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Identifying Hostile Nodes in Networks
UsingMobile Agents

Euripides Markou∗

Abstract

In distributed mobile computing environments one of the most pressing
concerns is security. Two are the most important security threats: a mali-
cious mobile process which can move along the network and a stationary
harmful process which resides at a host. One of the most studied models for
stationary harmful processes is the black hole which has been introduced by
S. Dobrev, P. Flocchini, G. Prencipe and N. Santoro in 2001 ([25]). A black
hole is a harmful node in the network that destroys any mobile agent visiting
that node without leaving any trace. The objective of the Black Hole Search
problem is to identify the black hole without destroying too many agents
and the main effort is to discover the minimal hypotheses under which it can
be solved. Another effort has to do with producing fastest black hole search
schemes. The problem has been initially investigated in asynchronous net-
works and introduced later in synchronous networks. In synchronous net-
works the most studied issue was that of achieving time optimal black hole
search schemes. Recently it has been investigated in synchronous networks
under very weak models (e.g., using agents with only constant memory) in
which it is unsolvable in asynchronous networks. In this survey we discuss
the computational issues and present algorithmic techniques for this prob-
lem. Since searching for a black hole in a network is closely related to
exploration, rendezvous and leader election problems, the techniques pre-
sented here have a much wider range in distributed computing.

Keywords: Distributed Algorithms, Fault Tolerance, Black Hole Search,
Networks, Graph Exploration, Mobile Agents, Computational Complexity,
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1 Introduction
In distributed computing, the research focus is on the computational and complex-
ity issues of systems composed of autonomous computational entities interacting
with each other to solve a problem or to perform a task. While traditionally these
autonomous computational entities have been assumed to be static, recent ad-
vances in a variety of fields, ranging from robotics to networking, have motivated
the community to address the situation of mobile entities.

1.1 Mobile agents
Mobile agents’ ability to adapt dynamically and execute asynchronously and au-
tonomously brings potential advantages in terms of efficiency, fault-tolerance,
flexibility and simplicity. However, there are many who believe that opening up
your network to the “invasion” of potentially harmful mobile agents is not worth
the advantages they may provide. In order to evaluate, at least theoretically, the
claimed advantages, especially those concerning efficiency and fault-tolerance,
we need an algorithmic model in which we can analyze the behavior of mobile
agent algorithms and prove given complexity bounds.

Recently, an increasing number of investigations are being carried out on the
computational and complexity issues arising in systems of mobile entities that
can move in a spatial universe. Depending on the nature of the spatial universe,
there are two basic settings in which mobile entities are being investigated. The
first setting, called sometimes continuous, is when the universe is a region of the
2D (or 3D) space. This is for example the case of robotic swarms, mobile sensor
networks, mobile robotic sensors, etc. (as in, e.g., [1, 21, 72]). The second setting,
sometimes called graph world or discrete universe, is when the universe is a simple
graph; this is for example the case of mobile agents in communication networks
(as in, e.g., [20, 45]). In both settings, the research concern is on determining what
tasks can be performed by such entities, under what conditions, and at what cost.
In particular, a central question is to determine what minimal hypotheses allow a
given problem to be solved.

Mobile agents in networks can be thought of as autonomous, goal-oriented
software entities that can transport their state from one computational environ-
ment to the next and resume their execution in the new environment, thus remain-
ing active as they migrate between computers. This makes them a powerful tool
for implementing distributed applications in computer networks. The agents are
generally modeled as automata that move on a network modeled as a graph. The
first known algorithm designed for graph exploration by a mobile agent, modeled
as a finite automaton, was introduced by Shannon [69] in 1951. Since then, sev-
eral papers have been dedicated to the feasibility of graph exploration by one or
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more agents. Important properties that have been considered by researchers are as
follows:

• Whether or not the agents are distinguishable, i.e., if they have distinct iden-
tities. Anonymous agents are limited to executing precisely the same al-
gorithm, while agents with distinct identities have the potential to execute
different algorithms.

• The size of memory an agent has (e.g., a function of the size of the network
or constant memory) and the knowledge an agent has about the network it
is on (e.g., a map or the size of the network) and about the other agents.

• The method through which the agents communicate. For example they may
have the ability to read the state of other agents residing at the same node.
Or they can communicate via a shared memory space provided at each node
(usually called whiteboard), or via message passing, or by leaving indistin-
guishable markers at nodes or edges (often called tokens or pebbles).

• Whether the nodes and/or edges of the network are distinguishable by an
agent (as in, e.g., [33, 63]) or not (as in, e.g., [8]). The outgoing edges of a
node are usually thought of as distinguishable but an important distinction
is made between a globally consistent edge-labeling (thus giving the agents
the ability to navigate) versus a locally independent edge-labeling (in that
case, even in restricted topologies like a torus, the agents cannot navigate
based only on the edge labeling). If the labeling satisfies certain coding
properties it is called a sense of direction [41].

• How networks deal with time. In a synchronous network there exists a
global clock available to all nodes. This global clock is inherited by the
agents. In particular it is usually assumed that in a single step an agent ar-
rives at a node, performs some calculation, and exits the node and that all
agents are performing these tasks ‘in sync’. In an asynchronous network
such a global clock is not available; the speed with which an agent com-
putes or moves between nodes, while guaranteed to be finite, is not a priori
determined (as in, e.g., [64]).

• Whether networks and/or agents may be faulty or not. For example crash
or omission failures, faulty edges, Byzantine failures (where a faulty agent
and/or node behaves arbitrarily and potentially maliciously) have been con-
sidered.

All the above properties have turned out to greatly effect the solvability and ef-
ficiency of solution of a number of problems in distributed computing and have
been shown to be important for the study of mobile agents as well.
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For a given choice of agent plus network model there are a number of im-
portant resources for which one can define a complexity measure. Measures that
reflect the time and bandwidth efficiency of a given algorithm are of paramount
concern. The total bandwidth consumed by an agent depends upon its size (mem-
ory) as well as the number of moves it makes during an execution of its algorithm.
Generally the size (memory) of an agent is identified with the number of bits re-
quired to encode its states, i.e., it is proportional to the log base two of the number
of possible states (as in, e.g., [22, 46]). Depending on its memory, an agent may
be able to make and/or store a map of the network, store the network size, count
the number of nodes visited, etc. If the agent sends messages then the size and
number of these messages must also count towards any measure of its bandwidth.
Other complexity measurements of interest include the size of shared memory re-
quired at each node assuming the agents communicate via shared memory, the
number of random bits used by a randomized agent and the number and kind of
faults an algorithm can successfully deal with.

1.2 Exploration in unsafe networks
One of the main concerns in distributed mobile computing has to do with the se-
curity of both agents and hosts [13, 49, 62, 68, 9, 52]. The case of harmful mobile
agents (representing mobile viruses that infect any visited network site) has been
considered in the literature. A crucial task is to decontaminate the infected net-
work; this task is to be carried out by a team of system agents (the cleaners), able
to decontaminate visited sites, preventing any reinfection of cleaned areas. This
problem is equivalent to the one of capturing an intruder moving in the network.
Results on this and related problems have appeared in [2, 7, 35, 36, 44, 59, 71].

Protecting agents from “host attacks”, i.e., harmful items stored at nodes of
the network, has become almost as urgent as protecting a host, i.e., a node of the
network, from an agent’s attack. Various methods of protecting mobile agents
against malicious hosts have been discussed (as in, e.g., [50, 51, 61, 67, 68, 73]).
In [43] results for both harmful nodes (especially for asynchronous networks) and
harmful agents are surveyed.

Recently, the exploration problem has been studied in unsafe networks which
contain malicious hosts of a highly harmful nature, called black holes. A black
hole is a node which contains a stationary process destroying all mobile agents
visiting this node, without leaving any trace. In the Black Hole Search problem
the goal for the agents is to locate the black hole within finite time. In particular,
at least one agent has to survive knowing all edges leading to the black hole.
The problem has been introduced by S. Dobrev, P. Flocchini, G. Prencipe and N.
Santoro in 2001 ([25]). The only way of locating a black hole is to have at least
one agent visiting it. However, since any agent visiting a black hole is vanished
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without leaving any trace, the location of the black hole must be deducted by
some communication mechanism employed by the agents. Four such mechanisms
have been proposed in the literature: a) the whiteboard model in which there is
a whiteboard at each node of the network where the agents can leave messages,
b) the ‘pure’ token model where the agents carry tokens which they can leave
at nodes, c) the ‘enhanced’ token model in which the agents can leave tokens at
nodes or edges, and d) the time-out mechanism (only for synchronous networks)
in which one agent explores a new node and then (after a pre-determined fixed
time) informs another agent who waits at a safe node.

The most powerful inter-agent communication mechanism is having white-
boards at all nodes. Since access to a whiteboard is provided in mutual exclusion,
this model could also provide the agents a breaking symmetry mechanism: If the
agents start at the same node, they can get distinct identities and then the dis-
tinct agents can assign different labels to all nodes. Hence in this model, if the
agents are initially co-located, both the agents and the nodes can be assumed to
be non-anonymous without any loss of generality.

While the whiteboard model is commonly used in unsafe networks, the to-
ken model has been mostly used in safe networks’ exploration. The ‘pure’ token
model can be implemented with O(1)-bit whiteboards, for a constant number of
agents and a constant number of tokens, while the ‘enhanced’ token model can
be implemented having a O(logΔ)-bit whiteboard on each node, where Δ is the
maximum degree in the graph. In the whiteboard model, the capacity of each
whiteboard is usually assumed to be of at least Ω(log n) bits, where n is the num-
ber of nodes of the network.

In asynchronous networks and given that all agents have memory and initially
start at the same safe node, the Black Hole Search problem has been studied un-
der the whiteboard model (e.g., [23, 27, 28, 29, 48, 4, 6, 5, 40]), the ‘enhanced’
token model (e.g., [24, 30, 70]) and the ‘pure’ token model in [37, 38]. It has
been proved that the problem can be solved with a minimal number of agents per-
forming a polynomial number of moves. In an asynchronous network the number
of the nodes of the network must be known to the agents otherwise the problem
is unsolvable ([28]). If the graph topology is unknown, at least Δ + 1 agents are
needed, where Δ is the maximum node degree in the graph ([27]). Furthermore
the network should be 2-connected. It is also not possible to answer the question
of whether one black hole exists in the network. If the agents have a map of the
network or at least a sense of direction ([41, 42]) and can use whiteboards, then
two agents with memory suffice to solve the problem.

In asynchronous networks with dispersed agents (not initially located at the
same node), the problem has been investigated for the ring topology ([26, 28]) and
for arbitrary topologies ([39, 12]) in the whiteboard model while in the ‘enhanced’
token model it has been studied for rings ([31, 32]) and for some interconnected
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networks ([70]).

The consideration of synchronous networks makes a dramatic change to the
problem. Now two co-located distinct agents with memory can discover one black
hole in any graph for which they have a map by using the time-out mechanism,
without the need of whiteboards or tokens. Moreover the network does not have to
be 2-connected anymore, as in asynchronous networks, and furthermore it is now
possible to answer the question of whether a black hole actually exists or not in the
network. Hence, with co-located distinct agents, the issue is not the feasibility but
the time efficiency of black hole search. The issue of efficient black hole search
has been studied in synchronous networks without whiteboards or tokens (only
using the time-out mechanism) in [14, 15, 18, 19, 55, 56] under the condition that
all distinct agents start at the same node. However when the agents are scattered
in the network, the time-out mechanism is not sufficient anymore.

In most papers studying the Black Hole Search problem under a token model
apart from [37, 38, 11, 10, 3], the authors have used the ‘enhanced’ token model
with agents having non-constant memory. The weakest ‘pure’ token model has
been used in [37, 38, 3] for co-located agents with non-constant memory in asyn-
chronous networks. The first results for scattered agents with constant memory
and ‘pure’ tokens appeared in [11] for synchronous unoriented rings and [10] for
synchronous oriented tori. In [10] it has been proven that three scattered agents
with constant memory and with two tokens each can locate the black hole in any
synchronous oriented torus.

As in many cases that deal with the analysis of algorithms for certain prob-
lems, an approach in proving correctness of an algorithm for the Black Hole
Search problem, showing upper bounds on time needed for discovering the black
hole or proving infeasibility of the problem under a certain model, often uses the
notion of an adversary. The analysis of the Black Hole Search problem under a
model can then be considered as a game between a proposed algorithm and an
adversary who uses its power to make the algorithm fail. The weakest the model
is, the more powerful the adversary is. The adversary can choose all the parame-
ters of the instance of the problem for which the algorithm has no knowledge. For
example, the adversary can decide for the initial positions of the agents, the loca-
tion of the black hole and, depending on the model, the topology or the size of the
network, the number of the agents, the ports’ labeling, and (in asynchronous net-
works) the time that an agent needs to cross an edge. A correct algorithm should
work of course for any options of the adversary. The problem is infeasible when
the adversary has an option to make any algorithm fail.
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1.3 Structure of the survey

The rest of the article has been organized as follows. In Section 2 we present
some results for two or more co-located agents with memory in asynchronous ring
topologies with whiteboards at nodes. Then we move on to synchronous networks
and discuss the problem for two co-located agents with memory using only the
time-out mechanism in a synchronous tree topology (Section 3) presenting a time
optimal algorithm for special trees and discussing an approximation algorithm
for arbitrary trees. In Section 4 we study the problem in synchronous arbitrary
graphs. We present NP-hardness results for constructing time optimal Black Hole
Search schemes (i.e., a pair of sequences of edge traversals for each of the two
agents) for two versions of the problem. We also give approximation algorithms
for arbitrary graphs and present APX-hardness results which show that an optimal
time Black Hole Search scheme is not approximable in polynomial time within
more than a constant factor unless P = NP. In Section 5 we study the problem for
scattered agents having only constant memory (DFAs) and carrying ‘pure’ tokens.
We discuss the results in ring and torus topologies. We end this survey in Section
6 discussing important tools and their impact on the black hole search problem
and presenting some other models of hostile-node identification problems.

2 Black-Hole Search in an Asynchronous Ring

The Black-Hole Search (BHS) problem has been introduced in [25] (see also
the full version of the paper in [28]) where it was studied for asynchronous ring
topologies. We present here some results from this seminal paper. We first dis-
cuss the model used and give lower bounds on the number of agents and time-
complexity. We then give two algorithms that solve the problem using two or
more co-located mobile agents with memory using whiteboards.

2.1 Model and basic lower bounds

We consider two anonymous co-located agents with memory. The ring is anony-
mous, asynchronous and consists of n nodes. On each node there is a whiteboard
where the agents can leave messages. The access on a whiteboard is done using
mutual exclusion and hence the agents can acquire distinct identities by the order
in which they access the whiteboard (e.g., the first agent accessing the whiteboard
creates a counter on it, initializes it to 1 and gets this identity, while the next
agent increases the counter and take its value as its identity). Although the ring is
anonymous, the distinct identities assigned to agents, allow them to agree on the
clockwise direction. The goal is that after a finite time at least one agent should
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report back to the starting node the exact location of the black hole.
It is trivial to see that, if there is only one agent, the BHS problem is unsolvable

since the only agent would necessarily vanish into the black hole. Hence at least
two agents are needed to locate the black hole.

Due to network asynchrony, it is impossible to distinguish between a ‘slow’
link and a link leading to a black hole. This observation gives us the following
two lemmas.

Lemma 1. ([28]) The problem of whether there exists or not a black hole in an
asynchronous network is unsolvable.

Lemma 2. ([28]) It is impossible to locate the black hole if the size of the network
is unknown.

The following theorem gives us a lower bound on the number of steps the
agents need to locate the black hole in a ring.

Theorem 1. ([28]) Any algorithm needs at least 2n − 4 moves to find the black
hole in a ring regardless of the number of agents available.

Proof. In order to report the position of the black hole back to the starting node
h, the agents need to receive information from any other node apart from the node
B containing the black hole. This means that every node apart from B has to be
visited by at least one agent. Suppose that the black hole resides at a distance n−1
clockwise. Any agents traveling in counter-clockwise direction would vanish in
the black hole but (due to the asynchronous network) the remaining agents cannot
decide whether the black hole is at B or the link to node B is ‘slow’. Hence an
agent must travel clockwise to node n − 2 and then an agent must report back to
h. Therefore a total number of 2n − 4 steps must be taken.

2.2 A protocol for two agents
We denote with U and E the unexplored and explored area respectively. We
also denote with UL and UR the continuous unexplored area adjacent counter-
clockwise and clockwise respectively from the explored area. A basic tool which
is used in the algorithm is the Cautious Walk (introduced in [25, 28]):

Consider an agent situated at a node v0 adjacent to an unexplored node v1. The
agent explores a previously unexplored area Uk =< v1, v2, ..., vk > in the following
way:

Cautious Walk:

• before leaving a node vi going to a node vi+1, the agent marks the port lead-
ing from vi to vi+1 as active,
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• immediately after visiting vi+1, the agent returns to vi, and marks the port
leading from vi to vi+1 as safe,

• the agent checks for messages at vi and (if such a message exists) re-assigns
to itself an unexplored area U′

k which has to discover and repeats from the
start.

The agents know the size n of the ring. They follow Algorithm 1. A high level
description of the algorithm is the following:

Suppose the agents start at node h. Using mutual exclusion they write at the
whiteboard of node h and get distinct identities as described in the beginning of
the section. They also agree on the clockwise orientation. Then they divide the
unexplored area U with |U | = n − 1 into two disjoint paths UL and UR with
|UL| = �n−1

2 � and |U
R| = � n−1

2 �. Agent 1 explores the area UL and agent 2 explores
the area UR using Cautious Walk. Since there is exactly one black hole, and
the two sets are continuous and disjoint, after a finite time exactly one of the
agents will finish with the exploration. Suppose without loss of generality that
agent 1 finishes. Then agent 1 traverses back through the explored area until it
meets a node u whose port leading to a node v has not been marked as safe. At
that point agent 1 updates explored area and divides the updated unexplored area
into new continuous and disjoint paths UL and UR having UL starting at a node
situated counter-clockwise from h and UR starting at node v situated clockwise
from h. Assigns UL to itself and UR to agent 2 and leaves this message at node
u. Now agent 1 traverses the explored area and explores its new assigned path
UL. Agent 2 either travels through a slow link (not having explored its assigned
area) or vanished in the black-hole. In the first case agent 2 will first return at
node u, will check for messages and update its assigned area for exploration. The
agents repeat this procedure until exactly one of them vanishes into the black-hole.
Then the other agent which repeats the procedure, will eventually come up with
an explored area of size n − 1. At that point it knows the exact location of the
black-hole.

Theorem 2. ([28]) Algorithm 1 locates the black-hole in an asynchronous ring of
n nodes with two co-located agents within 2n log n + O(n) moves.

A natural question is the following: Can we decrease the time needed for
Black Hole Search if we have k ≥ 2 available co-located agents?

2.3 The case of n − 1 agents
Algorithm 2 shows that n − 1 co-located agents can locate the black hole in an
asynchronous ring of n nodes within 2n − 4 moves.
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Algorithm 1 (2 agents with memory in an asynchronous ring with whiteboards)
1: The agents get distinct identities and agree on the clockwise orientation
2: Let X := h
3: while |E| < n − 1 do
4: Divide U into two continuous disjoint parts UL (starting counter-clockwise

of node X) and UR (starting clockwise of node X) of almost equal sizes
5: Agent 1(2) leaves a message at X saying that she will explore UL(UR)
6: Agent 1(2) explores UL(UR) using Cautious Walk
7: Agent 1(2) traverses clockwise (counter-clockwise) the explored area until

it reaches a node u with a not safe port
8: Update E and U
9: Let X := u

10: end while
11: Report the black-hole location

Algorithm 2 (n−1 agents with memory in an asynchronous ring with whiteboards)
1: Agents get distinct identities from the set {1, 2, ..., n − 1} and agree on the

clockwise orientation
2: Agent i travels i − 1 edges in clockwise direction
3: Agent i travels n − 2 edges in counter-clockwise direction
4: Agent i returns to homebase traveling in clockwise direction
5: Agent i reports that the black hole resides at a distance i clockwise

In Algorithm 2, it should be clear that among the n − 1 agents, exactly one
will finish the algorithm, while all the other n− 2 agents will vanish into the black
hole. Also notice that the n−1 agents use the whiteboard only at the starting node
in order to assign distinct identities to themselves.

Theorem 3. ([28]) Algorithm 2 lets n− 1 co-located agents find the black hole in
an asynchronous ring of n nodes within 2n − 4 moves.

Proof. Suppose that the black hole resides at a node B which is B steps clockwise
from node 0 (where the agents start). Then agent with label B travels B − 1 + n −
2 + n − (B + 1) = 2n − 4.

3 Black Hole Search in a Synchronous Tree
The first results on the Black-Hole Search problem in synchronous networks ap-
peared for two agents operating in tree topologies in [17] (see also the full version
of the paper in [19]). We present here the model which was used, give lower
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bounds on BHS schemes in synchronous trees and describe a fastest algorithm for
the problem in some special tree topologies.

3.1 Model and basic lower bounds and tools

We consider a labeled tree T rooted at node s which is the starting node of two
agents, and is assumed to be safe (s is not a black hole). Agents are synchronous,
have memory, a map of the tree and distinct labels. They can communicate (i.e.,
reading each-other’s states) only when they meet at a node (and not, e.g., by leav-
ing messages at nodes). We assume that there is at most one black hole in the
network. The goal is to design an algorithm for the agents which produces a black
hole search scheme (BHS-scheme) for the input (T, s) (i.e., a pair of sequences
of edge traversals (moves) of each of the two agents). Upon completion of the
BHS-scheme there should be at least one surviving agent which either knows the
exact location of the black hole or knows that there is no black hole in the tree.
The surviving agents must return back to s to report this information. An agent
can move along the edges of the tree (each move takes one time unit) or can wait
at a node.

The time of a black hole search scheme is the number of time units until the
completion of the scheme, assuming the worst-case location of the black hole (or
its absence, whichever is worse). It is easy to see that the worst case for a given
scheme occurs when there is no black hole in the tree or when the black hole is the
last unvisited node, both cases yielding the same time. A scheme is called fastest
for a given input if its time is the shortest possible for this input. We emphasize
here that the time of a black hole search scheme should not be confused with the
time complexity of an algorithm producing such a scheme.

Since there is at most one black hole in the tree, in any BHS-scheme all nodes
of the tree should be eventually visited in the worst case (e.g., when there is no
black hole). Hence all edges of the tree should be traversed (explored).

When a meeting occurs the agents exchange information about the explored
territory (i.e., the set of explored edges). The sequence of steps of a BHS-scheme
between two consecutive meetings is called a phase. Since an unexplored edge
could be incident to a black hole we have:

Lemma 3. ([19]) In a BHS-scheme, an unexplored edge cannot be traversed by
both agents.

If one of the agents a attempts to traverse more than one unexplored edges
before meeting with the other agent b then a may vanish in the black hole (placed
by an adversary somewhere in a’s path) and b does not have enough information
to decide for the correct location of the black hole. Thus:
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Lemma 4. ([19]) During a phase of a BHS-scheme an agent can traverse at most
one unexplored edge.

Hence in a BHS-scheme, an edge can be explored only in the following way:
an agent traverses this edge and then a meeting is scheduled (somewhere within
the previously known explored territory) where the agents exchange information
about the explored territory. Whether the meeting occurs or not (in the latter case
the agent vanished in the black hole) the edge becomes explored. Therefore an
unexplored edge could be explored in the next phase only if it is adjacent to the
explored territory (which stays connected).

Lemma 5. ([19]) At the end of each phase, the explored territory is increased by
one or two edges, or the black hole is found.

We define a 1-phase to be a phase in which exactly one edge is explored. Sim-
ilarly, we define a 2-phase to be a phase in which exactly two edges are explored.
In view of Lemma 5, every phase is either a 1-phase or a 2-phase.

Let (u, v) be an unexplored edge with node u being incident to a previously
explored edge (or u ≡ s). Suppose that the two agents are at u at time t. A way of
exploring exactly one edge in a phase is the following:

Procedure Probe(v): one agent traverses edge (u, v) and returns to node u to
meet the other agent who waits. If they do not meet at step t + 2 then the black
hole is at v.

We also define a procedure that the two agents could follow to explore two
new edges in a phase. Let (u1, v1), (u2, v2) be two unexplored edges with nodes
u1, u2 being incident to previously explored edges (or u1 ≡ u2 ≡ s). Suppose that
one of the agents is at u1 and the other agent is at u2 at time t. The definition of
the procedure is the following:

Procedure Split(v1, v2): One of the agents traverses edge (u1, v1) and then re-
turns to u1 while the other one traverses edge (u2, v2) and then returns to u2. Then
both agents traverse the path < u1, u2 > (which should be totally within the ex-
plored territory since the explored territory is always connected) from different
directions until they meet at a node as soon as possible. Let dist(u1, u2) denote the
number of edges in the path from node u1 to node u2. If the agents do not meet at
step t + �dist(u1,u2)

2 � + 2 then the black hole has been found.

Both above procedures resemble the Cautious-Walk procedure from Section
2 in the sense that in both procedures the agents explore at most one edge each
and then they return to give a message to each-other. Two agents with a map
can easily discover the exact location of the black hole (or decide that there is no



��� �������	 
� ��� �
���

���

(c)

(b)

v

u

e

(a)

z

v

u

z

v

u

v

u

e

v

s

e

v

u

e

Figure 1: In (a) e is a red edge. In (b) e is a green edge. In (c) all solid edges are
blue.

black hole) in any tree within finite time (e.g., exploring the tree in a Depth First
Search traversal using Procedure Probe). In fact this simple algorithm guarantees
a 4 approximation ratio on the fastest BHS scheme for any arbitrary tree (see at
the end of the section for details). The authors ([19]) give an algorithm which
uses both procedures Probe and Split and solves the BHS problem for a special
family of trees in the fastest possible time. Before describing this algorithm we
give a general lower bound on the time needed by any algorithm to solve the
problem on any tree.

3.2 A lower bound on the time needed in any tree
Let T be a tree rooted at the starting node s and e = (u, v) be an edge of T (with
v being a child of u). Consider the following coloring which creates a partition of
the edges of the tree.

• assign red color to edge e if node v has at least two descendants,

• assign green color to edge e if v is a leaf and exactly one of the following
holds: u = s or the edge (w, u) is a red edge (where w is the parent of u),

• assign blue color to edge e if it has none of the above properties

Red, green and blue edges are shown in Figure 1.
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Let e = (u, v) and e′ = (v, z) be two blue edges as shown in Figure 1c, i.e., v is
a child of u and z is a leaf and the unique child of v. We call the set of these two
edges a branch. The set of all branches of blue edges with upper node u is called
a block. In view of Lemmas 3 and 4 it can be easily proved that:

Lemma 6. ([19]) In any BHS-scheme, the following holds: a green edge has to
be traversed by the agents at least 2 times, a red edge has to be traversed at least
6 times and a branch of blue edges requires a total of at least 6 traversals.

Since in any BHS-scheme, each of the two agents can do at most one traversal
in every time unit, the following lemma holds:

Lemma 7. ([19]) Any BHS-scheme requires at least 3, 1 and 3r time units for the
traversals of a red edge, a green edge and a block of r branches of blue edges,
respectively.

3.3 A time optimal algorithm for a family of trees
Consider the family T of rooted trees with the following property: any internal
node of a tree in T (including the root) has at least 2 children. Trees in T will
be called bushy trees. For these trees, searching for a black hole can be efficiently
parallelized by an appropriate use of the Procedure Split. This enables us to get
an optimal algorithm (Algorithm 3) for this class of trees.

Let T be a bushy tree with root s and let u be an internal node of T . The
heaviest child v = H(u) (resp. lightest child v = L(u)) of u is defined as a child
v of u such that the subtree T (v) rooted at v (which is also a bushy tree) has a
maximum (resp. minimum) height among all subtrees rooted at children of u with
ties broken arbitrarily. Notice that H(u) and L(u) can be computed by the agents
for each node u in linear time.

The high-level description of Algorithm 3 is the following. Let m be the meet-
ing point of the two agents after a phase (initially m ≡ s).

- Explore any pair of unexplored edges (m, x), (m, y) with upper node m by
executing Procedure Split(x,y), leaving edge (m, L(m)) last.

- If there is one unexplored edge with upper node m (which must be (m, L(m)))
then one of the agents explores this edge while the other one explores another
‘close by’ unexplored edge (if any) again using Split. If edge (m, L(m)) is the
last unexplored edge in the tree, explore it by executing Probe(L(m)).

- If all edges with upper node m are explored, explore similarly as before any
unexplored edges incident to the children of m and to ancestors of m.

Function Explore-only-child(v) takes as input the current node v where
both agents reside and returns the new meeting point after the exploration of edge
(v, L(v)). The description of the procedure is the following:
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Algorithm 3 (2 agents with memory and a map in a synchronous ‘bushy’ tree)
1: next := s;
2: repeat
3: v := next;
4: for every pair of unexplored edges (v, x), (v, y) with upper node v do
5: Split(x, y), so that edge (v, L(v)) is explored last;
6: end for
7: if there are still unexplored edges in the tree then
8: case 1: every edge incident to v has been explored:
9: case 1.1: there is an unexplored edge incident to a child w of v:

10: next := w;
11: case 1.2: every edge incident to any child of v is explored:
12: let t be the parent of v;
13: next := t;
14: walk to node next;
15: case 2: there is an unexplored edge (v, z) incident to v:
16: (* must be z = L(v) *)
17: next := Explore-only-child(v);
18: end if
19: until every edge has been explored
20: walk to node s and report the location of the black hole;

- If there is an unexplored edge incident to a child w of v, w � L(v), then
the agents explore edge (w,H(w)) together with edge (v, L(v)) calling Procedure
Split(H(w),L(v)). The new meeting point is w.

- If every edge incident to any child w of v, different from L(v), is explored
and edge (v, L(v)) is not the last unexplored edge in the tree, then find the deepest
ancestor a of v having a descendant incident to an unexplored edge (excluding
L(v)); the agents explore edge (D(a),H(D(a))) (where D(a) is the closest de-
scendant of a with incident unexplored edges), together with edge (v, L(v)), by
Split(H(D(a)),L(v)); the new meeting point is D(a).

- If edge (v, L(v)) is the last unexplored edge in the tree then explore it by
calling Probe(L(v)); the new meeting point is v.

Notice that all edges of the tree (except possibly the last one if the number of
edges is odd) are explored by calling Procedure Split. Observe that in any bushy
tree, there are only red and green edges.

It is proved that the BHS scheme produced by Algorithm 3 traverses any red
edge 6 times and any green edge 2 times. Moreover every phase is a 2-phase (i.e.
the two agents traverse edges in parallel), except possibly the last phase, and no
agent waits in any 2-phase. Hence, in view of Lemma 7 the following theorem
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holds:

Theorem 4. ([19]) Algorithm 3 produces a fastest BHS-scheme for any bushy
tree.

3.4 The case of arbitrary trees
For arbitrary trees there is a simple algorithm which guarantees an approximation
ratio strictly less than 4, i.e., an algorithm which produces a BHS-scheme whose
time is less than 4 times the cost of the fastest BHS scheme for any arbitrary
tree and starting node. The algorithm is the following: both agents traverse the
tree together in depth first search order and explore each new node with a probe
phase. This BHS scheme explores a n-node tree within 4(n − 1) − 2l steps, where
l is the number of leafs in the tree. In any BHS scheme of an n-node tree, each
edge has to be traversed at least twice by an agent which gives a total of 2(n − 1)
traversals. Hence at least n−1 steps are required which implies a strictly less than
4 approximation factor for the above algorithm.

A better (and still simple) approximation algorithm for arbitrary trees was also
proposed in [19] achieving a ratio of 5

3 . The high-level description of the algorithm
is the following. Let v be the meeting point of the two agents after a phase (initially
v ≡ s); the edges with upper node v are explored by calling Procedure Split until
either all such edges are explored or there is at most one remaining unexplored
edge incident to v, which is explored by calling Procedure Probe; this is repeated
for any child of v.

The question of whether it is possible to produce a fastest BHS-scheme for
any arbitrary tree (or it is NP-hard) is open until now. The conjecture is that it is
possible but such an algorithm would probably need to take care of many special
cases that could occur in an arbitrary tree.

4 Black-Hole Search in Synchronous Graphs
Producing a fastest BHS scheme for arbitrary graphs was proved to be NP-hard
in [54, 55]. This result extended in some way a reduction which showed the NP-
hardness of finding fastest schemes for a more general version of the Black Hole
Search problem in which a set of safe nodes is given (instead of just the starting
node) and appeared in [18]. Later, in [56], APX-hardness for both versions in
arbitrary graphs was proved. In this section we first describe the (less complicated)
reduction that shows the NP-hardness of the general BHS problem and later we
discuss the original BHS problem. We also discuss the APX-hardness results and
approximation algorithms for both versions.
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4.1 The general Black Hole Search problem

In [18] the authors studied the BHS problem in synchronous arbitrary graphs
adopting a more general scenario in which initially a subset of nodes of the net-
work (instead of just the starting node), containing the starting node, is safe, and
the black hole can be located in one of the remaining nodes. Let us call this ver-
sion of the problem general Black Hole Search (gBHS). It was shown that the
problem of finding the fastest possible black hole search scheme by two agents in
an arbitrary graph is NP-hard, and a 9.3-approximation algorithm was given for
this problem, i.e., a polynomial time algorithm which, given a graph with a subset
of safe nodes and a starting node as input, produces, in polynomial time, a black
hole search scheme whose time is at most 9.3 times larger than the time of the
fastest scheme for this input.

4.1.1 Model and terminology

The model which was used was the same as before with the following differences.
Given are:

• a graph G with node s which is the starting node of both agents, and

• a subset S of safe nodes containing s (S cannot contain a black hole).

It was again assumed that there is at most one black hole in the network and the
goal is to find a gBHS-scheme for the input (G, S , s).

4.1.2 NP-hardness of the general black hole search problem

To prove NP-hardness of the gBHS problem, the authors presented a reduction
from the (NP-complete) Hamiltonian Cycle Problem (HC problem) to the decision
version of the gBHS problem (called dgBHS).

The HC problem:
Instance: A Graph G.
Question: Does G contain a Hamiltonian cycle?

The dgBHS problem:
Instance: A graph G′ with a subset S of safe nodes, starting node s ∈ S ,

positive integer X.
Question: Does there exist a gBHS scheme for the input (G′, S , s), with time

at most X?
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: new unsafe node island
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island center

M new safe nodes of a bridge

Figure 2: Construction of a dgBHS problem instance

Construction

Let a graph G with n nodes and e edges be an instance of the HC problem. We
construct a new graph G′ as follows. Call the nodes of graph G old nodes. In
each edge of G we add 2 new unsafe nodes adjacent to endpoints of this edge and
M = 4e + 5n − 1 new safe nodes between them, as in Figure 2. Let s be any node
of the old n nodes. All old nodes except s are considered unsafe. Hence the set
of unsafe nodes consists of all old nodes except s and all nodes adjacent to old
nodes.

The instance of the dgBHS problem is the graph G′ with n′ = n + (M + 2)e
nodes, the set S of Me + 1 safe nodes, node s as a starting node, and the integer
X = M(n + 1) − 1.

The construction of this instance from the graph G can be clearly done in
polynomial time. If there is a Hamilton Cycle C in the old graph G then the
two agents can follow this cycle starting at node s and identify the black hole (or
discover that there is no black hole) in the new graph G′ (constructed as above) in
at most M(n + 1) − 1 time units as follows:

They explore by probing (one agent goes to an adjacent node while the other
agent waits) the nodes which are adjacent to the center of an island (see Fig. 2)
except the two nodes which are on C and they return to the center of the island.
Then they explore by probing the unsafe node of the bridge on C in the chosen
direction and they walk along the bridge, till they get to the last safe node of
it. Subsequently, they explore the adjacent unsafe node v (in the next island) by
probing, walk to it, explore the center of this island by probing and walk to it.
They repeat the above procedure in every island on C until they reach again node
s.

In the absence of a Hamiltonian Cycle in graph G the agents need at least
M(n + 1) time units to identify the black hole (or discover that there is no black
hole) in G′ (see [18] for more details).
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Theorem 5. ([18]) Producing a fastest BHS scheme for the gBHS problem in
arbitrary graphs is NP-hard.

4.1.3 An approximation algorithm for the gBHS problem

An approximation algorithm (Algorithm 4) for the gBHS problem in arbitrary
graphs also appeared in [18]. The algorithm is based on the construction of a
Steiner Tree of the input graph G, where the unsafe nodes of G along with the
starting node s are the required nodes. Recall that a Steiner Tree for a graph
G = (V, E) with the set R ⊆ V of required nodes is any subtree of G containing R.
We can construct such a Steiner Tree T in polynomial time with approximation
ratio α, where α = 1+ ln 3

2 < 1.55 ([53], [65]). More specifically, if x is the number
of unsafe nodes in G plus one for node s, and y is the number of safe nodes in T
(excluding node s), while y∗ is a minimum number of safe nodes (excluding node
s) needed for the optimal Steiner Tree, then (x + y) ≤ 1.55(x + y∗).

Algorithm 4 (An approximation algorithm for the gBHS problem in graphs)
1: construct a minimum Steiner Tree T containing all unsafe nodes and node s;
2: next := s;
3: repeat
4: v := next;
5: for every unexplored node z adjacent to v do
6: probe(z);
7: end for
8: if there are still unexplored nodes then
9: case 1: there is an unexplored node adjacent to a child w of v:

10: next := w;
11: case 2: every node adjacent to any child of v is explored:
12: let t be the parent of v;
13: next := t;
14: walk to node next;
15: end if
16: until every node is explored
17: walk to node s and report the location of the black hole;

The high-level description of Algorithm 4 is the following. First a Steiner Tree
is constructed as described above. Let v be the meeting point of the two agents
after a phase (initially v ≡ s); the unexplored children of v are explored by calling
procedure probe; if there is an unexplored node adjacent to a child of v then the
agents go to that child and repeat. Otherwise the two agents go to the parent of v
and repeat.
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The time-complexity of Algorithm 4 is polynomial on the size of G and is
dominated by the time of constructing the Steiner Tree. Algorithm 4 is in fact a
Depth First Search type algorithm with the only difference that any unsafe node is
visited using a cautious way (probing). The time spent on traversals of any edge
(u, v) (v is a child of u) of the tree T is at most 4 units: the worst case is when edge
(u, v) leads to an unexplored node v which is not a leaf in T , therefore the agents
spend 2 time units for probing v, 1 time unit to walk to v and another time unit
to return to node u - after the exploration of the descendants of v. The total time
needed by the gBHS-scheme produced by Algorithm 4 is less than 4(x + y).

Lemma 8. ([18]) Any gBHS scheme for the graph G requires at least 4
3 (x + y∗)

traversals of edges.

The lower bound of Lemma 8 together with the upper bound achieved by
Algorithm 4 and the approximation factor α (< 1.55) of the Minimum Steiner
Tree lead to the following theorem:

Theorem 6. ([18]) Algorithm 4 is an approximation algorithm for the gBHS prob-
lem with ratio 6α < 9.3.

The approximation ratio of the gBHS problem was improved in [56] where a
6-approximation algorithm was given for the problem, using again the approach
of minimum spanning trees.

4.2 The BHS problem in arbitrary graphs
In [54] (see also the full version in [55]) it was proved that the problem of con-
structing a time optimal Black Hole Search scheme for two agents under the re-
stricted scenario of one safe node, the starting node (i.e., the original BHS prob-
lem) is NP-hard even on planar graphs.

4.2.1 NP-Hardness of Black Hole Search in Planar Graphs

The NP-hardness of the BHS problem in planar graphs (BHSp problem) was
shown by providing a reduction from a particular version of the Hamiltonian Cy-
cle problem (Hamiltonian Cycle on cubic planar graphs (cpHC problem)) to the
decision version of the BHSp problem.
Here is the formalization of the two problems:

The cpHC problem
Instance: a cubic planar 2-connected graph G = (V, E), and an edge (x, y) ∈ E;
Question: does G contain a Hamiltonian cycle that includes edge (x, y) ?
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The dBHSp problem
Instance: a planar graph G′ = (V ′, E′), with a starting node s ∈ V ′, and a

positive integer X;
Question: does there exist a BHS scheme for G′ starting from s with time at

most X?

The cpHC problem above is proved to be NP-complete in [55] by a simple
reduction from the Hamilton Cycle problem in cubic planar graphs without the
extra requirement that the Hamiltonian cycle passes through a given edge (which
was proven NP-complete in [47]). Then with a more technical construction than
the one in the previous section the authors reduce the cpHC problem to the dBHSp
problem proving that the dBHSp problem is NP-complete:

Theorem 7. ([55]) A graph G with n nodes has a Hamiltonian Cycle passing
through an edge (x, y) if and only if there is a BHS scheme for a graph G′ and a
starting node s (constructed from G in polynomial time) with time at most 5n + 2
units.

4.2.2 An approximation algorithm for the BHS problem

For an approximation algorithm for the BHS problem in an arbitrary graph G, a
natural approach is the following: First select a spanning tree in G and then ex-
plore the graph by traversing the tree edges. Since any BHS scheme of a n-node
graph requires at least n−1 steps, this approach together with the simple algorithm
described at the end of Section 3 guarantees an approximation ratio of 4 for any
arbitrary graph. To follow this spanning-tree approach more effectively we need
an algorithm for constructing “good” BHS schemes for trees and an algorithm
for computing spanning trees which are “good” for those schemes. A linear-time
algorithm which extends the construction of the optimal BHS scheme for bushy
trees (which has been presented in Section 3) to the general rooted trees is pro-
posed in [55]. This algorithm still does not guarantee optimality of computed
exploration schemes for trees other than bushy trees: the question of computing
in polynomial time optimal exploration schemes for general trees remains open.
The cost of the exploration scheme computed by this extended algorithm for an
arbitrary tree T is given as a function of the number of nodes of different types
in tree T . Then a heuristic algorithm is presented for the problem of computing
a rooted spanning tree T of graph G which gives a relatively small value of that
formula. This approach guarantees an approximation ratio of at most 33

8 .
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4.3 APX-hardness of the BHS problem in arbitrary graphs

Finally in [56] both versions of the black hole problem discussed in this section
were proved to be APX-hard. It was shown that a fastest BHS scheme for the
general Black Hole Search problem is not approximable in polynomial time within
a 1 + ε factor for any ε < 1

388 , unless P = NP. It was also proved that the original
BHS problem (in which only the starting node is initially known to be safe) is also
APX-hard.

The authors provide an explicit lower bound on the approximability of the
General Black Hole Search problem by showing an approximation-preserving re-
duction from a particular subcase of the Traveling Salesman Problem (TSP), pre-
sented in [34]. In this subcase of TSP, distances between nodes are symmetric and
satisfy the triangle inequality while the maximum distance M is a constant.

Lemma 9. [34] It is NP-hard to approximate TSP(1,M) within 1 + ε for any
ε < 1

388 .

The authors’ approach to prove the APX-hardness of the gBHS problem is
the following. They first provide a reduction from instances (G, d) of TSP to
instances (G′, S , s) of the gBHS problem and then they show that if the optimal
solution of the gBHS, constructed by the given reduction from an instance of
TSP, can be approximated within a (1 + ε) factor, then the optimal solution of the
corresponding instance of TSP can be approximated within the same factor.

Theorem 8. ([56]) The gBHS problem is not approximable in polynomial time
within a factor of 1 + ε for any ε < 1

388 , unless P = NP.

They also provide a reduction from the TSP problem where the distances be-
tween the nodes are either 1 or 2 to the original version of the BHS problem (in
which only the starting node is known to be safe) and show that:

Theorem 9. ([56]) It is NP-hard to approximate the BHS problem within a factor
1 + ε for any ε < 1

2258 .

5 The BHS problem with Scattered Finite Automata
In all previous sections of this survey the Black Hole Search problem was studied
for co-located agents with memory.

The memory is a critical capability that allows the agents to store (or make) a
map of the network, to keep information about (or count) the number of nodes of
the graph and generally helps them decisively to explore the network.
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In asynchronous networks the co-location of the agents in the whiteboard
model gave them the ability to assign different identities to themselves and dif-
ferent labels at nodes while in synchronous networks the co-location gave the
agents the ability to probe the network in a cautious way and discover the black
hole.

The question of whether even more weak models allow the solution of the
black hole search problem has been recently raised. Although there are results for
scattered agents (not initially starting at the same node) using tokens (instead of
whiteboards) and even not having a map of the graph for asynchronous networks,
the memory capability cannot be dropped since in such networks the agents need
to know (and store) the number of nodes (or at least an upper bound). However
in synchronous networks no knowledge of such bound is generally needed so an
interesting question is whether deterministic finite automata (DFAs) (i.e., with
only a constant memory), initially scattered in the network, without a map and
having only a constant number of ‘pure’ tokens (which can leave only at nodes)
can still solve the black hole search problem.

We notice here that Rollik ([66]) has proved that no finite set of finite au-
tomata can cooperatively perform exploration of all cubic planar graphs. Since a
finite automaton is more powerful than a token, it means that no finite set of finite
automata using any constant number of tokens can explore all cubic planar graphs
even when the agents start at the same node and can exchange information when
they meet at nodes. It is clear that if the agents cannot even explore the graph (i.e.,
visiting all nodes) they cannot solve the BHS problem. Hence a challenging ques-
tion is whether there are synchronous network topologies for which the agents can
solve this problem in such a weak model. Even when the agents can communi-
cate when they meet at a node, since they are initially scattered they need to solve
the rendezvous problem which is far from trivial for identical, anonymous DFAs
carrying only indistinguishable tokens.

Very recently the BHS problem in this model (initially scattered anonymous
agents with constant memory, carrying only a constant number of pure indistin-
guishable tokens and having the ability to communicate only when they meet at
the same node) has been investigated for ring ([11]) and torus ([10]) topologies.

Since the model now is quite different than before we give below some more
details.

5.1 The model
The model consists of an anonymous, synchronous network with k ≥ 2 identical
mobile agents that are initially located at distinct nodes called homebases. Each
mobile agent owns a constant number t of identical tokens which can be placed
at any node visited by the agent. The tokens are indistinguishable. Any token or
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agent at a given node is visible to all agents on the same node, but not visible to
agents on other nodes. The agents follow the same deterministic algorithm and
begin execution at the same time and being in the same initial state.

A token is called movable if it can be put on a node and picked up later by any
mobile agent visiting the node. Otherwise the token is called unmovable in the
sense that, once released, it can occupy only the node where it was released.

Formally a mobile agent was considered as a finite Moore automaton.
All computations by the agents are independent (the agents have no knowl-

edge) of the size of the network. The algorithms for the ring topology work even
without knowledge of the number of the agents. There is exactly one black hole
in the network. An agent can start from any node other than the black hole and
no two agents are initially co-located. Once an agent detects a link to the black
hole, it marks the link permanently as dangerous. The goal is that at the end of
a black hole search scheme, all links incident to the black hole (and only those
links) are marked dangerous and that there is at least one surviving agent. Note
that this definition of a successful BHS scheme is slightly different from the orig-
inal definition. Indeed, in the original definition, it is required that there is at least
one surviving agent, and this agent knows the location of all edges incident to the
black hole. However, this is impossible in this model since the agents have only
constant memory.

5.2 The ring topology
For the ring topology four different scenarios were considered in [11] depending
on whether the tokens are movable or not, and whether the agents agree on a
common orientation. Surprisingly, the agreement on the ring orientation does
not influence the number of agents needed in the case of movable tokens but is
important in the case of unmovable tokens.

The lower bounds presented in [11] are very strong in the sense that they do
not allow any trade-off between the number of agents and the number of tokens
for solving the BHS problem. In particular it was shown that:

• Any constant number of agents, even having unlimited memory, cannot
solve the BHS problem with less tokens than depicted in all cases of Ta-
ble 1.

• Any number of agents less than that depicted in all cases of Table 1 cannot
solve the BHS problem even if the agents are equipped with any constant
number of tokens and they have unlimited memory.

Meanwhile the algorithms match the lower bounds on the number of tokens, are
asymptotically time-optimal and since they do not require any knowledge of the
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size of the ring or the number of agents, they work in any anonymous synchronous
ring, for any number of anonymous identical agents (respecting the minimal re-
quirements of Table 1).

Resources necessary
and sufficient

Tokens are Ring is # agents # tokens

Movable
Oriented

3 1
Unoriented

Unmovable
Oriented 4 2

Unoriented 5 2

Table 1: Results for BHS with DFAs and tokens in synchronous rings

5.2.1 Impossibility results

Oriented rings

Consider that the agents agree on the orientation of the ring (i.e., the ports of the
edges are consistently labeled as ‘left’, ‘right’). When the tokens are unmovable, a
team of any constant number of agents needs at least two tokens per agent to solve
the BHS problem. This is due to the fact that with only one unmovable token the
agents are forced to always take the same actions including marking (incorrectly
in different sized rings) links as dangerous.

Theorem 10. ([11]) For any constant k, there exists no algorithm that solves BHS
in all oriented rings containing one black hole and k or more scattered agents,
when each agent is provided with only one unmovable token. The result holds
even if the agents have unlimited memory.

To solve the BHS problem in a ring, both links leading to the black hole need
to be marked as dangerous. Thus, we immediately arrive at the following result.

Theorem 11. ([11]) Two mobile agents carrying any number of movable (or un-
movable) tokens each, cannot solve the BHS problem in an oriented ring, even if
the agents have unlimited memory.

When the tokens are unmovable, even three agents are not sufficient to solve BHS
as shown below. This is due to the following facts: a) because of the constant
number of unmovable tokens the agents cannot guarantee to leave a token at a
node which is adjacent to the black hole, and b) after one of them vanishes in
the black hole, the remaining two agents could possibly meet (by exploiting the
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asymmetry left by the vanished agent) but they cannot discover both incident links
to the black hole.

Theorem 12. ([11]) Three mobile agents carrying a constant number of unmov-
able tokens each, cannot solve the BHS problem in an oriented ring, even if agents
have unlimited memory.

Unoriented rings

In an unoriented ring (i.e., the clockwise direction perceived by an agent is han-
dled by an adversary), even four agents do not suffice to solve the BHS problem
with unmovable tokens, since two of them can be forced by the adversary to van-
ish in the black hole at the same time leaving their tokens more than a constant
distance away from the black hole and the remaining two agents cannot correctly
mark both links incident to the black hole.

Theorem 13. ([11]) In an unoriented ring, four agents carrying any constant
number of unmovable tokens each, cannot correctly mark any link incident to the
black hole, even when the agents have unlimited memory.

5.2.2 A BHS scheme with movable tokens

If each agent has a movable token it can perform a cautious walk type movement
using its token. The Cautious-Walk procedure consists of the following actions:
Put the token at the current node, move one step in the specified direction, return
to pick up the token, and again move one step in the specified direction (carrying
the token).

We show that only three agents are sufficient to solve BHS, when they have one
movable token each. Algorithm 5 achieves this, both for oriented and unoriented
rings.

Algorithm 5 (Three DFAs with one movable token in synchronous rings)
1: repeat
2: CautiousWalk(Left)
3: until you see a token and no agent OR next link is marked Dangerous
4: MarkLink(Left)
5: repeat
6: CautiousWalk(Right)
7: until you see a token and no agent OR next link is marked Dangerous
8: MarkLink(Right)



��� �������	 
� ��� �
���

���

Theorem 14. ([11]) Algorithm 5 solves the BHS problem in an unoriented ring
with k ≥ 3 agents having constant memory and one movable token each.

5.2.3 BHS schemes with unmovable tokens

For agents having only unmovable tokens, we use the probing technique (as dis-
cussed in previous sections) for exploring new nodes. Now in order to use this
technique, we need to gather two agents at the same node and break the symmetry
between them, so that distinct roles can be assigned to each of them. This is the
main difficulty that has been taken care by the algorithms. The basic idea of our
algorithms is the following. We first identify the two homebases that are closest
to the black hole (one on each side). These homebases are called gates. The gates
divide the ring into two segments: one segment contains the black hole (thus, is
dangerous); the other segment contains all other homebases (and is safe). Initially
all agents are in the safe part and an agent can move to the dangerous part only
when it passes through the gate node. We ensure that any agent reaching a gate
node, waits for a partner agent in order to perform the probing procedure. We now
present two BHS algorithms, one for oriented rings and the other for unoriented
rings.

Oriented rings

In this section, we describe an algorithm (Algorithm BHS-Ring-2) using at least
four agents with two unmovable tokens.

Description of Algorithm BHS-Ring-2:

During the first phase of the algorithm each agent places a token on its homebase,
moves left until the next homebase (i.e., next node with a token) and then returns
to its homebase to put down the second token. During this phase one agent will
fall into the black hole and there will be a unique homebase with a single token
(we call this node the gate node) and all the other homebases will eventually con-
tain exactly two tokens each. However, the agents may not complete this phase of
the algorithm at the same time. Thus during the algorithm, there may be multiple
homebases that contain a single token. Whenever an agent reaches any node con-
taining a single token, it waits for a partner agent and then they perform probing
in the left direction. One of the agents of a pair eventually falls into the black hole
and the other agent marks the edge leading to the black hole and returns to the gate
node, waiting for another partner. When another agent arrives at this node, these
two agents perform probing in the opposite direction to find the other incident link
to the black hole.
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Theorem 15. ([11]) Algorithm BHS-Ring-2 correctly solves the black hole search
problem in any oriented ring with 4 or more agents having constant memory and
carrying two unmovable tokens each.

Unoriented rings

For unoriented rings, we need at least 5 agents with two unmovable tokens each.
The Algorithm BHS-Ring-3 for unoriented rings using five agents with two
unmovable tokens is similar to the one for oriented rings, except that each agent
chooses an orientation. When two agents meet they can agree on the orientation
and assign different roles to themselves.

Description of Algorithm BHS-Ring-3:

Each agent puts one token on its homebase, goes on its left until it sees another
token and then returns to its homebase. Now the agent goes on its right until
it sees a token and then returns again to the homebase. The agent now puts its
second token on its homebase. During this operation exactly two agents will fall
into the black hole. Each surviving agent walks to its left until it sees a node u
with a single token. At this point the agent has to wait, since either there is a black
hole ahead, or u is the homebase of an agent b that has not yet returned to put its
second token. Since we assume there are at least five agents, at least two of them
will meet at a gate. They identify one of the links incident to the black hole and
then the remaining agent can join the other agent who waits and identify together
the other link incident to the black hole.

Theorem 16. ([11]) Algorithm BHS-Ring-3 correctly solves the black hole search
problem in an unoriented ring with 5 or more agents having constant memory and
carrying two unmovable tokens each.

5.3 The torus topology
While in ring topologies the exploration of a safe (even unoriented) ring is feasible
by one DFA with one unmovable token, in torus topologies the exploration of a
(safe) torus is not always possible by a DFA using tokens.

5.3.1 Impossibility results in an oriented torus

Agents with unmovable tokens

Theorem 17. ([10]) For any constant numbers k, t, there exists no algorithm that
solves BHS in all oriented tori containing one black hole and k scattered agents,
where each agent has a constant memory and t unmovable tokens.
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The idea of the proof of Theorem 17 is the following: It is shown that an
adversary (by looking at the transition function of an agent) can always select a
big enough torus and initially place the agents so that no agent visits nodes which
contain tokens left by another agent, or meets with another agent. Moreover there
are nodes on the torus never visited by any agent. Hence the adversary may place
the black hole at a node not visited by any of the agents to make any algorithm
fail.

Agents with movable tokens

The situation with movable tokens is quite different than with unmovable ones
since now any oriented (safe) torus can be eventually explored even by one DFA
carrying one movable token (exploration without stop, also known as perpetual
exploration). Hence any lower bound using movable tokens can not be based on
impossibility of exploration (visiting all nodes of the torus).

A fairly easy observation is that two agents carrying any number of movable
tokens cannot solve the BHS problem in an oriented torus even if the agents have
unlimited memory due to the fact that the adversary can always place the agents
and the black hole in such a way that one of the agents vanishes while changing
vertical rings and the other one while changing horizontal rings. Additionally the
following lower bound is shown:

Lemma 10. ([10]) There exists no algorithm that could solve the BHS problem in
all oriented tori using three agents with constant memory and one movable token
each.

The idea of the proof is that at least two of the three agents are forced to leave
their tokens more than a constant number of nodes away (otherwise they are not
able to explore the torus) from the black hole before they vanish and then the third
agent cannot decide for the correct location of the black hole.

Hence the following theorem holds:

Theorem 18. ([10]) At least three agents are necessary to solve the BHS problem
in an oriented torus of arbitrary size. Any algorithm solving this problem using
three agents requires at least two movable tokens per agent.

5.3.2 BHS schemes in oriented tori using movable tokens

Due to the impossibility result from the previous section, any algorithm for the
BHS problem by DFAs should use movable tokens. We describe below an al-
gorithm which leads three agents carrying three tokens each to locate the black
hole.
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Algorithm BHS-torus-33

An agent explores one horizontal ring at a time and then moves one step South to
the next horizontal ring and so on. When exploring a horizontal ring, the agent
leaves one token on the starting node. This node is called the homebase of the
agent and the token left (called homebase token) will be used by the agent to de-
cide when to proceed to the next horizontal ring. The agent uses the two remaining
tokens to repeat Cautious-Walk in the East direction until it has seen twice a node
containing one token. Any node containing one token is a homebase either of this
agent or of another agent. The agent moves to the next horizontal ring below (us-
ing again Cautious-Walk with three tokens) after encountering two homebases. It
then repeats the same exploration process for this new ring leaving one token at
its new homebase. Whenever the agent sees two or three tokens at the end of a
cautious-walk, the agent has detected the location of the black hole: If there are
two (resp. three) tokens at the current node, the black hole is the neighboring node
w to the East (resp. South). In this case, the agent stops its normal execution and
then traverses a cycle around node w, visiting all neighbors of w and marking all
the links leading to w as dangerous.

Theorem 19. ([10]) Algorithm BHS-torus-33 correctly solves the BHS problem
with 3 or more agents and three tokens.

Using a similar technique, the authors present an algorithm that solves the
problem using four agents and two tokens. Finally they give a more involved
algorithm (using a technique which makes the agents meet when they are ‘close’
enough) that meets the lower bound, i.e., solves the BHS problem using three
agents and two tokens.

Theorem 20. ([10]) The BHS problem can be solved in any oriented torus with
exactly three agents carrying two tokens each.

5.3.3 The case of an unoriented torus

The situation in an unoriented torus is quite different than in an oriented one. As
new results in [60] show, any constant number of DFAs with one movable token
each cannot explore all (safe) unoriented tori and thus the BHS problem cannot
be solved. However, surprisingly enough1, it is shown in [60] that one agent with
two movable tokens can explore any totally unoriented (safe) torus which gives a
hope that even in a totally unoriented torus the BHS problem can be solved by a

1Given the old result of Rollik in [66] (discussed in the beginning of the section) which proved
that no finite set of finite automata can cooperatively perform exploration of all cubic planar
graphs.
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small number of agents with movable tokens. In a partially unoriented torus the
BHS problem can be solved using five agents with constant memory and three
movable tokens ([60]).

6 Discussion and Future Directions

In a distributed mobile computing environment the most pressing security con-
cerns one has to deal with are a hostile agent (i.e., a malicious mobile process),
and a hostile host (i.e., a harmful process at a network site). In this survey we tried
to discuss the second one as it appears in the literature under the model of a highly
harmful host called black hole. With the exclusion of Section 2 we presented most
of the results for synchronous networks. As it appeared in this survey, the black
hole search problem is related to the graph exploration problem and sometimes
(when scattered agents are considered) to the rendezvous problem.

6.1 The impact of the Cautious-Walk technique

In most of the part of this survey the algorithms for the black hole search problem
relied more or less in the Cautious-Walk technique. However when the network
is directed this technique cannot be applied any more. The problem has been
studied for co-located agents with memory but without a map of the network in
asynchronous and synchronous directed graphs with whiteboards in [16, 57]. In
[16] it was proved that in directed asynchronous graphs with whiteboards there
is an exponential gap on the number of agents needed in order to solve the BHS
problem: 2Δ agents are needed in the worst case (where Δ + 1 agents without a
map are sufficient in undirected graphs), where Δ is the in-degree of the black
hole. This is a consequence of the fact that in directed graphs the Cautious-Walk
technique cannot be applied. This lower bound holds even in the case of syn-
chronous graphs. However in planar directed graphs with a planar embedding
known to the agents, 2Δ agents are needed and 2Δ + 1 agents are sufficient. In
synchronous directed graphs with whiteboards it was shown in [57] that O(Δ · 2Δ)
agents are sufficient to solve the problem.

6.2 Other models of hostile-node identification problems

Weaker as well as stronger faults than black holes have also been introduced in
the literature. In [15] they study how to fast locate and repair special faults which
can destroy only the first visiting agent (thus weaker than black holes) using co-
located agents with memory in synchronous known networks.
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As already mentioned, black hole is a particular type of a malicious host with
a very simple behavior: killing every agent instantly without leaving any trace. In
reality, a host has many ways to harm the agents: it may not only kill any agent re-
siding in it at any time, it may also duplicate agents, introduce fake agents, tamper
the runtime environment (e.g. changing the contents of the whiteboard), or dis-
obey communication protocols (e.g., do not execute agents in FIFO order). Those
are all very interesting and challenging future directions on protecting a network
from hostile nodes. In [58] appears the first attempt to study how the abilities of
a malicious host affect the solvability of exploration problems. There, a different
dangerous behavior is studied for co-located agents: the authors consider an asyn-
chronous ring with whiteboards and assume black-holes with Byzantine behavior,
which do not always destroy a visiting agent and can change the whiteboard stored
there. Their main result shows that, in the case of rings, it is sufficient to protect
the internal state of the agent (i.e., the malicious host cannot change or create the
content of agent’s memory), and the periodic data retrieval problem is solvable by
a constant number of agents.
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