynamics as solution concept for the underlying game. The stationary
distribution of an ergodic Markov chain gives, in fact, the “best prediction” for the
state of the chain, in the long run. However, the time-scale at which the predic-
tion becomes meaningful depends on the rate of convergence of the chain. In [4]
we introduced a notion of “metastable probability distribution” for Markov chains
and used it as short-term solution concept for games whose Logit dynamics’ rate
of convergence was slow. The analysis of the metastability of evolving systems
based on simple local rules turns out useful in other areas of computer science,
as well. In [7] we proved that a simple Averaging dynamics in its “metastable
regime” can be used to address the community detection problem in an efficient
and fully-distributed way.

In Section 2 we briefly summarize our line of research on Logit dynamics and
metastability appeared in [5, 3, 2, 4]. In Section 3 we sketch the analysis of the
simple dynamics for distributed community detection presented in [7].

2 Limited rationality and the Logit dynamics
A strategic game G can be formally defined as a triple G = (P,S,U) where
P is a finite set of players, that we will always identify with [n] = {1, . . . , n},
S = {S i : i ∈ [n]} is a family of strategy sets, andU = {ui : i ∈ [n]} is a family of
utility functions, where each ui : S 1×· · ·×S n → Rmaps strategy profiles into real
values. A strategy profile x = (x1 . . . , xn) is a pure Nash equilibrium if each player
has no utility gain in changing her strategy, i.e., if for every i ∈ [n] and every
y ∈ S i it holds that ui(x−i, y) 6 ui(x), where we used the standard game-theoretic
notation (x−i, y) for the vector obtained from x by replacing the i-th coordinate
with y.

Notice that the simple game described in the introduction can be easily formal-
ized in this framework: For every player i, S i is the set of numbers between 0 and
100; for any strategy profile x = (x1, . . . , xn) ∈ S 1 × · · · × S n, there is a non-empty
set W(x) ⊆ [n] of winners, i.e., those players whose value is the closest to half of
the average of all the values, so we can define the utility of players in profile x to
be 1 for the winners and 0 for the others. It is easy to see that the strategy profile
x = (0, . . . , 0), where all players choose 0, is the unique pure Nash equilibrium of
this game.

In [8] Blume introduced and studied the following dynamics for an arbitrary
strategic game G = ([n],S,U): Starting from some initial strategy profile x0, at
each round a player is selected uniformly at random and she updates her current
strategy according to a probability distribution biased toward strategies promising
higher payoffs. More formally, if x = (x1, . . . , xn) ∈ S 1 × · · · × S n is the current



strategy profile and player i is selected for the update, then we assume she will
play strategy y ∈ S i with probability proportional to eβui(x−i,y), where β > 0 is a
tuning parameter. In other words, if we name X′i the random variable indicating
the strategy chosen by player i at the next round, then the distribution of X′i is

P
[
X′i = y

]
= eβui(x−i,y)/Zi where Zi = Zi(β, x) =

∑
z∈S i

eβui(x−i,z). (1)

Notice that parameter β > 0 somehow defines the rationality level of the players:
Indeed, according to (1), for β = 0 player i would play one of her strategies
uniformly at random, while for β → ∞ she would tend to choose the strategy
maximizing her utility, given that the other players keep their current strategies
(she would choose one of the maximing strategies uniformly at random, if there is
more than one). The above dynamics defines a Markov chain {Xt}t over the set of
strategy profiles (more precisely, a family of Markov chains indexed by β), where
for every profile x ∈ S 1 × · · · × S n, it holds that

P
[
Xt+1 = y | Xt = x

]
= (1/n)eβui(y)/Zi(β, x) (2)

if y = (x−i, y) for some player i and some strategy y ∈ S i, with y , xi, while
P [Xt+1 = x | X = x] = (1/n)

∑n
i=1 eβui(x)/Zi(β, x) and P

[
Xt+1 = y | X = x

]
= 0 if

profile y differs from x at more than one player.
It is easy to see that, for every β, the Markov chain in (2) is irreducible and

aperiodic (see, e.g., Chapter 1 in [14] for some background on Markov chains)
thus it has a unique stationary distribution πβ and the probability of the chain
being in some profile x approaches πβ(x) in the long-run, for every starting profile
x0,

Px0 [Xt = x]
t→∞
−→ πβ(x) .

The stationary distribution as the game solution concept. While in [8] and
in the related economic literature the authors focused mainly on the relation be-
tween the above game dynamics and classical game theoretic solution concepts,
like Nash equilibria and evolutionary stable strategies [16], in [5] we proposed
to use the stationary distribution itself as the equilibrium solution concept for the
game: The stationary distribution of the Logit dynamics exists for any game, it is
unique (given the choice of parameter β), and it allows us to make “probabilistic
predictions” on the evolution of the game of the following form: Given a subset
A ⊆ S 1 × · · · × S n of the state space, the fraction of times that the system spends
in A is given by its stationary probability πβ(A), in the long run (see [5] for some
specific examples). This is certainly a more rough prediction than that of a Nash



equilibrium, but it is likely also closer to what we could expect from a theory
aiming at predicting the evolution of complex systems.

How long is the long run. Once we model an evolving system of agents as an
ergodic Markov chain, the unique stationary distribution of the chain allows us to
make probabilistic predictions on the behavior of the system “in the long run”, re-
gardless of the starting state. However, the strength of this solution concept is also
its weakness: When we give a finite and quantitative meaning to the expression
“in the long run” it becomes “in a time-window sufficiently larger than the mixing
time of the chain” (intuitively speaking, the mixing time is the time it takes the
chain to get close to its stationary distribution, starting at an arbitrary state. See,
e.g., Chapter 4 in [14] for rigorous definitions). Thus, the predictive appeal of the
stationary distribution essentially vanishes if the mixing time of the chain is too
long with respect to the time-scale we are interested in.

The analysis of the mixing time of Markov chains is a rich and active re-
search area, with several tools spanning different areas of mathematics [9]. As for
Markov chains induced by the Logit dynamics, while their global structure is es-
sentially the same for every game, from the point of view of the mixing time they
can have very different behaviors depending on the game and on the rationality
level β. In [2, 3] we classified some families of strategic games with respect to
their Logit dynamics’ mixing time, distinguishing between polynomial and expo-
nential (in the number of players) mixing.

Short-term predictions despite large mixing time. In [4] we introduced a re-
laxation of the concept of stationary distribution for a Markov chain, that we called
metastable probability distribution, in order to be able to make predictions at poly-
nomial time-scales when the mixing time of the chain turns out to be exponential
in the number of players. Metastability is a word that can have slightly differ-
ent meanings in different scientific disciplines. Nevertheless, all the meanings are
somehow related to evolving systems hanging around “persistent” configurations
but out of their main equilibrium. Our definition in [4] is no exception.

Definition 2.1 (Metastable probability distribution [4]). Let µ be a probability
distribution over a set S, let P be the transition matrix of a Markov chain with
state space S, and let ε > 0. We say that µ is ε-metastable for P if ‖µP − µ‖tv 6 ε,
where ‖µP − µ‖tv = maxA⊆S |µP(A) − µ(A)| = (1/2)

∑
x∈S |µP(x) − µ(x)| is the total

variation distance.

Notice that the above definition be seen as a relaxation of that of stationary dis-
tribution. Indeed, a stationary distribution π for P is ε-metastable with ε = 0,
according to Definition 2.1. Moreover, if µ is an ε-metastable distribution for a



Markov chain and the distribution of the chain gets γ-close to µ, for some small
values ε and γ with ε � γ, then the distribution of the chain stays γ-close to µ for
Ω(γ/ε) steps. In the following lemma we formalize the above statement.

Lemma 2.2. Let µ be an ε-metastable distribution for a Markov chain P, for
some ε > 0. If the distribution δxPt of the chain starting at x after t steps satisfies∥∥∥δxPt − µ

∥∥∥
tv
6 γ, for some γ > 0, then the distribution δxPt+s of the chain after

further s steps satisfies ∥∥∥δxPt+s − µ
∥∥∥

tv
6 γ + εs

Proof. From triangle inequality we have that

∥∥∥δxPt+s − µ
∥∥∥

tv
6

∥∥∥δxPt+s − µPs
∥∥∥

tv
+ ‖µPs − µ‖tv

6
∥∥∥δxPt+s − µPs

∥∥∥
tv

+

s∑
i=1

∥∥∥µPi − µPi−1
∥∥∥

tv
(3)

Since P is a stochastic matrix, it holds that (see, e.g., Exercise 4.3 in [14])

1.
∥∥∥δxPt+s − µPs

∥∥∥
tv
6

∥∥∥δxPt − µ
∥∥∥

tv
and

2.
∥∥∥µPi − µPi−1

∥∥∥
tv
6 ‖µP − µ‖tv for every i.

The thesis then follows from (3) and the hypotheses
∥∥∥δxPt − µ

∥∥∥
tv
6 γ and

‖µP − µ‖tv 6 ε. �

As a simple example of the usefulness of metastable distributions as defined
in Definition 2.1, consider the following process: Start with a sequence of n bits
(x1 . . . , xn) ∈ {0, 1}n; at each round pick one index i ∈ [n] uniformly at random
and replace xi with either 0 or 1 with probability 1/2; stop when you reach ei-
ther the sequence with all zeros 0 = (0, . . . , 0) or the sequence with all ones
1 = (1, . . . , 1). This process defines a lazy random walk on the hypercube (see,
e.g., [10]) modified by making 0 and 1 absorbing states. Clearly, starting from any
state x ∈ {0, 1}n, eventually the process will end up in one of the two absorbing
states. However, for every initial state x , 0, 1, the process will run for an ex-
ponential number of rounds, in expectation, before being absorbed; can’t we say
anything on the distribution δxPt at a shorter time-scale? Yes, indeed. On the one
hand, it is easy to see that the uniform distribution U ∼ {0, 1}n is 2−n-metastable for
P, according to Definition 2.1. On the other hand, it is also not difficult to prove,
by using a coupon collector’s argument, that for any initial state x , 0, 1 there is
some t = Θ(n log n) such that

∥∥∥δxPt − U
∥∥∥

tv
= O(1/n). By applying Lemma 2.2 we

thus can conclude that there are three constants c1, c2, and c3, such that for every
n and for every starting state x , 0, 1, for all t ∈ [c1n log n, c22n/n], it holds that∥∥∥δxPt − U

∥∥∥
tv
6

c3

n
.



3 Distributed community detection via averaging
In [4] we introduced and studied metastable probability distributions for Markov
chains as solution concepts for strategic games. However, the usefulness of look-
ing at the “metastable phase” of evolving systems goes beyond the domains of
game theory and Markov chains. Here we briefly describe an example of a sim-
ple dynamics whose metastable phase analysis allowed us to solve an intriguing
computational task in a distributed way [7].

Consider the following simple rules executed synchronously by each node of
an undirected graph, in discrete rounds:

- At the first round: Pick a value x = ±1 with probability 1/2
- At each one of the following rounds:

1. (Averaging): Look at the values of your neighbors and update
your value x to their average

2. (Coloring): Raise a blue flag or a red flag depending on whether
your value x increased or decreased, with respect to the previous
round

Figure 1: The Averaging dynamics

It comes as no surprise that, under mild assumptions on the graph (namely, if it
is connected and non-bipartite), the values of the nodes will converge to the same
number, in the long run. May be it is less obvious that, if the underlying graph is
formed by two (sufficiently regular) expanders connected by a (sufficiently regu-
lar) sparse cut, the colors of the nodes will quickly identify the graph structure:
Nodes in one expander will stabilize on the blue flag while nodes in the other
expander will stabilize on the red flag. Thus, this simple dynamics can be effec-
tively used to efficiently solve the community detection problem [12, 11, 1] in a
fully-distributed way.

Before providing a quantitative formalization of the above statement and a
sketch of proof, we give an informal explanation in support of its soundness. For
the sake of simplicity, let us assume we have a “very regular” graph G = (V, E)
with an even number n of nodes partitioned in two blocks of equal size, V1 and
V2, and that each node has exactly a neighbors in its own block and exactly b
neighbors in the other block, for some positive integers a and b, with a � b. Let µ1

and µ2 be the averages of the initial values of the nodes in V1 and V2, respectively.
By running the above dynamics on a graph like that the following happens: Since
the subgraphs induced by V1 and V2 are good expanders and the cut between them
is sparse, the value of each node will be more influenced by the values of the other



nodes in its block than by the values of the nodes in the other block, hence in a
first phase the values of all nodes in V1 will quickly (because of the expansion of
the blocks) converge to a value close to µ1 and those of nodes in V2 to a value close
to µ2. After that initial phase, the system enters in a metastable regime in which
all values will slowly (because of the sparseness of the cut between the blocks)
converge toward the global average (µ1 + µ2)/2; if the two averages µ1 and µ2

are different, say µ1 < µ2, in this second phase the value of each node in V1 will
increase at every round and the value of each node in V2 will decrease. Thus, all
nodes in one of the blocks will raise the red flag and all nodes in the other block
will raise the blue one, at every round.

The following Definition 3.1 formalizes the idea of a regular graph formed by
two (sufficiently expanding) regular clusters connected by a (sufficiently sparse)
cut. For a graph G we here name transition matrix of G the transition matrix P
of a simple random walk on G. Recall that all eigenvalues of such a matrix P are
real and between −1 and 1, and that 1 (the vector with all its entries equal to 1) is
an eigenvector of P with eigenvalue 1 (see, e.g., Chapter 12.1 in [14]). Moreover
if G is d-regular then P = (1/d)A, where A is the adjacency matrix of the graph.

Definition 3.1. [Clustered regular graphs] An (n, a, b)-clustered regular graph is
an (a + b)-regular graph G = (V, E) with n nodes such that

1. Nodes can be partitioned in two equal-sized sets, V1 and V2, such that the
subgraphs induced by V1 and V2 (the “clusters”) are a-regular;

2. The third largest eigenvalue λ3 and the smallest eigenvalue λn of the transi-
tion matrix P satisfy |λn| 6 λ3 < (a − b)/(a + b).

It is easy to see that, for a graph G satisfying the first condition in the above
definition, the partition indicator vector χ, i.e., the vector taking value +1 on all
the nodes of one of the clusters and −1 on all the nodes of the other cluster, is
an eigenvector of P with eigenvalue (a − b)/(a + b). The second condition in
Definition 3.1 implies that (a − b)/(a + b) is the second-largest eigenvalue of P.
This two facts and the observation that the Averaging dynamics can be expressed
in terms of P lead to the following theorem.

Theorem 3.2 ([7]). A constant c exists such that, for every (n, a, b)-clustered reg-
ular graph G, at every round

t > c(log n)/ log
(

a − b
λ3(a + b)

)
all nodes in one cluster raise the red flag and all nodes in the other cluster raise
the blue flag, w.h.p.1.

1With high probability (w.h.p.) we mean with probability going to 1, as n goes to infinity, at
least as fast as 1 − n−γ, for some constant γ > 0



Sketch of proof. Let us name x(t) = (x(t)
u , u ∈ V) the vector where x(t)

u is the value
of node u at round t. It is easy to see that the Averaging dynamics, as defined in
Figure 1, can be expressed by the recursion x(t+1) = Px(t), where P is the transition
matrix of the graph. The vector of values at round t is thus x(t) = Ptx(0). Since P
is symmetric and 1 = (1, u ∈ V) and χ = (1, u ∈ V1; −1, u ∈ V2) are orthogonal
eigenvectors of P with eigenvalues λ1 = 1 and λ2 = (a − b)/(a + b) respectively,
the vector of values at round t can be written as

x(t) = α11 + α2λ
t
2χ + e(t) ,

where α1 and α2 are suitable coefficients depending only on the initial random
values (namely, α1 is the global average (µ1 + µ2)/2 of the initial values and α2

is half of the difference of the initial averages (µ1 − µ2)/2) and e(t) is a vector
orthogonal to 1 and χ. When we consider the difference between the vector of
values in two consecutive rounds, the component in the direction of 1 cancels,
hence

x(t−1) − x(t) = α2λ
t−1
2 (1 − λ2)χ + e(t−1) − e(t) .

Since e(t), for t = 0, 1, . . . , are vectors orthogonal to 1 and χ, the norm of e(t),
that initially is at most as large as the norm of x(0), goes to zero at least as fast as
λt

3 (here we are using also the fact that |λn| 6 λ3 in an (n, a, b)-clustered regular
graph, according to Definition 3.1). Hence, if the coefficient α2 is non-zero, after
a number of rounds depending logarithmic on n and on the ratio λ2/λ3, it holds
that

|α2λ
t−1
2 (1 − λ2)| > |e(t−1)(u) − e(t)(u)|

for all nodes u. This implies that, for each node u, the sign of x(t−1)
u − x(t)

u is equal
to the sign of α2χ: In other words, it is positive for all the nodes in one of the
clusters and negative for all the nodes in the other cluster. Finally, notice that α2

is non-zero (actually it is Θ(1/
√

n)) w.h.p., due to the initial random values ±1 of
the nodes. �

A slightly weaker version of Theorem 3.2 can be proved (see [7]) for a larger
class of graphs in which exact regularity required in Definition 3.1 is replaced with
an appropriate almost regularity condition. This latter class of graphs include the
well-studied stochastic block model [13] for a large range of the parameters.

4 Conclusions
Evolving systems based on simple local rules that produce complex global phe-
nomena have been studied in several different fields, including game theory, where
they can be used to model systems involving a large number of agents with lim-
ited rationality, and computer science, where they can be used as building blocks



for distributed computing tasks. Randomness usually plays a fundamental role
in such processes, either in a Bayesian sense, to model the intrinsic uncertainty
about the actual actions executed by the agents, or as a symmetry-breaking tool,
in distributed computing systems.

In this paper we tried to draw attention on the fact that, in several cases, the
most interesting phenomena occurring in such evolving systems cannot be studied
by means of limiting behaviors and standard equilibrium notions, because they
appear at shorter time-scales than those needed for convergence. In the first part
of the paper, we focused on the concept of metastable probability distribution, that
naturally emerges from the analysis of the Logit dynamics as a process modeling
interacting agents with limited rationality. In the second part, we described how
the analysis of the metastable phase of the Averaging dynamics allowed us to
prove that such a simple dynamics can be used to address the community detection
problem in a fully distributed way.
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