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Abstract

Hyperproperties generalize trace properties, which are sets of traces, to
sets of sets of traces. The most prominent application of hyperproperties is
information flow security: information flow policies characterize the secrecy
and integrity of a system by comparing two or more execution traces, for ex-
ample by comparing the outputs on execution traces that result from different
values of a secret input. HyperLTL is an extension of linear-time temporal
logic (LTL) with explicit quantification over traces. In this overview paper,
we survey recent results on the expressiveness of HyperLTL and on the sat-
isfiability and model checking problems. We also consider HyperCTL∗, the
extension of HyperLTL to branching time, and HyperFOLTL, the extension
of HyperLTL with first-order quantification.

1 Introduction
Temporal logics like LTL specify properties of a reactive system as a set of traces.
A trace is an infinite sequence that indicates, for some run of the system, which
atomic propositions are true in the positions of the run. A system, given for exam-
ple as a Kripke structure, is correct, if its traces are contained in the set of traces
allowed by the temporal formula.

Not all relevant system properties can be stated by referring to individual
traces, however. A prominent example of a system property that requires ref-
erences to more than one trace is observational determinism [26]. Observational
determinism is an information flow security policy that specifies that the behavior
of the system must appear deterministic to an observer who sees a certain sub-
set of the atomic propositions. In other words, the observer cannot deduce any
information about any not directly observable inputs. To state observational de-
terminism, we must refer to pairs of traces: if two traces agree on the observable
inputs, they must also agree on the observable outputs.

Clarkson and Schneider coined the term hyperproperties [5] for such prop-
erties. While a trace property is a set of traces, a hyperproperty is a set of sets



of traces. It is easy to see that LTL cannot capture hyperproperties, because its
formulas only refer to individual traces. Perhaps more surprising is the fact that
even branching-time temporal logics like CTL∗ are not expressive enough. CTL∗

extends LTL with the path path quantifiers E (there exists a path) and A (for all
paths). For example, one can state that a system both has a computation path on
whose trace some condition ϕ is true and a computation path where ϕ is false.
The limitation, however, is that nesting the path quantifiers “forgets” the paths
chosen in earlier quantifiers: the formulas can therefore only relate a finite amount
of information between two traces (namely, whether or not a certain subformula
evaluates to true). Relating an infinite amount of information, such as the infinite
sequence of outputs, is impossible.

The subject of this overview paper is the extension of the temporal logics to
hyperproperties. The idea is to use, instead of the path quantifiers E and A, quan-
tifiers over trace variables, so that the traces chosen by earlier quantifiers remain
accessible in the subformula. A HyperLTL [4] formula starts with a quantifier
prefix, which binds traces to trace variables, followed by an LTL formula where
the atomic propositions are indexed by the trace variables. Suppose, for example,
that the observable input to a system is the atomic proposition i and the output is
the atomic proposition o. Observational determinism can then be expressed as the
HyperLTL formula

∀π. ∀π′. (iπ ↔ iπ′) → (oπ ↔ oπ′),

where is the usual “globally” operator of temporal logic: if two traces π and π′

agree globally on i, they must also globally agree on o.
Many information flow properties from the literature can be expressed natu-

rally in HyperLTL. HyperLTL has also found applications beyond security, for
example for error resistant codes, specifying properties like the minimum Ham-
ming distance between code words. To understand the expressiveness of Hy-
perLTL, it is useful to compare HyperLTL to other common logics. Epistemic
temporal logic extends LTL with the knowledge operator. HyperLTL and epis-
temic temporal logic have incomparable expressiveness: there are properties that
can be expressed in HyperLTL but not in epistemic temporal logic and the other
way around. Another interesting point of reference is first-order logic. For LTL,
Kamp’s seminal theorem [13] (in the formulation of Gabbay et al. [12]) states that
LTL is expressively equivalent to first-order logic FO[<] over the natural num-
bers with order. In order to express hyperproperties in first-order logic, we use
relational structures that consist of disjoint copies of the natural numbers with or-
der, one for each trace. To be able to compare positions on different traces, we
add the equal-level predicate E (cf. [23]), which relates the same time points on
different traces. This logic, which we call FO[<, E], is strictly more expressive



than HyperLTL [11]. HyperLTL corresponds to the fragment of the logic where
the quantifiers can only be used in a guarded manner, by either referring to the
initial position of some trace, or to some position of a previously chosen trace, as
opposed to arbitrary elements of the domain.

This paper gives an overview on recent results on the satisfiability and model
checking problems of HyperLTL. It turns out that the differences between LTL and
HyperLTL are surprisingly profound. While the models of an LTL formula form
an ω-regular language, and satisfiability can therefore be checked with a standard
emptiness check on ω-automata, the satisfiability of HyperLTL is undecidable.
Model checking remains decidable, but becomes, with increasing quantifier alter-
nation depth, significantly more expensive than for LTL.

From a practical point of view, the most important fragment is the alternation-
free fragment, i.e., the fragment with only existential or only universal quantifiers.
Many useful system properties can be expressed in this fragment. For example,
observational determinism can be expressed using only universal trace quantifiers.
As a rule of thumb, the alternation-free fragment is no more expensive than LTL.
Satisfiability and model checking remain in PSPACE, just like for LTL. Satisfi-
ability and model checking for the ∃∗∀∗ fragment, which is relevant because it
contains implications and equivalences between alternation-free formulas, is still
decidable, albeit in EXPSPACE. Satisfiability becomes undecidable as soon as the
fragment allows for a ∀∃ combination [7]. The model checking problem is decid-
able for arbitrary HyperLTL formulas but becomes exponentially more expensive
with every further quantifier alternation [10].

We conclude the overview with two important extensions to HyperLTL. The
first extension is from linear to branching time. HyperLTL is a linear-time logic.
If we allow arbitrary nestings between path quantifiers and temporal operators,
we obtain a branching-time logic called HyperCTL∗ [9]. The second extension
is to add first-order quantifiers. This makes it possible to quantify over arbitrary
sets of agents, such as the users of a system [8]. For example, we can state that a
system appears deterministic to every user, even though each user makes different
observations.

2 HyperLTL
Fix a finite set AP of atomic propositions. A trace over AP is a map t : N → 2AP,
denoted by t(0)t(1)t(2) · · · . Let (2AP)ω denote the set of all traces over AP.

LTL. The formulas of linear-time temporal logic (LTL) [19] are generated by
the following grammar:

ϕ ::= a | ¬ϕ | ϕ ∧ ϕ | ϕ | ϕU ϕ



where a ∈ AP is an atomic proposition, the Boolean connectives ¬ and ∧ have
the usual meaning, is the temporal next operator, and U is the temporal until
operator. We also consider the usual derived Boolean connectives, such as ∨,→,
and ↔, and the derived temporal operators eventually ϕ ≡ trueU ϕ, globally
ϕ ≡ ¬ ¬ϕ, and weak until: ϕW ψ ≡ (ϕU ψ) ∨ ϕ. The satisfaction of an

LTL formula ϕ over a trace t, denoted by t |= ϕ, is defined as follows:

t |= a iff a ∈ t(0),
t |= ¬ϕ iff t 6|= ϕ,
t |= ϕ1 ∧ ϕ2 iff t |= ϕ1 and t |= ϕ2,
t |= ϕ iff t[1,∞] |= ϕ,
t |= ϕ1Uϕ2 iff ∃i ≥ 0 : t[i,∞] |= ϕ2 ∧ ∀0 ≤ j < i : t[ j,∞] |= ϕ1.

For example, the LTL formula (a → b) specifies that every position in
which a is true must eventually be followed by a position where b is true.

LTL formulas define ω-regular languages: each LTL formula can be translated
into a Büchi automaton over the alphabet Σ = 2AP that accepts precisely the traces
that satisfy the formula [18, 24].

HyperLTL. The formulas of HyperLTL [4] are generated by the grammar

ϕ ::=∃π. ϕ | ∀π. ϕ | ψ
ψ ::= aπ | ¬ψ | ψ ∧ ψ | ψ | ψU ψ

where a ranges over atomic propositions in AP and where π ranges over a given
countable setV of trace variables. Further Boolean connectives and the temporal
operators , , andW are derived as for LTL. A sentence is a closed formula,
i.e., the formula has no free trace variables. A formula is in negation normal form
if the only occurrences of ¬ occur in front of propositions aπ. Both LTL and
HyperLTL formulas can always be brought into negation normal form.

The semantics of HyperLTL is defined with respect to a trace assignment, a
partial mapping Π : V → (2AP)ω. The assignment with empty domain is denoted
by Π∅. Given a trace assignment Π, a trace variable π, and a trace t we denote
by Π[π → t] the assignment that coincides with Π everywhere but at π, which is
mapped to t. Furthermore, Π[ j,∞] denotes the assignment mapping every π in
Π’s domain to Π(π)( j)Π(π)( j + 1)Π(π)( j + 2) · · · . The satisfaction of a HyperLTL
formula ϕ over a trace assignment Π and a set of traces T , denoted by T,Π |= ϕ,
is defined as follows:



T,Π |= aπ iff a ∈ Π(π)(0),
T,Π |= ¬ψ iff T,Π 6|= ψ,
T,Π |= ψ1 ∧ ψ2 iff T,Π |= ψ1 and T,Π |= ψ2,
T,Π |= ψ iff T,Π[1,∞] |= ψ,
T,Π |= ψ1U ψ2 iff ∃i ≥ 0 : T,Π[ j,∞] |= ψ2

∧∀0 ≤ j < i : T,Π[ j′,∞] |= ψ1,
T,Π |= ∃π. ϕ iff ∃t ∈ T : T,Π[π→ t] |= ψ,
T,Π |= ∀π. ϕ iff ∀t ∈ T : T,Π[π→ t] |= ψ.

We say that a set T of traces satisfies a sentence ϕ, denoted by T |= ϕ, if
T,Π∅ |= ϕ.

System Properties. A Kripke structure is a tuple K = (S , s0, δ,AP, L) consisting
of a set of states S , an initial state s0, a transition function δ : S → 2S , a set of
atomic propositions AP, and a labeling function L : S → 2AP. We require that
each state has a successor, that is δ(s) , ∅, to ensure that every execution of a
Kripke structure can always be continued to infinity. A path of a Kripke structure
is an infinite sequence s0s1 . . . ∈ S ω such that s0 is the initial state of K and
si+1 ∈ δ(si) for all i ∈ N. By Paths(K, s), we denote the set of all paths of K
starting in state s ∈ S . A trace of a path σ = s0s1 . . . is a sequence of labels
l0l1 . . . with li = L(si) for all i ∈ N. Tr(K, s) is the set of all traces of paths of a
Kripke structure K starting in state s. A Kripke structure K with initial state s0

satisfies an LTL formula ϕ, denoted by K |= ϕ iff for all traces π ∈ Tr(K, s0), it
holds that π |= ϕ. Likewise, the Kripke structure satisfies a HyperLTL formula ϕ,
also denoted by K |= ϕ, iff Tr(K, s0) |= ϕ.

Examples. Many information flow security properties are hyperproperties. Hy-
perLTL has also found applications beyond security, in particular in the specifi-
cation of error resistant codes. In the following, we give a few examples from
these areas. The examples are taken from [4, 10, 21], where further details and
additional properties can be found.

Noninference [16] specifies that the behavior observable by a low-security ob-
server must not change when all high-security inputs are replaced by a dummy
input λ. Noninference can be expressed in HyperLTL as follows:

∀π.∃π′. ( λπ′) ∧ π=Lπ
′

where λπ′ expresses that all of the high inputs in the current state of π′ are λ,
and π =L π

′ is short for
∧

v∈VL
vπ ↔ vπ′ , expressing that the variables VL that are

observable by some low-security observer have the same values in π and π′.



Generalized noninterference [15] is similar to observational determinism in
that it requires that the outputs observed by a low-security observer should not be
influenced by high-security inputs. Unlike observational determinism, it allows,
however, for nondeterminism in the low-observable behavior:

∀π.∀π′.∃π′′. π=H,inπ
′′ ∧ π′=Lπ

′′

The existentially quantified trace π′′ is an interleaving of the high inputs of the
universally quantified trace π and the low inputs and outputs of the universally
quantified trace π′.

Quantitative information-flow policies limit the leakage of information to a
certain rate. The following HyperLTL formula expresses that there is no tuple of
2n + 1 low-distinguishable traces (cf. [22, 25]):

∀π0. . . . . ∀π2n .
(∨

i

πi ,L,in π0

)
∨

∨
i, j

πi =L,out π j

Error resistant codes transmit data over noisy channels. A typical correctness
condition for such a code is that all code words have a minimal Hamming dis-
tance [10]. The following HyperLTL property guarantees specifies that all code
words produced by an encoder have a minimal Hamming distance of d:

∀π.∀π′. (
∨
a∈I

aπ,aπ′)⇒ ¬HamO(d − 1, π, π′)

where the atomic propositions in I represent the input data, and the atomic propo-
sitions in O represent the output code words. The subformula HamO(d, π, π′) is
defined recursively as follows:

HamO(−1, π, π′) = false
HamO(d, π, π′) =

(∧
a∈O aπ=aπ′

)
W

(∨
a∈O aπ,aπ′ ∧ HamO(d−1, π, π′)

)
.

3 Expressiveness

In order to better understand the expressiveness of HyperLTL, we relate the logic
to several other common logics. The first comparison is with the standard tem-
poral logics LTL and CTL∗. We then consider epistemic temporal logic, which
reasons about the knowledge of an agent. Finally, we relate HyperLTL to first-
order logic in the spirit of Kamp’s theorem for LTL.



3.1 HyperLTL vs. LTL and CTL∗

We begin with the standard temporal logics LTL and CTL∗. As discussed in the
introduction, both logics cannot express hyperproperties, because they can only
reason about a single trace at a time. An example of a property that can be ex-
pressed in HyperLTL, but in neither LTL nor CTL∗, is observational determinism.

LTL. Since LTL is a sublogic of HyperLTL (consisting of the sentences with
a single universal trace quantifier), HyperLTL obviously subsumes LTL. On the
other hand, Alur et al. [2] showed that observational determinism is not an ω-
regular tree property. Since every LTL formula can be translated to a Büchi au-
tomaton, observational determinism can therefore not be expressed in LTL.

Theorem 1. [4] HyperLTL is strictly more expressive than LTL.

This fact can also be shown by the following direct argument (taken from [9]).
Suppose that there is an LTL formula ϕ that expresses observational determinism.
The set of traces T that satisfy the formula cannot be the full set of traces (with
respect to some non-empty set of atomic propositions), because in that case all
Kripke structures would satisfy the property. We pick a trace not in T and consider
a Kripke structure that only allows this trace. Since this Kripke structure only has a
single trace, it obviously satisfies observational determinism; but since that trace is
not in T , it violates ϕ, contradicting our assumption that ϕ expresses observational
determinism.

CTL∗. CTL∗ is generated by the following grammar of state formulas Φ and
path formulas ϕ:

Φ ::= a | ¬Φ | Φ ∧ Φ | Aϕ | Eϕ
ϕ ::= Φ | ¬ϕ | ϕ ∧ ϕ | ϕ | ϕU ϕ

CTL∗ state formulas Φ are interpreted over states and path formulas ϕ are in-
terpreted over paths of a given Kripke structure. For a Kripke structure K =

(S , s0, δ,AP, L) and a state s ∈ S , we define s |=K Aϕ iff ∀p ∈ Paths(K, s) : p |= ϕ
and, symmetrically, s |=K Eϕ iff ∃p ∈ Paths(K, s) : p |= ϕ. The semantics of tem-
poral operators for paths corresponds to their interpretation over traces in LTL.

CTL∗ and HyperLTL have incomparable expressiveness. For example, the
CTL∗ formula A (E a)∧E b distinguishes the following pair of Kripke struc-
tures, which cannot be distinguished by a HyperLTL formula:



s0 :

a

...

b

...

s0 :

a

...

b

...

On the other hand, CTL∗ cannot express observational determinism, which
can be expressed in HyperLTL.

Theorem 2. [4] HyperLTL and CTL∗ have incomparable expressiveness.

We again show that observational determinism cannot be expressed in CTL∗

with a direct argument (which is again taken from [9]). Suppose that there is a
CTL∗ formula Φ that expresses observational determinism. Consider the follow-
ing family of observationally deterministic Kripke structures K1,K2, . . . , where
each Ki consists of a single branch from the initial state that only has one label a
at step i:

Ki : K j : K∗ :

s0 :

s1 :

...

si : a

...

...

s′0 :

s′1 :

...

...

s′j : a

...

t0 :

t1 :

...

ti : a

...

...

t′1 :

...

...

t′j : a

...

All members of this family trivially satisfy observational determinism. We
pick a pair Ki and K j with i , j of Kripke structures such that s1 and s′1 satisfy
the same subformulas of Φ. Such a pair of Kripke structures must exist as ϕ
has finitely many subformulas and the family of Kripke structures is infinite. We
merge K and K′ into one Kripke structure K∗, such that they share only the initial
state as depicted above. By construction, states s1, s′1, t1, and t′1 all fulfill the
same subformulas. The states t0 and s0 have the same label (none) and all their
successors satisfy the same subformulas of ϕ. Hence, they also satisfy the same
subformulas of Φ. In particular, K∗ satisfies Φ but not observational determinism,
which contradicts the assumption.



3.2 HyperLTL vs. Epistemic Temporal Logic
The epistemic temporal logics extend the temporal logics with a knowledge oper-
ator KAϕ, which states that an agent A knows some fact ϕ. Knowing some fact
means that this fact is true on all traces that are observationally equivalent from
the agent’s point of view.

In the following, we consider the epistemic temporal logic LTLK [17, 6], in-
terpreted over Kripke structures (cf. [21]). The syntax of LTLK is that of LTL
extended with the knowledge operator:

ϕ ::= a | ¬ϕ | ϕ ∧ ϕ | ϕ | ϕU ϕ | KAϕ

An agent is identified by the set A ⊆ AP of atomic propositions that are visible to
the agent.

The satisfaction of a LTLK formula over a trace of a Kripke structure K with
initial state s0 is given according to the following relation, where t, i |= ϕ for a
trace t and a natural number i indicates that ϕ holds on t at positition i:

t, i |= a iff a ∈ t(i),
t, i |= ϕ iff t, i + 1 |= ϕ,
t, i |= ϕ1Uϕ2 iff ∃k ≥ i : t, k |= ϕ2 ∧ ∀i ≤ j < k : t, j |= ϕ1,
t, i |= KAϕ iff ∀t′ ∈ Tr(K, s0) : if t[0, i] =A t′[0, i] then t′, i |= ϕ,

where t[0, i] =A t′[0, i] denotes that t and t′ are equivalent on all atomic proposi-
tions in A on positions in [0, i]. A Kripke structure K satisfies a LTLK formula ϕ,
denoted by K |= ϕ, iff for all traces t ∈ Tr(K, s0) it holds that t, 0 |= ϕ.

There are many properties that can be expressed in both LTLK and HyperLTL.
For example, the LTLK formula

Kab,

which states that an observer who sees a knows that b is true, can be expressed as
the HyperLTL formula

∀π.∀π′. bπ′W (aπ ↔/ aπ′).

However, there are LTLK formulas that cannot be expressed in HyperLTL and vice
versa1.

1The original semantics of HyperLTL [4] differs slightly from the semantics presented in this
paper. In the original semantics, HyperLTL subsumes LTLK . The reason is that the original seman-
tics allows for different sets of atomic propositions in the Kripke structure and in the HyperLTL
formula. Propositions that occur in the formula but not in the Kripke structure can be used to sim-
ulate existential quantification over atomic propositions in the HyperLTL formula. The extension
of HyperLTL with quantification over atomic propositions (strictly) subsumes LTLK [21].



Theorem 3. [3] HyperLTL and LTLK have incomparable expressiveness.

The following examples are due to Bozzelli et al. [3]: On the one hand, there
is no HyperLTL formula equivalent to the LTLK formula

K∅a.

Intuitively, the reason is that the formula relates at some point in time an un-
bounded number of traces. On the other hand, there is no LTLK formula equiva-
lent to the HyperLTL formula

∃π.∃π′. aπ ∧ ¬aπ′ ∧ (aπ ↔ aπ′)).

3.3 HyperLTL vs. First-Order Logic

For LTL, Kamp’s seminal theorem [13] (in the formulation of Gabbay et al. [12])
states that LTL is expressively equivalent to first-order logic FO[<] over the nat-
ural numbers with order. In order to formulate a corresponding “Kamp’s theorem
for HyperLTL,” we encode sets of traces as relational structures. Following [11],
we consider here relational structures that consist of disjoint copies of the natural
numbers with order, one for each trace. To be able to compare positions on dif-
ferent traces, we add the equal-level predicate E (cf. [23]), which relates the same
time points on different traces.

FO[<, E] is the first-order logic generated by the following grammar:

ϕ ::= x = y | x < y | Pa(x) | E(x, y) | ¬ϕ | ϕ ∧ ϕ | ∃x. ϕ

Here, x and y are first-order variables, and a ∈ AP is an atomic proposition.
Given a set T ⊆ (2AP)ω of traces over AP, the relational structure T = (T ×

N, <T , (PT
a )a∈AP,ET ) is defined as follows:

• <T = {((t, n), (t, n′)) | t ∈ T and n < n′ ∈ N},

• PT
a = {(t, n) | t ∈ T, n ∈ N and a ∈ t(n)}, and

• ET = {((t, n), (t′, n)) | t, t′ ∈ T and n ∈ N}.

LetV1 be the set of first-order variables. The semantics of FO[<, E] is defined
with respect to a variable assignment, a partial mapping α : V1 → T × N. The
assignmment with empty domain is denoted by α∅. The satisfaction of a FO[<, E]
formula ϕ over a relational structure T and a variable assignment α, denoted by
T , α |= ϕ, is defined as follows:



T , α |= x = y iff α(x) = α(y),
T , α |= x < y iff α(x) <T α(y),
T , α |= Pa(x) iff α(x) ∈ PT

a ,
T , α |= E(x, y) iff (α(x), α(y)) ∈ ET ,
T , α |= ¬ϕ iff T , α 6|= ϕ,
T , α |= ϕ ∧ ψ iff T , α |= ϕ and T , α |= ψ,
T , α |= ∃x. ϕ iff ∃(t, n) ∈ T × N : T , α[x 7→ (t, n)] |= ϕ,

We say that a relational structure T satisfies a sentence ϕ, denoted by T |= ϕ, if
T , α∅ |= ϕ. Every HyperLTL formula can be translated into an equivalent FO[<, E]
formula. As an example, consider the HyperLTL formula

∀π. ∀π′. (aπ ↔ aπ′).

The formula is equivalent to the FO[<, E] formula

∀x. ∀y. E(x, y)→ (Pa(x)↔ Pa(y)).

FO[<, E] is, however, the more expressive logic. An example that can be ex-
pressed in FO[<, E] but not in HyperLTL is the property due to Bozzelli et al. [3],
which we already used in the comparison between HyperLTL and epistemic tem-
poral logic: there is a position n, such that the atomic proposition a is false at
position n on all traces. This property is expressible in FO[<, E] as the following
formula: ∃x.∀y.E(x, y)→ ¬a. There is no equivalent formula in HyperLTL [3].

HyperLTL corresponds exactly to a syntactic fragment of FO[<, E]. Let ∃M x. ϕ
denote the FO[<, E] formula ∃x. min(x) ∧ ϕ, where min(x) = ¬∃y. Succ(y, x) ex-
presses that x is the first position of a trace and Succ(x, y) = x < y∧¬∃z. x < z < y
expresses that y is the direct successor of x on some trace. Likewise, let ∀M x. ϕ
denote ∀x. min(x) → ϕ, i.e., the quantifiers ∃M and ∀M only range over the first
positions of a trace in T . We use these quantifiers to mimic trace quantification in
HyperLTL.

Furthermore, ∃Gy ≥ x. ϕ is shorthand for ∃y. y ≥ x ∧ ϕ and ∀Gy ≥ x. ϕ is
shorthand for ∀y. y ≥ x → ϕ, i.e., the quantifiers ∃G and ∀G are guarded by a free
variable x and range only over greater-or-equal positions on the same trace that x
is on. We call the free variable x the guard of the quantifier.

We consider sentences of the form

ϕ = QM
1 x1. · · ·QM

k xk. QG
1 y1 ≥ xg1 . · · ·Q

G
` y` ≥ xg` . ψ

with Q ∈ {∃,∀}, where we require the sets {x1, . . . , xk} and {y1, . . . , y`} to be dis-
joint, every guard xg j to be in {x1, . . . , xk}, and ψ to be quantifier-free with free
variables among the {y1, . . . , y`}. This fragment is called HyperFO [11].

Theorem 4. [11] HyperLTL and HyperFO are equally expressive. FO[<, E] is
strictly more expressive than HyperLTL.



4 Satisfiability
The HyperLTL satisfiability problem is to decide, for a given HyperLTL for-
mula ϕ, whether or not there exists a set T of traces such that T |= ϕ. We be-
gin with the satisfiability problem for the alternation-free fragment of HyperLTL.
Universal formulas are particularly easy to decide, because we can restrict the
models, without loss of generality, to singleton sets of traces: since all quanti-
fiers are universal, every model with more than one trace could immediately be
translated into another one where every trace except one is omitted. Hence, we
can ignore the trace variables and interpret the HyperLTL formula as a plain LTL
formula.

An existential formula may, in general, have more than one trace. For example,
the models of ∃π1∃π2. aπ1 ∧ ¬aπ2 have (at least) two traces. In order to reduce
HyperLTL satisfiability again to LTL satisfiability, we zip such traces together. For
this purpose, we introduce a fresh atomic proposition for every atomic proposition
a and every path variable π that occur as an indexed proposition aπ in the formula.
We obtain an equisatisfiable LTL formula by removing the quantifier prefix and
replacing every occurrence of aπ with the new proposition.

Theorem 5. [7] The satisfiability problem of the alternation-free fragment of Hy-
perLTL is PSPACE-complete.

The ∃∗∀∗ fragment is especially interesting, because it includes implications
between alternation-free formulas. The idea of the decision procedure is to elim-
inate the universal quantifiers by explicitly enumerating all possible interactions
between the universal and existential quantifiers. This leads to an exponentially
larger, but equisatisfiable existential formula.

Theorem 6. [7] The satisfiability problem of the ∃∗∀∗ fragment of HyperLTL is
EXPSPACE-complete.

Any extension beyond the already considered fragments makes the satisfia-
bility problem undecidable. In the fragements considered so far, it was suffi-
cient to consider models with a finite set of traces. It is easy to see that this
is no longer the case if the formula has an existential quantifier in the scope
of a universal quantifier. For example, any trace set that satisfies the formula
∀π∃π′. ( p)∧ (p→ (p∧ ¬p)) contains at least one path for every natural num-
ber n, namely the path where the p occurs n steps after the first occurence of p on
some path. In fact, it has been shown, via a reduction from Post’s correspondence
problem, that the satisfiability problem of the ∀∃ fragment is undecidable [7].

Theorem 7. [7] The satisfiability problem of the ∀∃ fragment of HyperLTL is
undecidable.



5 Model Checking
The HyperLTL model checking problem is to decide, for a given Kripke structure
K and a given HyperLTL formula ψ, whether or not K |= ψ. The model checking
algorithm for HyperLTL described in the following is a simplified version of a
model checking algorithm for the more expressive logic HyperCTL∗ [10] (see
Section 6).

The complexity of the model checking problem depends strongly on the quan-
tifier structure of ψ. We begin with the alternation-free fragment of HyperLTL,
i.e., with the formulas that either contain only existential or only universal quanti-
fiers. In the following, we assume without loss of generality that all quantifiers are
existential. If the quantifiers are universal, we simply check the negated formula
(which is existential): for an LTL formula ϕ over the indexed set of atomic propo-
sitions, K |= ∀π1 . . .∀πn. ϕ iff K 6|= ∃π1 . . . πn. ¬ϕ. The model checking procedure
for an existential HyperLTL formula ∃π1 . . . πn. ϕ consists of the following steps:

1. Convert the LTL formula ϕ over the indexed set of atomic propositions into
an equivalent Büchi automaton over the alphabet (2AP)n. Each letter is a
tuple of n sets of atomic propositions, where the ith element of the tuple
represents the atomic propositions of trace πi.

2. Eliminate existential quantifiers. Suppose we have already constructed a
Büchi automaton over alphabet (2AP)k for a subformula ϕ. In order to con-
struct the automaton for the subformula ψ = ∃π. ϕ, we reduce the alphabet
from (2AP)k to (2AP)k−1. We intersect the automaton constructed for ϕ with
an automaton accepting all the traces of K such that the kth element of the
tuple is chosen according to the trace of K. Then, we project the language
onto the tuples with the first k − 1 elements. This elimination is repeated
until all quantifiers have been eliminated and the language of the resulting
automaton is over the one-letter alphabet (consisting of the empty tuple).

3. Check for emptiness. Once all existential quantifiers have been eliminated,
the formula is satisfied iff the language of the automaton is non-empty.

The complexity of the model checking problem for alternation-free Hyper-
LTL is the same as for LTL: PSPACE-complete in the size of the formula and
NLOGSPACE-complete in the size of the Kripke structure.

Theorem 8. [10] The model checking problem for the alternation-free fragment
of HyperLTL is PSPACE-complete in the size of the formula and NLOGSPACE-
complete in the size of the Kripke structure.

We now extend the model checking algorithm to the full logic. As before,
we assume without loss of generality that the outermost quantifier is existential



(otherwise we complement the formula by dualizing all quantifiers and negating
the LTL subformula). We again construct a Büchi automaton that is non-empty
iff the HyperLTL formula is satisfied. The construction of the Büchi automaton
is by induction over the number of quantifier alternations (i.e., over the num-
ber of alternations from existential to universal and from universal to existential
quantifiers). The alternation-free fragment is the base case. If the quantifiers
are existential, we proceed as described above; if the quantifiers are universal,
we complement the formula, resulting in existential quantifiers, build the Büchi
automaton as described above, and then complement the automaton. For the in-
duction step, suppose the outer quantifiers are existential: then we eliminate the
existential quantifiers as described above. If the outer quantifiers are universal, we
consider the complemented formula, which turns the outer quantifiers existential,
and complement the resulting automaton.

Each complementation increases the size of the automaton exponentially. Let
gc(k, n) be a tower of exponentiations of height k, defined simply as gc(0, n) = n
and gc(k, n) = cgc(k−1,n). We define NSPACE(g(k, n)) to be the languages that are
accepted by a nondeterministic Turing machine that runs in SPACE O(gc(k, n)) for
some c > 1. For convenience, we define NSPACE(g(−1, n)) to be NLOGSPACE.
The complexity of the model checking problem is then characterized by the fol-
lowing theorem.

Theorem 9. [10, 21] Given a Kripke structure K and a HyperCTL∗ formula ϕ
with alternation depth k, the model checking problem for K and ϕ is complete for
NSPACE(g(k, |ϕ|)) and NSPACE(g(k − 1, |K|)).

6 From Linear to Branching Time

Temporal logics are identified as either linear-time or branching-time based on the
equivalences on Kripke structures they induce. LTL is a linear-time logic, because
it induces trace equivalence as an equivalence relation on Kripke structures. A
logic induces an equivalence relation on Kripke structures that distinguishes two
Kripke structures iff there is a formula in the logic that is satisfied by one of the
two Kripke structures, but not by the other. Two Kripke structures K and K′

are called trace equivalent if Tr(K, s0) = Tr(K′, s′0). By contrast, CTL∗ induces
bisimulation, a finer equivalence relation on Kripke structures. A bisimulation for
a pair of Kripke structures K = (S , s0, δ,AP, L) and K′ = (S ′, s′0, δ

′,AP′, L′) is
an equivalence relation R ⊆ S × S ′ on their states, such that it holds for all pairs
(s, s′) ∈ R that L(s) = L′(s′) and for all successors t ∈ δ(s) of s, there exists a
successor t′ ∈ δ′(s′) of s′ such that (t, t′) ∈ R, and vice versa.

As discussed in Section 3.1, HyperLTL is more expressive than LTL. The



induced equivalence, however, is also trace equivalence. HyperLTL, thus, is also
a linear-time temporal logic.

Theorem 10. [9] HyperLTL induces trace equivalence.

HyperCTL∗. Extending the path quantifiers of CTL∗ by path variables leads to
the logic HyperCTL∗, which subsumes both HyperLTL and CTL∗. The formulas
of HyperCTL∗ are generated by the following grammar:

ϕ ::= aπ | ¬ϕ | ϕ ∨ ϕ | ϕ | ϕU ϕ | ∃π. ϕ

We require that temporal operators only occur inside the scope of path quantifiers.
The semantics of HyperCTL∗ is given in terms of assignments of variables

to paths, which are defined analogously to trace assignments. Given a Kripke
structure K, the satisfaction of HyperCTL∗ formulas, denoted by K,Π |= ϕ, is
defined as follows:

K,Π |= aπ iff a ∈ L
(
Π(π)(0)

)
,

K,Π |= ¬ϕ iff Π,K 6|= ϕ,
K,Π |= ϕ1 ∨ ϕ2 iff K,Π |= ϕ1 or K,Π |= ϕ2,
K,Π |= ϕ iff K,Π[1,∞] |= ϕ,
K,Π |= ϕ1U ϕ2 iff ∃i ≥ 0 : K,Π[i,∞] |= ϕ2 and

∀0 ≤ j < i : K,Π[ j,∞] |= ϕ1,
K,Π |= ∃π. ϕ iff ∃p ∈ Paths(K,Π(ε)(0)) :

K,Π[π 7→ p, ε 7→ p] |= ϕ,

where ε is a special path variable that denotes the path most recently added to Π

(i.e., closest in scope to π). For the empty assignment Π∅, we define Π∅(ε)(0)
to yield the initial state. A Kripke structure K = (S , s0, δ,AP, L) satisfies a
HyperCTL∗ formula ϕ, denoted with K |= ϕ, iff K,Π∅ |= ϕ. Like CTL∗, HyperCTL∗

induces bisimulation and is, hence, a branching-time temporal logic.

Theorem 11. [9] HyperCTL∗ induces bisimulation.

HyperCTL∗ combines the expressiveness of HyperLTL with that of CTL∗.
Consider, for example, the following Kripke structure:

s0:

a

...

a

...
...

...



An observer who sees a can infer which branch was taken in the first nondeter-
ministic choice, but not which leaf node was taken in the second nondeterministic
choice. This is expressed by the HyperCTL∗ formula

∀π. ∀π′. (aπ ↔ aπ′).

7 From Propositional to First-Order HyperLTL

Just like propositional HyperLTL is an extension of propositional LTL, first-order
HyperLTL (HyperFOLTL) is an extension of first-order LTL (HyperFOLTL). First-
order LTL (FOLTL) extends propositional LTL with sorts, constants, and predi-
cate symbols.

FOLTL. A signature Σ = (S ,C,R, ar) consists of a non-empty and finite set of
sorts, finite and disjoint sets C and R of constant and predicate symbols, and an
arity function ar : C ∪ R → S ∗, with |ar(c)| = 1 for any c ∈ C, where S ∗ denotes
the set of finite sequences of sorts. For each sort s, we let Vs be a countably
infinite set of variables. We letV1 :=

⋃
s∈S Vs.

FOLTL formulas over the signature Σ = (S ,C,R, ar) are given by the grammar

ϕ ::= t = t′ | R(t1, . . . , tk) | ¬ϕ | ϕ ∨ ϕ | ∃x: s. ϕ | ϕ | ϕU ϕ

where t, t′, and the tis range over C ∪V1, R ranges over R, s ranges over S , and x
ranges overV1.

A structure S over the signature Σ = (S ,C,R, ar) consists of a S -indexed
family of (finite or infinite) universes Us , ∅ and interpretations RS ∈ Us1×. . .Usk ,
for each R ∈ C ∪ R of sort (s1, . . . , sk). We let U :=

⋃
s∈S Us. A temporal structure

over Σ is a sequence S̄ = (S0,S1, . . . ) of structures over Σ such that all structures
Si, with i ≥ 0, have the same universe family, denoted (Us)s∈S , and rigid constant
interpretations, i.e. cSi = cS0 , for all c ∈ C and i > 0.

Given a structure, a valuation is a mapping ν : V1 → U with ν(x) ∈ Us for
any x ∈ Vs. For a valuation ν and tuples x̄ = (x1, . . . , xn) and d̄ = (d1, . . . , dn),
where xi ∈ Vs and di ∈ Us for some sort s, for each i, we write ν[x̄ 7→ d̄]
for the valuation that maps each xi to di and leaves the other variables’ valuation
unaltered. By ν(x̄) we denote the tuple (ν(x1), . . . , ν(xn)). We extend this notation
by applying a valuation ν also to constant symbols c ∈ C, with ν(c) = cS.

Let S̄ be a temporal structure over the signature Σ, with S̄ = (S0,S1, . . . ), ϕ a
formula over Σ, and ν a valuation. We define the satisfaction of ϕ over S̄ and µ,



denoted by S̄, ν |= ϕ, as follows:

S̄, ν |= t = t′ iff ν(t) = ν(t′)
S̄, ν |= R(t̄) iff ν(t̄) ∈ RS0

S̄, ν |= ¬ψ iff S̄, ν 6|= ψ
S̄, ν |= ψ ∨ ψ′ iff S̄, ν |= ψ or S̄, ν |= ψ′

S̄, ν |= ∃x. ψ iff S̄, ν[x 7→ d] |= ψ, for some d ∈ U
S̄, ν |= ψ iff S̄[1,∞], ν |= ψ
S̄, ν |= ψU ψ′ iff for some j ≥ 0, S̄[ j,∞], ν |= ψ′, and

S̄[k,∞], ν |= ψ, for all k with 0 ≤ k < j

HyperFOLTL. HyperFOLTL formulas over signature Σ and trace variables V
are generated by the following grammar:

ψ ::= ∃π. ψ | ∀π. ψ | ϕ

where π ∈ V is a trace variable and ϕ is a FOLTL formula over Σ. HyperFOLTL
formulas thus start with a prefix of trace quantifiers consisting of at least one quan-
tifier and then continue with a subformula that contains only first-order quantifiers,
no trace quantifiers.

The semantics of a HyperFOLTL formula ψ is given with respect to a set T
of temporal structures, a valuation α : V1 → U of the first-order variables, and a
valuation Π : V → T of the trace variables. The satisfaction of a HyperFOLTL
formula ϕ, denoted by T , α, β |= ψ, is then defined as follows:

T , α,Π |= ∃π. ψ iff T , α,Π[π 7→ t] |= ψ, for some t ∈ T ,
T , α,Π |= ∀π. ψ iff T , α,Π[π 7→ t] |= ψ, for all t ∈ T ,
T , α,Π |= ψ iff S̄, α |= ψ,

where ϕ is an HyperFOLTL formula, ψ is an FOLTL formula, and the temporal
structure S̄ is such that for all R ∈ R, i ∈ N, and, π ∈ Π, the interpretation RSi

π is
Rβ(π)(i) if π in the domain of Π, and ∅ otherwise.

For example, observational determinism can be formalized by the following
HyperFOLTL formula

∀π, π′.∀x : user. ( Iπ(x)↔ Iπ′(x)) → (Oπ(x)↔ Oπ′(x)),

where I(x) represents an input observed by user x and O(x) represents an output
observed by user x. The formula states that, on any two traces and for any user, if
the inputs are always the same, then the low outputs are also always the same. That
is, from the point of view of each user, the observable behavior of the program is
determined by its input.



As the satisfiability of HyperLTL is undecidable, the same holds for Hyper-
FOLTL. There is, however, again a substantial decidable fragment. To define this
fragment, we will consider the projection of a sorted FOLTL formula on a sort s,
defined as the FOLTL formula obtained by removing all quantifications and terms
of a sort different from s [1]. The ∃∗FOLTL fragment of sorted FOLTL consists
of those closed formulas ϕ in negation normal form such that, for each sort s, the
projection of ϕ on s is a formula of the form

∃x1, . . . , xk. ϕ
′
s

with k ≥ 0 and ϕ′s a FOLTL formula containing no existential quantifiers.
The ∃∗π∀

∗
π∃
∗FOLTL fragment of HyperFOLTL consists of all formulas of the

form ∃π1, . . . πk.∀π
′
1 . . . π

′
`. ϕ with k ≥ 0, ` ≥ 0, and ϕ an FOLTL formula in

∃∗FOLTL.

Theorem 12. [8] The satisfiability problems of the ∃∗FOLTL fragment of FOLTL
and the ∃∗π∀

∗
π∃
∗FOLTL fragment of HyperFOLTL are decidable.

This result has been used to verify secrecy properties of a web-based con-
ference management system with arbitrarily many users [8]. In this case study,
the possible behaviors of the conference management system where encoded as a
FOLTL formula ϕS . Assumptions on the behavior of the users of the system were
encoded as a HyperFOLTL formula ϕA. Verifying that a HyperFOLTL specifica-
tion ψ is satisfied then amounts to checking that the HyperFOLTL formula

ϕS ∧ ϕQ ∧ ¬ψ

is unsatisfiable.

8 Conclusions
HyperLTL is the natural extension of linear-time temporal logic to hyperproper-
ties. In this paper, we have surveyed recent results on HyperLTL, in particular
on the satisfiability and model checking problems. The additional expressiveness
of alternation-free HyperLTL comes at very little extra cost over the trace logic
LTL: the model checking and satisfiability problems remain in the same complex-
ity class. With quantifier alternation, model checking becomes significantly more
expensive and satisfiability becomes undecidable as soon as the fragment contains
∀∃ formulas.

There are plenty of open questions in this area. Conceptually, a key limitation
of HyperLTL is that it traverses the traces synchronously. This is adequate for
the specification and verification of hardware, but not necessarily for software,



in particular for concurrent software, where asynchronous behavior is more com-
mon. In terms of basic algorithms, the complexity of the satisfiability problem
of HyperCTL∗ is still open. While the undecidability of HyperLTL implies that
HyperCTL∗ is also, in general, undecidable (this was established in [4]), the obvi-
ous question is whether it is possible to establish decidable fragments in a similar
fashion as for HyperLTL.

Another interesting algorithmic problem is the synthesis of reactive systems
from HyperLTL (and HyperCTL∗) specifications. In synthesis, we ask for the ex-
istence of an implementation, which is usually understood as an infinite tree that
branches according to the possible inputs to a system and whose nodes are labeled
with the outputs of the system. Since HyperLTL can express partial observabil-
ity, the synthesis problem for HyperLTL naturally generalizes the well-studied
synthesis under incomplete information [14] and the synthesis of distributed sys-
tems [20].

Finally, a major open problem is to find a temporal logic that is expressively
equivalent to FO[<, E]. In Section 3.3, we have argued that HyperLTL is less ex-
pressive than FO[<, E], because HyperLTL cannot express the property described
by Bozzelli et al. [3], which relates at some point in time an unbounded num-
ber of traces. Since LTLK can express such properties, epistemic temporal logics
similar to LTLK might be candidates for logics that are expressively equivalent to
FO[<, E].
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