
The Education Column
by

Juraj Hromkovič

Department of Computer Science
ETH Zürich

Universitätstrasse 6, 8092 Zürich, Switzerland
juraj.hromkovic@inf.ethz.ch

http://www.inf.ethz.ch
http://www.ethz.ch
 juraj.hromkovic@inf.ethz.ch


How to convince teachers to teach computer
science even if informatics was never a part

of their own studies

Juraj Hromkovič, Regula Lacher
Department of Computer Science, ETH Zurich

ETH Zentrum, Universitätstrasse 6
8092 Zurich, Switzerland

Abstract

Computer science is becoming a common, mandatory subject in curric-
ula of educational systems in ever more countries. The implementation is
everything, but simple. Computer science is the only subject that teachers
of primary schools have to teach, but never studied themselves. The widely
spread, but wrong idea that computer science is about using a computer
or about working with social media makes this process still more compli-
cated, with the risk that the next generation of teachers also does not get
proper training. In this article, we show how to explain the goals of com-
puter science education to the teachers in such a way that they understand
the contributions of computer science to the understanding of the world and
to the growth of intellectual abilities of their pupils, and that they focus on
teaching fundamental, and therefore stable concepts of informatics instead
of operating instructions for short-term applications. The following text is
an explanation and an offer to teachers who are experienced in teaching,
but do not have any idea what computer science is about, except that it has
“something to do with computers.”

1 What is Computer Science?
Computer science is about automation of procedures. Therefore, despite the fact
that computer science is considered to be a young scientific discipline, the way
of thinking in computer science was a part of human culture since ever. Not only
was the first known writing developed about 5 000 years ago by the Sumerians
in order to solve a typical computer science task: find a method for storing and
efficient processing of data about properties and duties (taxes) of about 1 000 000



inhabitants of Mesopotamia; but also because of the two basic concepts that en-
abled the growth of human societies which were – and still are today – the ability
to create knowledge and the application of existing knowledge to achieve differ-
ent goals. To become an expert in performing a (previously developed) procedure
(algorithm, we could say today) was much easier than to learn to develop such
procedures and to discover new knowledge. One wonderful example from ancient
Greece was the Theorem of Pythagoras that became a procedure applied in the
construction of houses. Since 32 + 42 = 52, one knows due to Pythagoras that the
triangle with sides of length 3, 4 and 5 units (it does not matter which units are
used) contains a right angle. Therefore, to create a right angle it is sufficient to
take 3 ropes of length 3, 4 and 5 units to build the corresponding triangle. There is
a huge gap between the qualification of creating this triangle and the intellectual
potential to discover the Theorem of Pythagoras, not to mention the capability to
understand why it is true. In this way, many technologies became available for
big parts of society in spite of the fact that only a few people were able to develop
them.

Computer science became a distinguished discipline when the following two
prerequisites were satisfied:

1. Many procedures (algorithms) were mastered and unambiguously described
on a detailed level such that no intellectual ability of improvisation (expert
knowledge) was required to perform them. Executing such procedures be-
came a routine work.

2. Technologies were developed that enabled to delegate the execution of pre-
cisely described procedures to machines.

Because of that, two main components of computer science today are the fol-
lowing ones:

1. To work together with specialists in all other areas of science and human
activity in order to develop efficient algorithms for automation of further
human activities.

2. To contribute to the engineering of developing hardware and software tech-
nologies in order to be able to automate more and more complex tasks and
to increase the performance of our computing technologies. A part of this
job is the development of programming languages that enables humans to
communicate with machines, to control them, and to instruct them to exe-
cute different activities.



2 Goals of Teaching Computer Science
To recognize truly valuable goals for teaching computer science, one has to follow
the genesis of computer science thinking and its contribution to the development
of human society. One is not allowed to focus on the latest hardware and software
products and their applications. On one hand, these will change soon, and on the
other hand, it is not a good idea for teachers to compete with their pupils in the
knowledge about the most recent applications. The primary task of schooling is
to support the development of the intellectual potential of young people. Simply
learning to use different products of software industry does not really train our
brain for creative work and, together with the corresponding multitasking, can
even decrease our ability to concentrate and lead to intellectual underdevelopment.

Instead, our global goals are as follows:

I. To strengthen the fundamental competences in mathematics and languages.

II. To understand the technological world created by humans and to be able to
contribute to its development.

III. To transform the constructive and creative thinking of engineering into school
education.

I To contribute to fundamental competences in language and
mathematics

The contributions to teaching mathematics are more transparent because the in-
terface between mathematics and computer science is really big and multidimen-
sional. Already data representation and the description of computing tasks require
the exact language of mathematics.

The focus is primarily in contributing to the ability to solve problems. In con-
trast to classical education in mathematics, one does not aim at learning a given
method, optimized for many years, for solving a problem as a final product of
scientific work. In algorithmics and programming, one is always aware of the ex-
istence of many ways for solving a given problem. The goal in education must
be to discover some of them and then to verify their correct functionality. In
computer science terminology, a problem consists of a huge number of problem
instances. For instance, the problem of solving quadratic equations consists of
infinitely many problem instances – concrete quadratic equations ax2 + bx + c for
arbitrary numbers a, b and c. The way of teaching computer science means that
one has to collect experiences by solving concrete problem instances in order to
discover a robust strategy working for all instances of the problem. The goal is



not necessarily to finish with the best-known strategy as a product of an optimiza-
tion based on many years of scientific work. Mainly we focus on the process of
discovering a functioning strategy. For sure, one is allowed to define criteria for
measuring the quality of algorithms developed and to try to optimize them with
respect to the chosen criteria.

Hence, the focus is not on learning some final products of science, but on
learning the processes of their discovery, the processes of knowledge generation.
One starts with a transparent motivation and learns to verify and correct own prod-
ucts.

If one understands mathematics as a language for the exact description of ob-
jects and different aspects of reality on one hand, and as a language of verifiable
argumentation on the other hand, and in this way as a powerful research instru-
ment, then teaching computer science has to contribute essentially to both of these
fundamental competences and to developing research instruments that must be the
kernel of any good education in science.

At first glance, contributing to education in languages by teaching computer
science may surprise and because of that we have to explain it in detail. We
distinguish between three dimensions that cannot be considered as completely
independent. The first dimension is related to the development of writing. The
second one to the development of language by introducing new words and the
last one to using language for well understandable communication that avoids
misunderstandings.

Let us first look on the development of writing because the whole computer
science is based on representing all data (information) as sequences of symbols.
One first chooses an alphabet as a set of suitable symbols, and then builds words
as sequences of symbols and assigns an exact meaning to each word. The cre-
ative aspect of this process in computer science is that one is asked to develop
different writings with respect to the purposes one aims at. There exists a variety
of secret writings, special writings for reading texts that are able to automatically
correct misprints and insert missing symbols, writings for representation of num-
bers, writings for coding data in the shortest possible way, or writings for a data
representation that enables an efficient search in a huge amount of data. Teaching
all this, one can learn to understand the process of developing writings and, more-
over, due to creating own writings, pupils can imagine the processes of the natural
languages creation to some extent.

Pupils usually view a language as a final product of human society that they
are asked to learn. A language has a syntax (formal grammar) on one hand and
a semantics on the other hand. Teaching programming means also teaching a
language, called programming language, that computers understand and that can
be used to control them. The basic building blocks of a programming language
are also words that have an exact meaning. A program is a text that explains



to the computer some activity the computer has to perform. A good teaching of
programming is not allowed to teach a programming language as a final software
product. One starts with a few words and discovers the need for more words in
order to be able to express whatever one wants. One has to teach how to teach the
computer to understand new words and then to use them in the communication
with the machine. One can see here the analogy to the development of natural
languages. The crucial point is that all pupils are enabled to create new words
and develop the programming language in their individual way. In this way, one
trains to choose and introduce new words in such a way that one communicates in
a transparent and succinct way.

The third dimension trains the communication in natural languages. One
learns to describe procedures in an exact way avoiding any misinterpretations. The
ability to express everything as a exact as possible is also needed for describing
computing tasks and the way in which data are represented. This covers abstract
descriptions of objects, situations, relationships, etc. by symbols and graphs.

II To understand the technological world and to be able to con-
trol it and contribute to its development

Humans discover knowledge not only in order to understand the world around
them, but also to reach some goals. The results of this effort are technologies
(such as fire, boats, the wheel, house construction, writing, printing, machines,
computers, the internet, etc.) that always essentially increased the speed of the
development of the human society. All school subjects have to contribute to the
understanding of the development of technologies. The special task of computer
science education is related to the construction and to the control of the technical
world. At the very end the goal is to educate makers and not only consumers of
digital technology.

Teaching computer science avoids seeing the technical world as a world of
miracles that happen when one pushes the right button. Computer science educa-
tion explains the functionality of technical systems, the ways one can build them
and control them. Additionally, the pupils learn to do it by their own. Finally, they
are able to automatize more and more complex activities.

III To introduce the way of thinking in engineering to schools

Human society achieved progress due to the combination of knowledge generation
and creative, constructive activities. All new technologies were developed by an
intelligent application of knowledge derived beforehand and due to experience one
acquires by trying to create something in a constructive way. The main resources



of a potential success were, in different proportions from case to case, on the one
hand, knowledge as something one fully understands and can precisely specify,
and on the other hand, “know-how” of an expert as something one cannot explain
in detail. One can understand very well why, in the time of technical revolution,
the educational systems preferred to teach well specified and understood facts and
methods and not the “fuzzy know-how” of technical disciplines. For the former, it
was easy to define the goals and to measure the progress achieved. For the latter,
nobody was able to specify the goals exactly enough for a school subject.

Today we have a completely different situation. Most competences related to
methods and applications can be automatized and so one does not need humans to
execute them. Society does not need experts able to execute maybe complex, but
automatable activities. One needs experts that can do a creative work. They can be
trained for this purpose and their expertise can grow with the number of projects
in their training. It does not matter that measuring their progress in becoming
experts is not easy.

On the other hand, computer science was able to formalize a lot of handling
based on experience in technical disciplines, and introduced strategies that can be
well explained. This enables to introduce the related topics to pupils. The main
goals are as follows:

• To discover algorithms (methods) for solving problems by trying to solve
several concrete problem instances.

• To implement the discovered methods in software (programming) or hard-
ware.

• To test the functionality of their own products and to measure its properties
such as efficiency and transparency.

• To optimize own products or to extend them to additional functionalities.

The education in the digital age cannot miss teaching these fundamental hu-
man competences of creative work starting with motivation and problem formu-
lation and finishing with useful products. The students have to view never ending
testing and iterative improvements as a natural and common process. They have to
master the modular design. One starts with small programs called modules whose
functionality is simple and can be easily verified. One uses these modules to build
more complex programs, etc. It surprises even experienced educators that small
pupils are able to build really complex systems in this way.


	452-1756-1-PB
	BEATCS_119___Education_Column__NEW_
	Why Everyone Should Learn to Program
	Computer Language as a Medium
	Reason 1: Programming to Earn
	Reason 2: Programming to Think
	Reason 3: Programming to Learn
	Mendelsohn et al.'s Interpretation
	Miller's Interpretation
	Resnick's Interpretation
	Wenger's Interpretation
	Guzdial's Interpretation

	Programming to Learn What?
	Do Not Neglect Learning to Program
	Conclusions

	Demystifying-coding
	Introduction
	Teaching Programming
	Conclusion


	EducationalColumn
	What is Computer Science?
	Goals of Teaching Computer Science
	To contribute to fundamental competences in language and mathematics
	To understand the technological world and to be able to control it and contribute to its development
	To introduce the way of thinking in engineering to schools





