
The Distributed Computing Column
by

Stefan Schmid

Aalborg University
Selma Lagerlöfs Vej 300, DK-9220 Aalborg, Denmark

The Distributed Computing Column features two articles: First, Michel Raynal
takes us on a guided tour of distributed universal constructions. Subsequently,
Srivatsan Ravi presents a survey of currently known complexity (upper and lower)
bounds for implementing Transactional Memory as a shared object. Enjoy!

http://www.en.aau.dk/

Distributed Universal Constructions:

a Guided Tour

Michel Raynal

Institut Universitaire de France

IRISA, Université de Rennes, 35042 Rennes, France

Department of Computing, Hong Kong Polytechnic University

raynal@irisa.fr

Abstract

The notion of a universal construction is central in computing science:

the wheel has not to be reinvented for each new problem. In the context of

n-process asynchronous distributed systems, a universal construction is an

algorithm that is able to build any object defined by a sequential specifica-

tion despite the occurrence of up to (n − 1) process crash failures. The aim

of this paper is to present a guided tour of such universal constructions. Its

spirit is not to be a catalog of the numerous constructions proposed so far,

but a (as simple as possible) presentation of the basic concepts and mecha-

nisms that constitute the basis these constructions rest on.

Keywords: Abortable object, Agreement problem, Asynchronous read/write

system, Atomic operations, Computability, Concurrent object, Consensus,

Crash failure, Disjoint-access parallelism, Help mechanism, LL/SC instruc-

tion, Memory location, Non-blocking, Obstruction-freedom, Progress con-

dition, Sequential specification, k-Set agreement, k-Simultaneous consen-

sus, Speculative execution, Universal construction, Wait-freedom.

1 Introduction

A (very) short historical perspective Looking for (some) universality seems

inherent to humankind. Any language, any writing system, can be seen as an

attempt to universality [42]. In the science domain, one of the very first witness

of research of universality found in the past seems to be the Plimpton 322 tablet

(Figure 1), which describes the fifteen first Pythagorean triplets (a2
+b2
= c2).This

is only a list, not yet an algorithm with its proof. Hence, this tablet is a step to

universality for Pythagorean triplets, but not yet a universal method able to provide

us with a sequence of Pythagorean triplets of any length.

Figure 1: Plimpton 322 tablet

The geometric constructions with a compass and a straightedge designed by

the Ancient Greeks are among the first algorithms coming with correctness proofs

(see also [50]). Proofs of impossible constructions in the “compass + straight-

edge” computing model took more time (e.g., the impossibility of squaring the

circle, i.e., build, with straightedge and compass only, a square whose area is

equal to the area of a given circle)1. More recently, the Turing machine provides

us with an abstract computing device, which is considered as the most general

sequential computing model, thereby fixing the limits of what can be computed

by a sequential machine [61]2. It is consequently claimed to be universal. The

halting problem is the most famous of the problems that are impossible to solve

in this “most general” sequential computing model.

In distributed computing the situation is different. As written in [36]: “In se-

quential systems, computability is understood through the Church-Turing Thesis:

anything that can be computed, can be computed by a Turing Machine. In dis-

tributed systems, where computations require coordination among multiple par-

1This impossibility follows from the fact that π is a transcendent number (F. von Lindemann

1882), and a theorem by P. L. Wantzel, who established, in 1837, necessary and sufficient condi-

tions for a number to be constructible in the “compass + straightedge” computing model [62].
2This means that any sequential computing model proposed so far has the same computability

power as a Turing machine (e.g., Church’s Lambda calculus, or Post systems [51]), or is weaker

than a Turing machine (e.g., finite state automata).

ticipants, computability questions have a different flavor. Here, too, there are

many problems which are not computable, but these limits to computability reflect

the difficulty of making decisions in the face of ambiguity, and have little to do

with the inherent computational power of individual participants.”

In distributed computing the main issues posed by universality and computabil-

ity appear when one has to implement distributed state machines (distributed ser-

vices encapsulated in concurrent objects) in the presence of adversaries due to the

environment in which the computation evolves (such as asynchrony and process

failures) [25, 32, 43, 46].

Concurrent objects and asynchronous crash-prone read/write systems A

concurrent object is an object that can be accessed (possibly simultaneously) by

several processes. From both practical and theoretical point of views, a fundamen-

tal problem of concurrent programming consists in implementing high level con-

current objects, where “high level” means that the object provides the processes

with an abstraction level higher than the atomic hardware-provided instructions.

While this is well-known and well-mastered since a long time in the context of

failure-free systems [13], it is far from being trivial in failure-prone systems (e.g.,

see textbooks such as [52, 58]), where it is still an important research domain.

This paper considers systems made up of n sequential asynchronous processes

which, at the hardware level, communicate through memory locations (memory

words also called registers) which can be accessed by atomic operations (instruc-

tions), including the basic read and write operations. Moreover, it is assumed that,

in any run, up to (n−1) processes may crash (unexpected halting). When restricted

to the basic read and write instructions, this computation model is known under

the name wait-free read/write model (denoted here CARWn[∅], where CARW

stands for Crash Asynchronous Read/Write).

On progress conditions Deadlock-freedom and starvation-freedom are well-

known progress conditions in failure-free asynchronous systems. As their im-

plementation is based on lock mechanisms, they are not suited to asynchronous

crash-prone systems. This is due to the fact that it is impossible to distinguish a

crashed process from a slow process, and consequently a process that acquires a

lock and crashes before releasing it can entail the blocking of the entire system.

Hence, new progress conditions for concurrent objects suited to crash-prone

asynchronous systems have been proposed. Given an object, we have the follow-

ing.

• The strongest progress condition is wait-freedom (WF) [32]. It states that,

any operation (on the object that is built) issued by a process that does not

crash terminates. This means that it terminates whatever the behavior of the

other processes. This can be seen as the equivalent of the starvation-freedom

progress condition encountered in failure-free systems.

• The non-blocking progress condition (NB) states that there is at least one

process that can always progress (all its object operations terminate) [38].

This progress condition is also called lock-freedom. It can be seen as the

equivalent of deadlock-freedom in failure-free systems. Non-blocking has

been generalized in [14], under the name k-lock-freedom (k-NB), which

states that at least k processes can always make progress.

• The obstruction-freedom progress condition (OB) states that a process that

does not crash will be able to terminate its operation if all the other processes

hold still long enough [34]. This is the weakest progress condition. It has

been generalized in [59], under the name k-obstruction-freedom (k-OB),

which states that, if a set of at most k processes run alone for a sufficiently

long period of time, they will terminate their operations.

While wait-freedom and non-blocking are independent of the concurrency and

failure pattern, obstruction-freedom is dependent from it. Asymmetric progress

conditions have been introduced in [41]. The computational structure of progress

conditions is investigated in [60].

Universal construction The notion of a universal construction was introduced

by M. Herlihy in [32]. It considers objects (a) which are defined from sequential

specifications and (b) whose operations are total, i.e., any object operation returns

a result (as an example, a push() operation on an empty stack returns the default

value ⊥).

Let PC be a progress condition. A PC-compliant universal construction is an

algorithm that, given the sequential specification of an object O (or a sequential

implementation of it), provides a concurrent implementation of O satisfying the

progress condition PC in the the presence of up (n−1) process crashes (Figure 2).

Sequential specification

of an object Z

PC-compliant implementation

of object Z

PC-compliant
universal construction

Figure 2: PC-compliant universal construction

It has been shown in [25, 32, 47] that the design of a universal construction

with respect to the wait-freedom progress condition is impossible in CARWn[∅].

This means that the basic system model CARWn[∅] has to be enriched with

hardware-provided atomic instructions or additional computing objects whose

computational power is stronger than atomic read/write registers (in the following,

we consider terms “register” and “memory location” as synonyms; we sometimes

also say “atomic read/write object” by a slight abuse of language).

Content of the paper This paper aims at being a guided tour to distributed

universal constructions. Its goal is not to be a presentation including as many

universal constructions as possible, but to focus on the central features universal

constructions rest on, and illustrate them with existing algorithms. To this end, af-

ter having introduced basic definitions (Section 2), the paper proceeds as follows.

• Section 3 presents first a simple and elegant universal construction suited to

the system model CARWn[LL/SC] (which is CARWn[∅] enriched with

the hardware-provided instructions LL and SC, which are defined in the

section). This allows for an easy introduction of the notion of a speculative

computation and the notion of a help mechanism (introduced in [32] and

recently formalized in [17]). This section presents also extensions devoted

to large objects.

• Section 4 is made up of two subsections. the first is on the efficiency of

universal constructions. Considering the algorithms that realize them, it

addresses the notion of disjoint-access parallelism.

The second subsection is on the object side. It considers the case of uni-

versal constructions for deterministic abortable objects [15, 31, 52, 53].

Such an object is a classical object defined by a sequential specification

which allows an operation to return a default value ⊥ in the presence of

contention (in this case the operation has no effect on the object). Hence,

in a concurrency-free execution, an abortable object behaves as its non-

abortable counterpart. The notion of k-abortable object has been recently

introduced in [8], where is also presented an associated universal construc-

tion. A k-abortable object is such that an operation is allowed to return ⊥

only if it is concurrent with operations from at most k different processes,

and none these operations return ⊥.

• All the previous universal constructions consider that the underlying crash-

prone system is enriched with hardware-provided atomic instructions such

as LL/SC or Compare&Swap, which work on memory locations [22]. Hence,

the question: Which are the instructions that allow to build a universal

construction? As an example, can a universal construction be designed

for the system model CARWn[Test&Set] (CARWn[∅] enriched with the

hardware-provided atomic instruction Test&Set). This issue was solved by

M. Herlihy in [32], who introduced the celebrated consensus hierarchy.

This is addressed in the first part of Section 5. Hence, the consensus ob-

ject is at the core of universal constructions.

Then, the section shows another important advantage of using consensus

objects instead of primitives hardware-provided instructions to design uni-

versal constructions. While instructions are uniform (any instruction can

access any memory location [22]), an object is a typed abstraction that has

the property that an operation on type T cannot be applied to an object of

type T ′. Moreover, an object can be weakened or generalized according to

the needs of the user. As an example, the consensus object can be weakened

to the k-set agreement (k-SA) object [19] or to the k-simultaneous consensus

(k-SC) object [3] (k-SA and k-SC objects are defined in the section).

The section presents then the notion of a k-universal construction due to E.

Gafni and R. Guerraoui [27]. Such a construction considers k objects (in-

stead of only one) and ensures that at least one of these objects progresses

forever. This construction relies on k-SC objects instead of consensus ob-

jects.

Finally, the section considers the case where we want that, not at least one

but at least ℓ objects progress forever, where ℓ is any predefined constant

in [1..k]. As shown in [55], objects denoted (k, ℓ)-SC ((k, ℓ)-simultaneous

consensus objects defined in the section), which are strictly stronger than

k-SC objects (when ℓ > 1), and weaker than consensus objects (when

ℓ < k), are necessary and sufficient to build a universal construction for

k objects, where at least ℓ objects progress forever. It is important to notice

that these generalizations of universal constructions could not have been ob-

tained from hardware-provided instructions. This will conclude the guided

tour.

Finally, after a short Section 6 comparing universal constructions and software

transactional memory (STM) systems, Section 7 concludes the paper.

2 Basic Asynchronous Read/Write ModelCARWn[∅]

Crash-prone asynchronous processes The basic computing model (denoted

here CARWn[∅]) was sketched in the introduction. It is composed of a set of

n sequential processes denoted p1, ..., pn. Each process is asynchronous which

means that it proceeds at its own speed, which can be arbitrary and remains always

unknown to the other processes.

A process may halt prematurely (crash failure), but executes correctly its local

algorithm until it possibly crashes. Up to (n−1) processes may crash in a run. Due

to the atomicity of the hardware-provided operations, if a process crashes while

executing such an operation, this operation appears as entirely executed or not at

all. A process that crashes in a run is said to be faulty in this run. Otherwise, it

is correct or non-faulty. Hence, a faulty process is a process whose speed, after

some time, remains forever equal to 0.

On atomicity The processes communicate by accessing atomic read/write reg-

isters (memory locations). Atomicity means that the read and write primitive

operations on a register appear as if they have been executed one after the other.

Moreover, the corresponding sequence of operations S is such that (a) if the op-

eration op1 terminated before the operation op2 started, op1 appears before op2

in S , and (b) a read operation on a register R returns the value written by the

closest preceding write operation on R (or its initial value if there is no preceding

write) [44]. Atomicity is also called linearizability when considering any object

defined by a sequential specification [38].

Notation Variables local to a process pi are denoted with lowercase letters,

sometimes indexed with i. Memory location and objects shared by the processes

are denoted with capital letters.

3 A Simple LL/SC-Based WF-Compliant

Universal Construction

3.1 Extending CARWn[∅] with LL/SC

Model CARWn[LL/SC] These hardware-provided atomic instructions can be

applied to any memory location. The wait-free read/write model CARWn[∅]

enriched with them is denoted CARWn[LL/SC]. LL/SC is made up of three

instructions: LL stands for Linked Load; SC stands for store conditional; VL

stands for Validate.

Let X be a memory location. X.LL() returns the current value of X. Let pi

be a process that invokes X.SC(v). This invocation assigns v to X if X has not

been assigned a value by another process since the previous invocation of X.LL()

issued by pi. In this case, X.SC(v) returns true and we say that the invocation is

successful; otherwise it returns false. Finally, an invocation of X.VL() by process

pi returns true if no other process has issued a successful X.SC() since the last

invocation of X.LL() issued by pi.

These instructions are used to bracket a speculative computation. A process

first reads X with X.LL() and stores its value in a local variable xi. Then pi does

a local computation which depends on both xi and its local state. The aim of this

local computation is to define a new value v for X. Finally, pi tries to commit

its local computation by writing v into X, which is done by invoking X.SC(v).

If this invocation is successful, the write is committed; otherwise the write fails.

A similar behavior can be obtained by the Compare&Swap() instruction. The

main advantage of LL/SC, with respect to Compare&Swap(), lies in the fact that

it does suffer the ABA problem (see [52, 58]), which requires sequence numbers

to be solved. Algorithms based on LL/SC can be found in many publications

(e.g., [23, 33, 39, 52, 58, 59] to cite a few).

3.2 A simple universal construction in CARWn[LL/SC]

This section presents a simplified version (denoted sFK) of a universal construc-

tion due to P. Fatourou and N. Kallimanis [24]. The main difference is that the

presented construction uses sequence numbers which increase forever, while [24]

uses sequence numbers modulo 2). This additional memory cost makes it much

easier to present and prove correct.

Collect object This construction uses a collect object. Such an object can easily

be built in CARWn[∅]. It consists of an array COL[1..n], with one entry per pro-

cess, and provides them with two operations denoted update() and collect(). The

invocation of COL.update(v) by a process pi assigns v to COL[i]. The invocation

of COL.collect() is an asynchronous scan of the array which returns, for each en-

try j, the value it has read from COL[j]. A formal definition of such an object can

be found in [52].

Due to the asynchronous scan, a collect object is not atomic (hence a collect

object is computationally weaker than a snapshot object [1]). An atomic version

of a collect object is described in [24]. Its implementation (a) assumes that the n

components of the collect object are stored in a single memory location, and (b)

is based on the hardware-provided instruction add() (Y.add(v) atomically adds v

to Y).

Global and local variables Let O be the object that is built.

• STATE is a memory location made up of three fields:

– STATE.value contains the current value of O. It is initialized to the

initial value of O.

– STATE.sn[1..n] is an array of sequence numbers initialized to [0, · · · , 0];

STATE.sn[i] is the sequence number of the last invocation of an oper-

ation on O issued by pi.

– STATE.res[1..n] is an array of result values initialized to [⊥, · · · ,⊥];

STATE.res[i] contains the result of the last operation issued by pi that

has been applied to O.

• BOARD is a collect object. BOARD[i] is a pair 〈BOARD[i].op,BOARD[i].sn〉

initialized to 〈⊥, 0〉; BOARD[i].op contains the last operation on O issued

by pi, and BOARD[i].sn contains its sequence number.

• Each process pi manages a sequence number generator sni initialized to 1.

The object O is assumed to be defined by a transition function δ(). Let s be the

current state of O and op(in) be the invocation of the operation op() on O, with

input parameter in; δ(s, op(in)) outputs a pair 〈s′, r〉 such that s′ is the state of O

after the execution of op(in) on s, and r is the result of op(in).

Construction sFK: speculative computation and helping The construction

sFK is described in Figure 3. When a process pi invokes an operation op(in)

on O, it first publishes the pair 〈op(in), sni〉 in the collect object BOARD (line 1).

Then, it invokes the internal procedure apply() at the end of which it will locally

return the result produced by op(in) (line 2).

when pi invokes op(in) do

(1) BOARD.update(〈op(in), sni〉); sni ← sni + 1;

(2) apply(); let r = STATE.res[i]; return(r).

internal procedure apply() is

(3) repeat twice

(4) ls← STATE.LL();

(5) pairs← BOARD.collect();

(6) for ℓ ∈ {1, 2, · · · , n} do

(7) if (pairs[ℓ].sn = ls.sn[ℓ] + 1 then

(8) 〈new_state, r〉 ← δ(ls.value, pairs[ℓ].op);

(9) ls.res[ℓ]← r; ls.sn[ℓ]← pairs[ℓ].sn

(10) end if

(11) end for

(12) STATE.SC(ls)

(13) end repeat twice.

Figure 3: WF-compliant universal construction sFK (system model

CARWn[LL/SC])

The core of the construction is the procedure apply(), in which a process pi

executes twice the lines 4-12 (we will see later why this has to be done twice).

Process pi first reads the current local state of the object (line 4), and starts a first

speculative execution (which will end at line 12). In this speculative execution, pi

first reads the content of the collect object BOARD from which it obtains for each

process pℓ a pair 〈last operation invoked by pℓ, associated sequence number〉. Let

us recall that as BOARD.collect() is not atomic, and pi is asynchronous, the pairs

that are returned are not necessarily associated with a consistent global state the

computation passed through.

Then, pi considers each pair in pairs in the “for” loop of lines 6-11. In

this loop, pi strives to help all the processes that have a pending operation on

O. From its point of view (i.e., with the information it has obtained from its

previous reads of STATE and BOARD), those are all the processes pℓ such that

pairs[ℓ].sn = ls.sn[ℓ] + 1 (line 7). If this local predicate is true, pi locally simu-

lates (speculative computation) the last operation issued by pℓ not yet applied to

the object (line 6), and locally saves the result of the operation and its sequence

number (line 9). Finally, pi tries to commit its speculative computation by invok-

ing STATE.SC() (line 12). Let us observe that, if this invocation is successful, we

can conclude that no process modified STATE while pi was doing its speculative

computation. Hence, the local variable ls of pi is up to date, and, from an external

observer point of view, everything appears as if the computation starting at line 4

and ending at line 12 was executed atomically. If the invocation of STATE.SC() is

not successful, the speculative execution is not committed.

Construction sFK: why “repeat twice”? Let us first observe that, due to se-

quence numbers, once registered in the collect object BOARD, an operation cannot

be executed more than once. Moreover, if the process pi that invokes an opera-

tion does not crash, it terminates its operation op(in). This follows from the fact

that the lines 7-10 are executed a bounded number of times (2n). But is the result

provided for op(in) correct?

To answer this question, let us consider the execution described in Figure 4.

When process p j (bottom of the figure) executes the atomic statement STATE.LL()

followed by BOARD.collect() (lines 4-5), pi (top of the figure) has not yet reg-

istered by executing BOARD.update() (line 1). Hence pairs j does not contain

〈op(in), sn〉. Let us assume that the execution of STATE.SC(ls j) by p j is success-

ful. If pi executes only once the repeat loop, its execution of STATE.SC() is not

successful, and pi returns despite the fact that p j has not helped it by executing

op(in). Hence, the statement return(r) executed by pi at line 2 returns the result

of its previous operation invocation.

Assuming now that pi executes twice the repeat loop, let us consider the first

successful invocation of STATE.SC() that occurs after the previous successful in-

vocation by p j. This invocation is issued by some process pk (which can be pi,

p j or any other process). According to the algorithm of Figure 3, it follows that

pk has previously invoked STATE.LL(). Moreover, this invocation occurs neces-

sarily after the successful invocation of STATE.SC() by p j (otherwise the invoca-

tion of STATE.SC() by pk could not be successful). Consequently, the invocation

of BOARD.collect() by pk is such that 〈op(in), sn〉 ∈ pairsk. It follows that pk

pi

next successful

p j

Atomicity line

by some process pk

STATE.SC()

BOARD.update(op(in), sn) lsi ← STATE.LL() STATE.SC(): not successful

successful
ls j ← STATE.LL() pairs j ← BOARD.collect() STATE.SC()

Figure 4: Why to repeat twice lines 4-12 (big dot = atomic step)

found pairsk[i].sn = lsk.sn[i]+ 1, and simulated the execution of op(in) on behalf

of pi and wrote the corresponding result in lsk.res[i] which was then copied in

STATE.res[i] by the successful execution of STATE.SC() by pk.

Linearization of the operations on O Let SC[1], SC[2], ..., SC[x], etc. be

the sequence of all the successful invocations of STATE.SC(); as STATE.SC() is

atomic, this sequence is well-defined. Starting from S C[1], each SC[x] applies at

least one operation on the object O. It is possible to totally order the operations

applied to O by each SC[x]. Let seq[x] be the corresponding sequence. The

sequence of operations applied to O is then seq[1] followed by seq[2], ..., followed

by seq[x], etc.

Remark on sequence numbers Techniques such as the one described in [9,

48] (known under the name alternating bit protocol) can be used to obtain an

implementation in which the sequence numbers are implemented modulo 2.

3.3 The case of large objects

The previous universal construction considered that the internal state of the object

(STATE) can be copied all at once. A large object is an object whose internal state

cannot be copied in one instruction.

Several articles have addressed this problem, e.g., [2, 6, 33]. They all propose

to fragment a large object into blocks. Two main approaches have been proposed.

• One consists in using pointers linking the blocks representing the object [33].

Moreover, it requires that the programmer provides a sequential implemen-

tation of the object that performs as little copying as possible. The pointers

are then accessed with LL instructions which allow a process to obtain a

logical copy of the object (which means that only the needed part of the

object is copied in its local memory). A process executes then locally a

speculative computation, as defined by the operation it wants to apply to the

object. Finally it uses SC instructions on the appropriate pointers to try to

commit the new value of the object.

• The other approach consists in representing the object as a long array frag-

mented into blocks [6]. This paper presents two object constructions based

on this approach, which are universal with respect to non-blocking and wait-

freedom, respectively. It also presents algorithms implementing atomic

LLL/LSC operations (where “L” stands for Large), which extend the LL/SC

instructions to arrays of memory locations. These operations are built in the

system model CARWn[LL/SC].

4 Extensions

This section presents two extensions of universal constructions. The first one

regards their efficiency. The second one considers a weakening of concurrent

objects called abortable objects.

4.1 On the implementation side: Disjoint-access parallelism

Disjoint-access parallelism A universal construction is disjoint-access parallel

if two processes that access distinct parts of an object O do not access common

base objects or common memory location which constitute the internal represen-

tation of O. As an example, let us consider a queue. If the queue contains three or

more items, a process executing enqueue(v) and a process executing dequeue()

must be able to progress without interfering.

Hence, the aim of a disjoint-access parallel universal construction is to provide

efficient implementations. Let us observe that all the universal constructions that

built a total order on the operations (such as the one described in Section 3.2 and

the ones presented in [2, 23, 33]) are not disjoint-access parallel.

What can be done? Hence the question posed by F. Ellen, P. Fatourou, N. Kos-

mas, A. Milani, and C. Travers, in [21]: Is it possible to design a disjoint-access

parallel WF-compliant universal construction? This work presents two important

results.

• The first is an impossibility result. It states that it is impossible to design a

universal construction that is disjoint-access parallel and ensures that all the

operation invocations of the processes that do not crash always terminate.

Hence, when we consider any object defined by a sequential specification,

disjoint-access parallelism and wait-freedom are mutually exclusive.

• The second result is a positive one, namely the previous impossibility (which

considers any object defined by a sequential specification) does not apply

to a special class of concurrent objects. Hence, the constructions for this

object class are no longer “universal” in the strict sense. This object class

contains all the objects O for which, in any sequential execution, each op-

eration accesses a bounded number of base objects used to represent O.

Examples of such objects are bounded trees, or stacks and queues whose

internal representations are list-based.

In their paper, the authors describe a universal construction that ensures,

for the previous objects, both the disjoint-access parallel property of the

object implementation, and the wait-freedom progress condition for the

processes that use it. This construction is presented in the system model

CARWn[LL/SC].

4.2 On the object side: Abortable objects

Abortable objects have been investigated in several articles, e.g., [4, 15, 31, 52,

53]. They found their origin in the commit/abort output of transaction-based sys-

tems [28], and the notion of “fast path” initially introduced in fast mutual exclu-

sion algorithms [45].

Definition An abortable object is an object (defined by a sequential specifica-

tion) such that

• When executed in a contention-free context, an operation takes effect, i.e.,

modifies the state of the object and returns a result as defined by its sequen-

tial specification,

• When executed in a contention context, an operation either takes effect and

returns a result as defined by its sequential specification, or returns the de-

fault value ⊥ (abort). If ⊥ is returned, the operation has no effect on the

state of the object.

Hence, an abortable object is such that any operation always returns (i.e.,

whatever the concurrency context). Its progress condition is consequently wait-

freedom. Differently from an abortable object, an obstruction-free object does

not guarantee operation termination in the presence of concurrency. A theory of

deterministic abortable objects (including a study of their respective power) is

presented in [31].

Universal constructions for abortable objects Such a very simple construc-

tion is described in Figure 5. It is a trivial simplification of the universal con-

struction described in Figure 3 from which the helping mechanism has been sup-

pressed. The memory location STATE contains now only the state of the object.

when pi invokes op(in) do

(1) ls← STATE.LL();

(2) 〈new_state, r〉 ← δ(ls, pairs[ℓ].op);

(3) done← STATE.SC(ls);

(4) if (done) then return(r) else return(⊥) end if.

Figure 5: WF-compliant universal construction for abortable objects (system

model CARWn[LL/SC])

When a process pi invokes an operation op(in) on the object, it reads its current

state to obtain a local copy (line 1). Then it produces a speculative execution of

op(in) on this local state ls (line 2). Finally, it tries to commit its local execution

by issuing STATE.SC(ls) (line 3). If this SC is successful, pi returns the result it

has previously computed. Otherwise, there was at least one concurrent operation,

and pi returns ⊥ (line 4).

Let us observe that, if several processes concurrently invoke operations, each

invokes STATE.LL(), and the first of them that invokes STATE.SC() produces a

successful SC. It follows that, in the presence of concurrency, at least one process

is guaranteed to make progress in the sense that it does not return ⊥.

An efficient solo-fast universal construction for deterministic abortable ob-

jects is described in [15]. Solo-fast (also called contention-aware in other articles)

means that the implementation is allowed to use atomic operations on memory

locations stronger than read/write only when there is contention. Moreover, this

implementation guarantees that the operations that do not modify the object never

return ⊥ and use only read/write operations. This implementation is based on the

primitive operation on memory locations Compare&Swap, whose computational

power is the same as LL/SC.

k-Abortable objects This notion was recently introduced in [8]. A k-abortable

object guarantees progress even under high contention, where “progress” means

that ⊥ cannot be returned by some operation invocations.

Roughly speaking an operation invoked by a process is allowed to abort only

if it is concurrent with operations issued by k distinct processes and none of them

returns ⊥. This means that the k operations that entail the abort of another opera-

tion must succeed. It is easy to see that n-abortability is wait-freedom where any

operation returns a non-⊥ result. A formal presentation can be found in [8].

A universal construction for k-abortable objects suited to the system model

CARWn[LL/SC] is presented in [8]. Differently from the trivial construction for

abortable objects presented in Figure 5, it is not a trivial construction. It uses an

array of n memory locations BOARD[1..n] used by the processes to store their

last operations (they are the equivalent of the collect object BOARD[1..n] used

in Figure 3), an array of k memory locations WINNERS[1..k] which contains the

(up to k) “winning” operations, and another memory location STATE (similar to

the location STATE used in Figure 3). All these memory locations are accessed

with the LL/SC atomic operations. (We use the same identifiers as in Figure 3 to

facilitate the understanding.)

The construction works as follows. After it has registered its operation in

BOARD[i], a process pi tries to find an available entry in WINNERS[1..k]. If it

succeeds, its operation will not abort; otherwise its operation will eventually abort.

In all cases, i.e., whatever the fate of its own operation, the process pi will help

the winning operations to terminate. This construction is efficient in the sense that

each operation terminates in O(k) accesses to memory locations.

Let us observe that, as every k-abortable object can easily implement its k-

lock-free counterpart, the previous universal construction for k-abortable objects

is k-NB-compliant universal construction. Let us remember that, differently from

its k-lock-free counterpart, no process can get stuck when a k-abortable object is

used.)

5 From Operations on Memory Locations

to Agreement Objects

5.1 Primitive operations versus objects

The previous universal constructions are based on hardware-provided atomic op-

erations such as LL/SC. This operation, as all the hardware-provided synchroniza-

tion operations (such as Test&Set or Compare&Swap) is uniform in the sense that

they can be applied to any memory location [6, 22]. Hence the following natural

questions come to mind:

• Is it possible to design a universal construction with other hardware-provided

atomic operations such as Test&Set or Fetch&Add, initially designed to

solve synchronization issues? Moreover, which synchronization atomic op-

erations are equivalent (from the point of view of a universal construction)?

• Is it possible to generalize the concept of a universal construction to the co-

ordinated construction of several objects with different progress conditions?

These questions are answered in this section.

5.2 A fundamental agreement object: consensus

Differently from a memory location which is only a sequence of bits accessed

by hardware-provided atomic operations, the aim of an object is to provide its

user with a high abstraction level (by hiding implementation details) and allow

easier reasoning and proofs. An object is defined by a set of operations, and a

specification which describes its correct behavior. The operations associated with

an object are specific to it (i.e., due the very essence of the object concept, they

are not uniform).

The consensus object The consensus object is the fundamental object associ-

ated with agreement problems. Introduced (in a different form) in the context of

Byzantine synchronous message-passing systems [46], a consensus object pro-

vides the processes with a single operation denoted propose() that a process can

invoke only once (one-shot object). When a process invokes propose(v), we say

that it “proposes the value v”. This operation returns a result. If a process returns

value w, we say that it “decides w”. In the context of process crash failures, the

consensus object is defined by the following set of properties (let us recall that a

correct process is a process that does not crash).

• Termination. If a correct process invokes propose(), it decides a value.

• Validity. A decided value is a proposed value.

• Agreement. No two processes decide different values.

A consensus object allows the processes to agree on the same value, and this

value is not arbitrary: it was proposed by one of them. Hence, when considering

a universal construction, consensus objects can be used by the processes to agree

on the order in which their operations must be applied to the object that is built.

5.3 A simple consensus-based universal construction

A simple WF-compliant consensus-based universal construction is described in

Figure 6. This construction, proposed in [30], is inspired from the state machine

replication paradigm [43] and the consensus-based atomic broadcast algorithm

presented in [18]. The reader will find a proof of it in [52]. Let O be the object

that is built. As in Section 3, its sequential behavior is defined by a transition

function δ().

Local variables A process pi manages locally a copy of the object, denoted

statei, an array sni[1..n] where sni[j] denotes the sequence number of the last

operation on O issued by p j locally applied to statei. The local variables donei,

resi, propi, ki, and listi, are auxiliary variables whose meaning is clear from the

context; listi is a list of pairs of (operation, process identity); |listi| is its size, and

listi[r] is its rth element; hence, listi[r].op is an object operation and listi[r].proc

the process that issued it.

when pi invokes op(in) do

(1) donei ← false; BOARD[i]← 〈op(in), sni[i] + 1〉;

(2) wait (donei); return(resi).

Underlying local task T : % background server task %

(3) while (true) do

(4) propi ← ǫ; % empty list %

(5) for j ∈ {1, . . . , n} do

(6) if (BOARD[j].sn > sni[j]) then

(7) append (BOARD[j].op, j) to propi

(8) end if

(9) end for;

(10) if (propi , ǫ) then

(11) ki ← ki + 1;

(12) listi ← CONS[ki].propose(propi);

(13) for r = 1 to |listi| do

(14) 〈statei, resi〉 ← δ(statei, listi[r].op);

(15) let j = listi[r].proc; sni[j]← sni[j] + 1;

(16) if (i = j) then donei ← true end if

(17) end for

(18) end if

(19) end while.

Figure 6: A wait-free consensus-based universal construction (code for process

pi)

Shared Objects The shared memory contains the following objects.
• An array BOARD[1..n] of single-writer/multi-reader atomic registers. Each

entry is a pair such that the pair 〈BOARD[j].op,BOARD[j].sn〉 contains the

last operation issued by p j and its sequence number. Each BOARD[j] is

initialized to 〈⊥, 0〉.

• An unbounded array CONS[1..] of consensus objects.

Process behavior When a process pi invokes an operation op(in) on O, it reg-

isters it and its associated sequence number in BOARD[i] (line 1). Then, it waits

until the operation has been executed, and returns its result (line 2).

The array BOARD constitutes the helping mechanism used by the background

task of each process pi. This task is made up two parts, which are repeated forever.

First, pi build a proposal propi, which includes the last operations (at most one

per process) not yet applied to the object O, from its local point of view (lines 4-9

and predicate of line 6). Then, if the sequence propi is not empty, pi proposes

it to the next consensus instance CONS[ki] line 12). The resulting value listi is a

sequence of operations proposed by a process to this consensus instance. Process

pi then applies this sequence of operations to its local copy statei of O (line 14),

and updates accordingly its local array sni (line 15). If the operation that was

applied is its own operation, pi sets the Boolean donei to true (line 16), which will

terminate its current invocation (line 2).

Bounded wait-freedom versus unbounded wait-freedom This construction

ensures that the operations issued by the processes are wait-free, but does not

guarantee that they are bounded-wait-free, namely, the number of steps (accesses

to the shared memory) executed before an operation terminates is finite but not

bounded. Consider a process pi that issues an operation op(), while k1 is the

value of ki. let and k2 = k1 + α be such that op() is output by the consensus

instance CONS[k2]. The task T of pi must execute α times the lines 4-18 in order

to catch up the consensus instance CONS[k2] and return the result produced by

op(). It is easy to see that the quantity (k2 − k1) is always finite but cannot be

bounded.

A bounded construction is described in [32]. Instead of requiring each pro-

cess to manage a local copy of the object, O is kept in shared memory and is

represented by a list of cells including an operation, the resulting state, the result

produced by this operation, and a consensus object whose value is a pointer to the

next cell. The last cell defines the current value of the object.

5.4 Consensus number and the consensus hierarchy

Consensus number of an object The notion of the consensus number of an

object was introduced by M. Herlihy in [32]. Let us consider an object of type

T (defined by a sequential specification). The consensus number of an object of

type T is the greatest integer n such that it is possible to implement a consensus

object in a system of n processes, with any number of atomic read/write registers

and objects of type T . The consensus number is +∞ if there is no largest n.

This notion allows us to answer the first question posed in Section 5.1, and

this answer defines what is called the object consensus hierarchy. More precisely,

it has been shown in [32] that:
• The consensus number of read/write registers is 1. It follows that all objects

that can be built from read/write registers only (i.e., in CARWn[∅] without

enrichment with additional operations) have consensus number 1. Snapshot

objects [1, 5] and renaming objects [7, 16] are such objects.

• The consensus number of hardware operations such as Test&Set, Fetch&Add,

Swap (exchange the values in a local register an a shared register), and a few

others, have consensus number 2. This means that a universal construction

can be built in CARW2[Test&Set] (i.e., in a system of two processes), but

impossible in CARWn[Test&Set] for n > 2.

• Let a k-window read/write register be a register that stores only the sequence

of the last k values which have been written, and whose read operation re-

turns this sequence of at most k values. It is shown in [49] that the consensus

number of a k-window is k.

• Finally, the consensus number of Compare&Swap, LL/SC, and a few others,

is +∞.

This infinite hierarchy is the consensus hierarchy. It provides us with a rank-

ing of the power of synchronization objects and hardware provided synchroniza-

tion operations in wait-free systems (i.e., systems where all, except one, processes

may crash). As an example, if any number of processors may crash, this hierar-

chy states that a multicore with Test&Set is computationally less powerful than a

multicore with LL/SC.

Consensus from several operations on memory locations The previous hier-

archy considers that consensus must be built from read/write registers and objects

of a given type T only. What can be done when several hardware operations which

access the same memory locations are given?

As an example, let CARWn[Test&Set, Fetch&Add2] be the system model

(defined in [22]) where Test&Set and Fetch&Add2 are two atomic operations de-

fined as follows:

• Test&Set returns the value of the memory location, and sets it to 1 if it

contained 0,

• Fetch&Add2 returns the value in the memory location and increases it by 2.

Each of these operations on memory locations has consensus number 2. The

algorithm described in Figure 7 (due to F. Ellen, G. Gelashvili, N. Shavit, and L.

Zhu, [22]) shows that a binary consensus object can be built in the system model

in CARWn[Test&Set, Fetch&Add2], for any value of n. This means that the

previous hierarchy collapses when object types defined by operations on memory

locations can be used to implement consensus. Binary consensus means that only

the values 0 and 1 can be proposed. This is not a problem as it is possible to build

a multivalued consensus object from binary consensus objects (see [52]).

when pi invokes propose(v) do

(1) if (v = 0) then X.fetch&add2();

(2) if (X is odd) then return(1) else return(0) end if

(3) else x← X.test&set();

(4) if (x is odd) ∨ (x = 0) then return(1) else return(0) end if

(5) end if.

Figure 7: A wait-free consensus algorithm in CARWn[Test&Set, Fetch&Add2]

(code for process pi)

The internal representation of the binary consensus object is a single mem-

ory location X, initialized to 0. According to the value it proposes (0 or 1), a

process executes the statements of lines 2-3 or the statements of lines 4-5. The

value returned by the consensus object is sealed by the first atomic operation that

is executed. It is 0 if the first operation on X is X.fetch&add2(), and 1 if first

operation on X is X.test&set(). The reader can check that, if the first operation

on X is fetch&add2(), X becomes and remains even forever. If it is test&set(), X

becomes and remains odd forever. In the first case, only 0 can be decided, while

in the second case, only 1 can be decided.

Power number The notion of the power number of an object type T (PN(T))

was introduced by G. Taubenfeld in [59]. It is the largest integer k such that it

is possible to implement a k-obstruction-free consensus object for any number of

processes, using any number of atomic read/write registers, and any number of

objects of type T (the registers and the objects of type T being wait-free). If there

is no such largest k, PN(T) = +∞.

Hence, the power number of an object type T relates k-obstruction-freedom

and wait-freedom, when objects of type T are used. Let CN(T) be the consensus

number of the objects of type T . It is shown in [59] that CN(T) = PN(T). This re-

sult establishes a strong relation linking wait-freedom and k-obstruction-freedom.

As noticed in [59], “the difficult part of the proof is to show that, for any k ≥ 1, it

is possible to implement a k-obstruction-free consensus algorithm for any number

of processes, using only wait-free consensus objects for k processes and atomic

read/write registers”.

5.5 Universal construction “1 among k”

k-Set agreement k-Set agreement (k-SA) was introduced by S. Chaudhuri [19].

It is a simple generalization of consensus. It is defined by the same validity and

termination properties, and a weaker agreement property, namely, at most k differ-

ent values can be decided by the processes. Hence, 1-set agreement is consensus.

It is shown in [10, 37, 56] that it is impossible to build a k-set agreement object in

CARWn[∅] when k or more processes may crash.

k-simultaneous consensus k-Simultaneous consensus (k-SC) was introduced

in [3]. As consensus and k-SA, a k-SC object is a one-shot object that provides

the processes with a single operation denoted propose(). This operation takes

an input parameter a vector of size k, whose each entry contains a value, and re-

turns a pair 〈x, v〉. The input vector contains “proposed” values, and if 〈x, v〉 is the

pair returned to the invoking process, this process “decides v, and this decision is

associated with the consensus instance x”, 1 ≤ x ≤ k.

More precisely, the behavior of a k-SC object is defined by the following prop-

erties.

• Termination. If a correct process invokes propose(), it decides a pair 〈x, v〉.

• Validity. If a process pi decides the pair 〈x, v〉, we have 1 ≤ x ≤ k, and

the value v was proposed by a process in the entry x of its input vector

parameter.

• Agreement. Let pi be a process that decides the pair 〈x, v〉, and p j be a

process that decides the pair 〈y,w〉. We have (x = y)⇒ (v = w).

It is shown in [3] that k-SA and k-SC have the same computational power in

the sense that a k-SA object can be built in CARWn[k-SC], and a k-SC object can

be built in CARWn[k-SA]. This equivalence is no longer true in asynchronous

crash-prone message-passing systems, where k-SC is stronger than k-SA [12, 54].

Let ini[1..k] be the input parameter of a process pi. An easy implementation of

k-SC in CARWn[∅] enriched with k consensus objects CONS[1..k] is as follows.

For each x, 1 ≤ x ≤ k, and in parallel, a process pi proposes ini[x] to the consensus

object CONS[x]. Let CONS[y] be the first consensus object which returns a value

v to pi. Process pi decides then the pair 〈y, v〉.

The notion of k-universality E. Gafni and R. Guerraoui investigated in [27] the

following question: What does happen if, instead of consensus objects, we use

k-SA (or equivalently k-SC) objects to design a universal construction?

They showed that it is then possible to design what they called a k-universal

construction. Such a construction considers k objects (instead of only one) and

guarantees that at least one of these objects progresses forever. Let GG denote the

k-universal construction described in [27].

Adopt-commit object The GG construction relies on k-SC objects and adopt-

commit (AC) objects. This object, introduced in [26], is a one-shot object which

provides the processes with a single operation denoted propose(), which takes a

value as input parameter and returns a pair composed of a tag and a value. Its

behavior is defined by the following properties.

• Validity.

– Result domain. Any returned pair 〈tag, v〉 is such that (a) v has been

proposed by a process and (b) tag ∈ {commit, adopt}.

– No-conflicting values. If a process pi invokes propose(v) and returns

before any other process p j has invoked propose(w) with w , v, only

the pair 〈commit, v〉 can be returned.

• Agreement. If a process returns 〈commit, v〉, only the pairs 〈commit, v〉 or

〈adopt, v〉 can be returned by the other processes.

• Termination. An invocation of propose() by a correct process always ter-

minates.

It follows from the “no-conflicting values” property that, if a single value v is pro-

posed, only the pair 〈commit, v〉 can be returned. Adopt-commit objects can be

wait-free implemented in CARWn[∅] (e.g., [26, 52]). Hence, they provide pro-

cesses with a higher abstraction level than read/write registers, but do not provide

them with additional computational power.

A non-blocking k-universal construction (This section borrows text from [55])

The algorithm GG is based on local replication paradigm, namely, the only shared

objects are the control objects KSC[1..] (unbounded list of k-SC objects) and

AC[1..][1..k] (matrix of adopt-commit objects). Each process pi manages a copy

of every object m, denoted statei[m], which contains the last state of m as known

by pi. The invocation by pi of δ(statei[m], op) applies the operation op() to its

local copy of object m. The construction consists in an infinite sequence of asyn-

chronous rounds, locally denoted ri at process pi.

Each process manages the following local data structures.

• For each object m, my_listi[m] defines the list of operations that pi wants

to apply to the object m. Moreover, my_listi[m].first() sets the read head to

point to the first element of this list and returns its value; my_listi[m].current()

returns the operation under the read head; finally, my_listi[m].next() ad-

vances the read head before returning the operation pointed to by the read

head.

• For each object m, operi[m], ac_opi[m] are local variables which contain

operations that pi wants to apply object m (this list can be defined dynami-

cally according to the algorithm executed by pi); tagi[m] is used to contain

a tag returned by an adopt-commit object concerning the object m.

The algorithm is presented in Figure 8. A process pi first initializes its round

number, and the local copy of each object. The array operi[1..k] is such that

operi[m] contains the next operation that pi wants to apply to m. When this is

done, it enters an infinite loop, which constitutes the core of the construction.

To simplify the presentation, and without loss of generality, we consider that all

object operations are different (this can be easily realized with sequence numbers

and process identities). Moreover, we also do not consider the result returned by

each operation.

ri ← 0;

for each m ∈ {1, ..., k} do

statei[m]← initial state of the object m; operi[m]← my_listi[m].first()

end for.

repeat forever

(1) ri ← ri + 1;

(2) 〈ob j, op〉 ← KSC[ri].propose(operi[1..k]);

(3) (tagi[ob j], ac_opi[ob j])← AC[ri][ob j].propose(op);

(4) for each m ∈ {1, ..., k} \ {ob j} do

(tagi[m], ac_opi[m])← AC[ri][m].propose(operi[m]) end for;

(5) for each m ∈ {1, ..., k} do

(6) if (ac_opi[m] is marked “to_be_executed_after” operi[m])

(7) then statei[m].δ(statei[m], operi[m])

(8) end if;

(9) if (operi[m] is not marked “to_be_executed_after′′ ac_opi[m])

(10) then if (tagi[m] = adopt)

(11) then operi[m]← ac_opi[m]

(12) else statei[m]← δ(statei[m], ac_opi[m]); % tagi[m] = commit %

(13) if ac_opi[m] = my_listi[m].current()

(14) then operi[m]← my_listi[m].next()

(15) else operi[m]← my_listi[m].current()

(16) end if;

(17) mark operi[m] “to_be_executed_after” ac_opi[m]

(18) end if

(19) end if

(20) end for

end repeat.

Figure 8: Non-blocking k-universal construction (code of pi)

After it has increased its round number, a process pi invokes the k-simultaneous

consensus object KSC[r] to which it proposes the operation vector operi[1..n],

and from which it obtains the pair denoted 〈ob j, op〉; op is an operation proposed

by some process for the object ob j (line 2). Process pi then invokes the adopt-

commit object AC[r][ob j] to which it proposes the operation op output by KSC[r]

for the object ob j (line 3). Finally, for all the other objects m , ob j, pi invokes

the adopt-commit object AC[r][m] to which it proposes operi[m] (line 4). As al-

ready indicated, the tags and the operations defined by the vector of pairs output

by the adopt-commit objects AC[r][1..k] are saved in the vectors tagi[1..k];and

ac_opi[1..k], respectively. The aim of these lines, realized by the objects KSC[r]

and AC[r][1..m]is to implement a filtering mechanism such that (a) for each ob-

ject, at most one operation can be be committed, and (b) there is at least one object

for which an operation is committed at some process. This filtering mechanism is

explained separately below.

After the execution lines 2-4, for 1 ≤ m ≤ k, 〈tagi[m], ac_opi[m]〉 contains

the operation that pi has to consider for the object m. For each of them it does

the following. First, if ac_opi[m] is marked “to be executed after” operi[m], pi

applies operi[m] to statei[m] (lines 6-8). Then, the predicate of line 9 ensures that

no operation invocation is applied twice on the same object (this line is missing

in [27]). If tagi[m] = adopt, pi adopts ac_opi[m] as its next proposal for the

object m (lines 10-11). Otherwise, tagi[m] = commit. In this case pi first ap-

plies ac_opi[m] to its local copy statei[m] (line 12). Then, if ac_opi[m] was an

operation it has issued, pi computes its next operation operi[m] on the object m

(lines 13-16).

As explained in [27], the use of a naive strategy to update local copies of the

objects, makes possible the following bad scenario. During a round r, a process

p1 executes an operation op1 on its copy of the object m1, while a process p2

executes a operation op2 on a different object m2. Then, during round r + 1, p1

executes a operation op3 on the object m2 without having executed first op2 on its

copy of m2. This bad behavior is prevented from occurring by a combined used

of adopt-commit objects and an appropriate marking mechanism. When a process

pi applies an operation op() to its local copy of an object m, it has necessarily re-

ceived the pair 〈commit, op()〉 from the adopt-commit object associated with the

current round, and consequently the other processes have received 〈commit, op()〉

or 〈adopt, op()〉. The process pi attaches then to its next operation for the object

m (which is denoted operi[m]) the indication that operi[m] has to be applied to

m after op() so that no process executes operi[m] without having previously exe-

cuted op(). Hence, to prevent the bad behavior previously described, a process pi

attaches to operi[m] (line 17) the fact that this operation cannot be applied to any

copy of the object m before the operation ac_opi[m].

As already indicated, this k-universal construction ensures that at least one

process progresses forever (non-blocking progress condition), and at least one

object progresses forever.

Why at least one object operation is committed at every round It was claimed

above that the “filtering mechanism” realized by lines 2-4 ensures that at least one

operation is committed at every round. We prove here this claim. Figure 9 illus-

trates the associated reasoning.

After (at line 2) a process pi1 obtained a pair 〈ob j1, op1〉 from its invoca-

tion KSC[r].propose(operi[1..k]), it invokes AC[r][ob j1].propose(op1) at line 3,

and only then it invokes AC[r][ob j].propose(op1) for each object ob j , ob j1 at

line 4. If its invocation of AC[r][ob j1].propose(op1) at line 3 returns 〈commit,−〉,

the claim follows.

Hence, let us assume that the invocation of AC[r][ob j1].propose(op1) by pi1

returns 〈adopt,−〉. It follows from the “non-conflicting” property of the AC ob-

ject AC[r][ob j1] that another process pi2 has necessarily invoked the operation

AC[r][ob j1].propose(op′) with op′ , op1; moreover this invocation by pi2 was

issued at line 4 (if both pi1 and pi2 had invoked AC[r][ob j1].propose() at line 3,

due to agreement property of AC[r][ob j1], they would have obtained the same

pair from this object at line 3, and consequently pi2 could not have prevented pi1

from obtaining 〈commit,−〉 from the AC object AC[r][ob j1] at line 3). If follows

that pi2 started line 4 before pi1 terminated line 3. The invocation by pi2 at line 3 of

AC[r][−] involved some object ob j2 obtained by pi2 at line 2, and we necessarily

have ob j2 , ob j1).

line 3pix

pi2

pi1

line 3

line 3line 2

AC[r][ob j2].propose()

AC[r][ob j1].propose()

AC[r][ob jx].propose()

precedes

line 4

line 4

precedes

〈ob j1,−〉 ← KSC[r].propose()

AC[r][ob j2].propose()

〈adopt,−〉 ← AC[r][ob j1].propose()

Figure 9: Net effect of the k-SC and CA objects used at lines 2-4 of round r

If the invocation of AC[r][ob j2].propose() returns 〈commit,−〉, the claim fol-

lows. Otherwise, due to the agreement property of AC[r][ob j2], there is a process

pi3, different from pi1 and pi2, such that the execution pattern between pi3 , pi2

is the same as the previous pattern between pi2 , pi1, etc. The claim then follows

by induction and the fact that there is finite number of processes.

5.6 Ultimate universal construction “ℓ among k”

The previous NB-compliant k-universal construction ensures that at least one ob-

ject progresses forever, and one process progresses forever. Hence, the natural

question: Is it possible to design a universal construction in which at least ℓ ob-

jects progress forever, where 1 ≤ ℓ ≤ k, and all correct processes progress forever

(wait-freedom progress condition).

Such a very general universal construction was proposed by M. Raynal, J.

Stainer, and G. Taubenfeld in [55]. It rests on an extension of the k-SC object

called (k, ℓ)-simultaneous consensus.

(k, ℓ)-simultaneous consensus Let ℓ ∈ {1, ..., k}. A (k, ℓ)-SC object is a k-

SC object (see Section 5.5) where instead of a single pair 〈x, v〉, the operation

propose() returns a set of exactly ℓ pairs {〈x1, v1〉, ..., 〈xℓ, vℓ〉}, such that all the

pairs differ in their first component.

It is easy to see that (k, 1)-SC object is a k-SC object (and consequently a k-

SA object). Moreover, a (k, k)-SC object is a consensus object. It is also easy to

see that a (k, k)-SC object is a consensus object. For k > 1, a (k, ℓ)-SC object is

weaker than a (k, ℓ + 1)-SC object.

(k, ℓ)-Universal construction The (k, ℓ)-universal construction presented in [55]

borrows the lines 1-4 of Figure 8, in which k-SC objects are replaced by (k, ℓ)-SC

objects. All the rest of the construction, which is built incrementally, is based on

a different approach. A non-blocking k-universal construction is first described,

and then enriched step by step to obtain the final WF-compliant (k, ℓ)-universal

construction. Its noteworthy features are the following.

• On the object side. At least ℓ among the k objects progress forever, 1 ≤ ℓ ≤

k. This means that an infinite number of operations is applied to each of

these ℓ objects. This set of ℓ objects is not predetermined, and depends on

the execution.

• On the process side. The progress condition associated with processes is

wait-freedom. That is, a process that does not crash executes an infinite

number of operations on each object that progresses forever.

• An object stops progressing when no more operations are applied to it. The

construction guarantees that, when an object stops progressing, all its copies

stop in the same state (at the non-crashed processes).

• The construction is contention-aware. This means that the overhead intro-

duced by using operations on memory locations other than atomic read/write

registers is eliminated when there is no contention during the execution of

an object operation. In the absence of contention, a process completes its

operations by accessing only read/write registers.

• The construction is generous with respect to obstruction-freedom. This

means that each process is able to complete its pending operations on all

the k objects each time all the other processes hold still long enough. That

is, if once and again all the processes except one hold still long enough, then

all the k objects, and not just ℓ objects, are guaranteed to always progress.

• Last but least, it is shown in [55] that (k, ℓ)-simultaneous consensus objects

are necessary and sufficient to implement a (k, ℓ)-universal construction, i.e.

to ensure that at least ℓ among k objects progress forever while guaranteeing

the wait-freedom progress condition to the processes. Relations between

(k, k − p)-SC objects and (p + 1)-set agreement objects for 0 ≤ p < k are

also investigated in [55].

6 Universal Construction

vs Software Transactional Memory

A universal construction concerns the distributed implementation of concurrent

objects defined by a sequential specification. The concept of a software transac-

tional memory (STM), introduced in [35], and later refined in [57], is different.

Its aim is to provide the programmers with a language construct (called transac-

tion) that discharges them from the management of synchronization issues. In this

way, a programmer can concentrate his efforts on which parts of processes have

to be executed atomically and not on the way atomicity is realized. This last issue

is then the job of the underlying STM system. Among others, main differences

between universal constructions and STM systems are the following.

• Object operations are defined a priori (statically), and the universal con-

struction knows them. Differently, the transactions are defined dynamically,

and the STM system has no priori knowledge of their content and their ef-

fects.

Let us also notice that, despite the fact they have the same name, database

transactions [28] and STM transactions are not the same. Database trans-

actions are constrained in the sense that they are the result of a queries

expressed in a given formalism. Differently, STM transactions can be any

piece of code produced by a programmer, which must be executed atomi-

cally. Moreover, usually the code of the STM transactions is not known by

the STM system.

• The consistency condition of concurrent objects (captured at run-time by

linearizability [38]) and the consistency conditions of STM systems (e.g.,

opacity [29], virtual world consistency [40], or TMS1 [20]) are different.

Among other points, this come from the fact that any two transactions are a

priori independent.

• Due to their very nature, universal constructions consider failure-prone sys-

tems. Differently, some STMs address failure-free systems while others

address failure-prone systems.

7 Conclusion

The aim of this article was to be a guided visit to universal constructions in

asynchronous crash-prone systems, where the processes communicate through a

shared memory. As announced in the introduction, its ambition is not to be an

exhaustive catalog of the numerous universal constructions proposed so far, but a

relatively easy to understand introduction to the “universal construction” problem

and the important concepts, objects, and approaches, which constitute the founda-

tions of the associated algorithms.

To this end, the article has first presented a simple construction based on hard-

ware operations on memory locations, namely the LL/SC pair of operations. It

then moved from hardware-provided operations to agreement objects, and pre-

sented a simple consensus-based universal construction. Finally, the article con-

sidered the case where the aim is not to address the construction of a single object,

but the coordinated construction of several objects. It is important to realize that,

if not all the objects which are built are required to progress forever, hardware op-

erations such as LL/SC or Compare&Swap are stronger than necessary to build

universal constructions.

As a final remark, let us notice that OB-compliant (obstruction-free) universal

constructions do not require to enrich the system with the additional computa-

tional power provided by instructions such as LL/SC or agreement objects, i.e.,

they can be done in the basic system model CARW[∅]. This remains true even

if the processes are anonymous. The algorithms presented in [11] build a consen-

sus object and a repeated consensus object respectively, in such an asynchronous

crash-prone anonymous read/write system with only n read/write atomic registers,

which we conjecture to be optimal (it is proved in [63] that at least (n−1) registers

are necessary).

Acknowledgments

This work was partially supported by the Franco-German DFG/ANR project DIS-

CMAT devoted to connections between mathematics and distributed computing

(ANR-14-CE35-0010-02), and the French ANR project DESCARTES devoted to

distributed software engineering (ANR-16-CE40-0023-03). A special thank to

Stefan Schmid for his careful reading of the article.

References

[1] Afek Y., Attiya H., Dolev D., Gafni E., Merritt M., and Shavit N., Atomic snapshots

of shared memory. Journal of the ACM, 40(4):873-890 (1993)

[2] Afek Y., Dauber D., and Touitou D., Wait-free made fast. Proc. 27th ACM Sympo-

sium on Theory of Computing (STOC’95), ACM Press, pp. 538-547 (1995)

[3] Afek Y., Gafni E., Rajsbaum S., Raynal M., and Travers C., The k-simultaneous

consensus problem. Distributed Computing, 22(3):185-195 (2010)

[4] Aguilera M.K., Frolund S., Hadzilacos V., Horn S.L., and Toueg S., Abortable and

query-abortable objects and their efficient implementation. Proc. 26th ACM Sympo-

sium on Principles of Distributed Computing (PODC’07), ACM Press, pp. 23-32

(2007)

[5] Anderson J.H., Multi-writer composite registers. Distributed Computing, 7(4):175-

195 (1994)

[6] Anderson J. and Moir M., Universal constructions for large objects. IEEE Transac-

tions on Parallel and Distributed Systems, 10(12):1317-1332 (1999)

[7] Attiya H., Bar-Noy A., Dolev D., Peleg D., and Reischuk R., Renaming in an asyn-

chronous environment. Journal of the ACM, 37(3):524-548 (1990)

[8] Ben-David N., Cheng Chan D.Y., Hadzilacos V. and Toueg S., k-Abortable objects:

progress under high contention. Proc. 30th Int’l Symposium on Distributed Comput-

ing (DISC’16), Springer LNCS 9888, pp. 298-312 (2016)

[9] Bartlett K. A., Scantlebury S. A., and Wilkinson P. T., A note on reliable full-duplex

transmission over half-duplex links. Communications of the ACM, 12(5):260-261

(1969)

[10] Borowsky E. and Gafni E., Generalized FLP impossibility results for t-resilient

asynchronous computations. Proc. 25th ACM Symposium on Theory of Computing

(STOC’93), ACM Press, pp. 91-100 (1993)

[11] Bouzid Z., Raynal M., and Sutra P., Anonymous obstruction-free (n, k)-set agree-

ment with (n − k + 1) atomic read/write registers. Proc. 19th Int’l Conference On

Principles Of Distributed Systems (OPODIS’15), Leibniz Int’l Proceedings in Infor-

matics, LIPICS 46, Article 18:1-17 (2015)

[12] Bouzid Z. and Travers C., Simultaneous consensus is harder than set agreement

in message-passing. Proc. 33rd Int’l IEEE Conference on Distributed Computing

Systems (ICDCS’13), IEEE Press, pp. 611-620 (2013)

[13] Brinch Hansen, P., The origin of concurrent programming. Springer, 534 pages,

ISBN 0-387-95401-5 (2002)

[14] Bushkov V. and Guerraoui G., Safety-liveness exclusion in distributed computing.

Proc. 34th ACM Symposium on Principles of Distributed Computing (PODC’15),

ACM Press, pp. 227-236 (2015)

[15] Capdevielle Cl., Johnen C., and Milani A., Solo-fast universal constructions for de-

terministic abortable objects. Proc. 28th Int’l Symposium on Distributed Computing

(DISC’14), Springer LNCS 8784, pp. 288-302 (2014)

[16] Castañeda A., Rajsbaum S., and Raynal M., The renaming problem in shared mem-

ory systems: an introduction. Elsevier Computer Science Review, 5:229-251 (2011)

[17] Censor-Hillel K., Petrank E., and Timnat S., Help! Proc. 34th Symposium on Prin-

ciples of Distributed Computing (PODC’15), ACM Press, pp. 241-250 (2015)

[18] Chandra T.D. and Toueg S., Unreliable failure detectors for reliable distributed sys-

tems. Journal of the ACM, 43(2):225-267 (1996)

[19] Chaudhuri S., More choices allow more faults: set consensus problems in totally

asynchronous systems. Information and Computation, 105(1):132-158 (1993)

[20] Doherty S., Groves L., Luchangco V., and Moir M., Towards formally specify-

ing and verifying transactional memory. Formal Aspects of Computing, 25:769-799

(2013)

[21] Ellen F., Fatourou P., Kosmas E., Milani A., and Travers C., Universal constructions

that ensure disjoint-access parallelism and wait-freedom. Distributed Computing,

29:251-277 (2016)

[22] Ellen F., Gelashvili G., Shavit N. and Zhu L., A complexity-based hierarchy for

multiprocessor synchronization (Extended abstract). Proc. 35th ACM Symposium on

Principles of Distributed Computing (PODC’16), ACM Press, pp. 289-298 (2016)

[23] Fatourou P. and Kallimanis N.D., The RedBlue adaptive universal constructions.

Proc. 23rd Symposium on Distributed Computing (DISC’09), Springer LNCS 5805,

pp. 127-141 (2009)

[24] Fatourou P. and Kallimanis N.D., Highly-efficient wait-free synchronization. Theory

of Computing Systems, 55:475-520 (2014)

[25] Fischer M.J., Lynch N.A., and Paterson M.S., Impossibility of distributed consensus

with one faulty process. Journal of the ACM, 32(2):374-382 (1985)

[26] Gafni E., Round-by-round fault detectors: unifying synchrony and asynchrony.

Proc. 17th ACM Symposium on Principles of Distributed Computing (PODC), ACM

Press, pp. 143-152 (1998)

[27] Gafni E. and Guerraoui R., Generalizing universality. Proc. 22nd Int’l Conference

on Concurrency Theory (CONCUR’11), Springer LNCS 6901, pp. 17-27 (2011)

[28] Gray J., Notes on database operating systems. Advanced course on Operating Sys-

tems, Springer LNCS 60, pp. 393-481 (1978)

[29] Guerraoui R. and Kapalka M., On the correctness of transactional memory. Proc. 3rd

ACM Symposium on Principles an Practice of Parallel Programming (PPOPP’03),

ACM Press, pp. 175-184 (2008)

[30] Guerraoui R. and Raynal M., A universal construction for wait-free objects. Proc.

Workshop on Foundations of Fault-Tolerant Distributed Computing (FOFDC 2007),

Computer Society Press, pp. 959-966 (2007)

[31] Hadzilacos V. and Toueg S., On deterministic abortable objects. Proc. 35th ACM

symposium on Principles of Distributed Computing (PODC’13), ACM Press, pp. 4-

12 (2013)

[32] Herlihy M.P., Wait-free synchronization. ACM Transactions on Programming Lan-

guages and Systems, 13(1):124-149 (1991)

[33] Herlihy M.P., A methodology for implementing highly concurrent data objects.

ACM Transactions on Programming Languages and Systems, 15(5):745-770 (1993)

[34] Herlihy M.P., Luchangco V., and Moir M., Obstruction-free synchronization:

double-ended queues as an example. Proc. 23th Int’l IEEE Conference on Dis-

tributed Computing Systems (ICDCS’03), IEEE Press, pp. 522-529 (2003)

[35] Herlihy M. and Moss J.E.B., Transactional memory: architectural support for lock-

free data structures. Proc. 20th Annual International Symposium on Computer Ar-

chitecture (ISCA’93), ACM Press, pp. 289-300 (1993)

[36] Herlihy M., Rajsbaum S., and Raynal M., Power and limits of distributed computing

shared memory models. Theoretical Computer Science, 509:3-24 (2013)

[37] Herlihy M.P. and Shavit N., The topological structure of asynchronous computabil-

ity. Journal of the ACM, 46(6):858-923 (1999)

[38] Herlihy M.P. and Wing J.M, Linearizability: a correctness condition for concurrent

objects. ACM Transactions on Programming Languages and Systems, 12(3):463-

492 (1990)

[39] Imbs D. and Raynal M., Help when needed, but no more: efficient read/write partial

snapshot. Journal of Parallel and Distributed Computing, 72(1):1-13 (2012)

[40] Imbs D. and Raynal M., Virtual world consistency: A condition for STM systems

(with a versatile protocol with invisible read operations). Theoretical Computer Sci-

ence, 444:113-127 (2012)

[41] Imbs D., Raynal M., and Taubenfeld G., On asymmetric progress conditions. Proc.

29th ACM Symposium on Principles of Distributed Computing (PODC’10), ACM

Press, pp. 55-64 (2010)

[42] Kramer S. N., History begins at Sumer: thirty-nine firsts in man’s recorded history.

University of Pennsylvania Press, 416 pages, ISBN 978-0-8122-1276-1 (1956)

[43] Lamport L., Time, clocks, and the ordering of events in a distributed system. Com-

munications of the ACM, 21(7):558-565 (1978)

[44] Lamport L., On interprocess communication, Part I: basic formalism. Distributed

Computing, 1(2):77-85 (1986)

[45] Lamport L., Fast mutual exclusion. ACM Transactions on Computer Systems, 5(1):1-

11 (1987)

[46] Lamport L., Shostack R. and Pease M., The Byzantine generals problem. ACM

Transactions on Programming Languages and Systems, 4(3)-382-401 (1982)

[47] Loui M. and Abu-Amara H., Memory requirements for agreement among unreliable

asynchronous processes. Advances in Computing Research, 4:163-183, JAI Press

(1987)

[48] Lynch W. C., Reliable full-duplex file transmission over half-duplex telephone lines.

Communications of the ACM, 11(6):407-410 (1968)

[49] Mostéfaoui A., Perrin M., and Raynal M., A simple object that spans the whole

consensus hierarchy. Submitted to publication, (2016)

[50] Neugebauer O. E., The exact sciences in Antiquity. Princeton University Press

(1952); 2nd edition: Brown University Press, (1957); Reprint: Dover publications

(1969)

[51] Post E. L., Formal reductions of the general combinatorial decision problem. Amer-

ican Journal of Mathematics, 65 (2):197-215 (1943)

[52] Raynal M., Concurrent programming: algorithms, principles and foundations.

Springer, 515 pages, ISBN 978-3-642-32026-2 (2013)

[53] Raynal M., Concurrent systems: hybrid object implementations and abortable ob-

jects. Proc. 21th Int’l European Parallel Computing Conference (EUROPAR’15),

Springer LNCS 9233, pp. 3-15 (2015)

[54] Raynal M. and Stainer J., Simultaneous consensus vs set agreement: a message-

passing-sensitive hierarchy of agreement problems. Proc. 20th Int’l Colloquium on

Structural Information and Communication Complexity (SIROCCO 2013), Springer

LNCS 8179, pp. 298-309 (2013)

[55] Raynal M., Stainer J., and Taubenfeld G., Distributed universality. Algorithmica,

76(2):502-535 (2016)

[56] Saks M. and Zaharoglou F., Wait-free k-set agreement is impossible: the topology

of public knowledge. SIAM Journal on Computing, 29(5):1449-1483 (2000)

[57] Shavit N. and Touitou D., Software transactional memory. Distributed Computing

10(2):99-116 (1997)

[58] Taubenfeld G., Synchronization algorithms and concurrent programming. 423

pages, Pearson Education/Prentice Hall, ISBN 0-131-97259-6 (2006)

[59] Taubenfeld G., Contention-sensitive data structure and algorithms. Proc. 23rd Int’l

Symposium on Distributed Computing (DISC’09), Springer LNCS 5805, pp. 157-

171 (2009)

[60] Taubenfeld G., The computational structure of progress conditions. Proc. 24th Int’l

Symposium on Distributed Computing (DISC’10), Springer LNCS 6343, pp. 221-

235 (2010)

[61] Turing A. M., On computable numbers with an application to the Entschei-

dungsproblem. Proc. of the London Mathematical Society, 42:230-265 (1936)

[62] Wantzel P. L., Recherches sur les moyens de reconnaître si un problème de géométrie

peut se résoudre avec la règle et le compas, Journal de mathématiques pures et

appliquées, 1(2):366-372 (1837)

[63] Zhu L., A tight space bound for consensus. Proc. 48th ACM Symposium on Theory

of Computing (STOC’16), ACM Press, pp. 345-350 (2016)

	Introduction
	Basic Asynchronous Read/Write Model CARWn[]
	A Simple LL/SC-Based WF-Compliant Universal Construction
	Extending CARWn[] with LL/SC
	A simple universal construction in CARWn[LL/SC]
	The case of large objects

	Extensions
	On the implementation side: Disjoint-access parallelism
	On the object side: Abortable objects

	From Operations on Memory Locations to Agreement Objects
	Primitive operations versus objects
	A fundamental agreement object: consensus
	A simple consensus-based universal construction
	Consensus number and the consensus hierarchy
	Universal construction ``1 among k''
	Ultimate universal construction `` among k''

	Universal Construction vs Software Transactional Memory
	Conclusion
	Introduction
	Transactional memory model and preliminaries
	Complexity of blocking TMs
	Sequential TMs
	Progressive TMs
	Strongly progressive TMs
	On the cost of permissive opaque TMs

	Complexity of non-blocking TMs
	Lower bounds for obstruction-free TMs
	Blocking versus non-blocking TMs

	Lower bounds for partially non-blocking TMs
	The space complexity of invisible reads
	On the cost of disjoint-access parallelism

	Hybrid Transactional Memory
	Research directions and open questions

