
The Education Column
by

Juraj Hromkovič

Department of Computer Science
ETH Zürich

Universitätstrasse 6, 8092 Zürich, Switzerland
juraj.hromkovic@inf.ethz.ch

http://www.inf.ethz.ch
http://www.ethz.ch
 juraj.hromkovic@inf.ethz.ch

Algorithmic Thinking from the Start

Juraj Hromkovič juraj.hromkovic@inf.ethz.ch
Tobias Kohn tobias.kohn@inf.ethz.ch
Dennis Komm dennis.komm@inf.ethz.ch

Giovanni Serafini giovanni.serafini@inf.ethz.ch

Department of Computer Science, ETH Zurich, Switzerland

Abstract

Programming education is about introducing the language and way
of thinking of computer science itself, and not only about teaching a
specific programming language. We are actively involved in reaching
out to teachers at primary, at lower and at higher secondary schools,
and in training them to successfully teach programming (and computer
science in a broader sense) to students while aiming at getting to the
core of programming education as early as possible; i. e., avoiding a
lengthy introduction to syntactical details, but teaching algorithmic
thinking. In this paper, we describe a few corner stones of our approach
towards teaching computer science with the above points in mind.

1 Our Approach in a Nutshell
A sustainable computer science education must by its very definition not
solely focus on teaching a specific programming l anguage or using specific
software on a computer. A programming language in school is merely a means
to teach the basic concepts of computer science such as the modular design of
algorithms and algorithmic thinking. In this paper, we outline our approach
towards teaching programming in primary school as well as lower and higher
secondary school using a spiral curriculum. Our main objective is to point out
how to teach algorithmic thinking already at the beginning of programming
education. In particular, an introduction to programming is not necessarily
a precursor to teaching algorithmic thinking, but rather provides the very
means to teach algorithmic thinking.

juraj.hromkovic@inf.ethz.ch
tobias.kohn@inf.ethz.ch
dennis.komm@inf.ethz.ch
giovanni.serafini@inf.ethz.ch

Algorithmic thinking and spiral curriculum. We consider algorithmic
thinking and computational thinking as two equivalent and interchangeable
ways to express the same concept, even though they were first introduced
in different eras (algorithmic thinking has been in use for several decades,
while computational thinking is a more recent term). We believe that a sound
definition of algorithmic thinking should by rooted in the scientific core of
computer science as proposed by Aho:

“We consider computational thinking to be the thought process
involved in formulating problems so their solutions can be repre-
sented as computational steps and algorithms.” [1]

This leaves us with the question of how to successfully teach algorithmic
thinking. With the idea of using a spiral curriculum, we actually build upon
sound and well-known didactic principles.

In the early 1960s, the Harvard psychologist and father of the cognitive
revolution Jerome Bruner argued the value of pedagogically and didactically
proper design of early teaching:

“The early teaching of science, mathematics, social studies, and
literature should be designed to teach these subjects with scrupu-
lous intellectual honesty, but with an emphasis upon the intuitive
grasp of ideas and upon the use of these basic ideas.” [3]

Moreover, Bruner pointed out the inherently iterative nature of learning
and postulated the need for a so-called spiral curriculum that avoids to
introduce a large number of new key concepts at once. Learning is, in his eyes,
a carefully designed game between intuition, a stepwise rising knowledge, and
continuously increasing abstraction skills of the students.

“A curriculum as it develops should revisit these basic ideas re-
peatedly, building upon them until the student has grasped the
full formal apparatus that goes with them.” [3]

We aim at introducing students to algorithmic thinking very early while
teaching them how to program. Moreover, the students should learn from the
beginning to design their programs in a proper and structured way. In the
spirit of a spiral curriculum, we start at primary school, continue this process
at lower secondary school, and carry it on later at higher secondary school.
In this paper, we exemplify our approach by showing how we introduce and
gradually extend the notion of a loop.

Implementation. Our classes are all taught in Logo and Python, respec-
tively, since these languages allow a focus on concepts rather than the language
itself [7]. In Logo, we can start with simple commands that directly induce a
visual feedback (by moving a turtle on the screen), and consequently testing
and correcting programs becomes available already for beginners and children.
Python is also well-suited for classroom use, especially since it includes turtle
graphics as well, and thus allows for a smooth transition from Logo to Python.
Moreover, TigerJython [2] offers a variable-free looping construct as in Logo.
This supports our spiral teaching approach, and we have gained very positive
experience in that our students take loops as a natural concept and exhibit
less problems writing programs with loops [7].

Without having a variable-free looping construct, we can either choose to
introduce variables prior to loops, leave the occurring variables as a bit of
magic in the code, or introduce loops together with variables at the same time.
All three approaches are unsatisfactory, as pointed out earlier [7]: The first
contrasts with the desire to use loops as early as possible in the curriculum
as one of the starting points of abstraction. The second one comes with
the danger of leaving students with the feeling of not being able to fully
understand the programs they are to write. Finally, the third one comes with
a steep learning curve as the students have to master at least two concepts
simultaneously. Having the concept of a loop introduced in its simplest form
(i. e., the repeat-loop with a fixed number of i terations), even children (ages
9 to 12) can be enabled to grasp this concept, before it is revisited in more
and more complex ways.

Programming environments. Our class activities in Logo rely on a re-
designed version of the open source Java application XLogo [9]. The main
objectives of the XLogo4Schools programming environment [13] focus on
reducing the extraneous cognitive load of the learning environment by re-
thinking the user interface as well as by considerably improving both the
quality of the graphical output and the general performance of the application.
Last year alone, some 1200 students of primary schools in Switzerland were
introduced to programming with XLogo4Schools.

XLogo online is a browser-based, single-page programming environment
for schools intended to be the successor of XLogo4Schools. It relies on
modern, state-of-the-art web technologies, offers a reactive design allowing
for running it on a broad set of devices, and can be used in both an online
and an offline mode. XLogo online was conceived and developed as part of
a Master’s thesis [11]. We plan to make it publicly available within a couple
of weeks.

For Python programming, we have also created a dedicated develop-
ment environment, suited for students and classroom teaching: TigerJython.
Apart from the simple user interface, it includes a debugger and enhanced
compiler messages, both specifically directed at the novice programming
student. Like XLogo4Schools, the environment is freely available online [2].

Turtle graphics. Turtle graphics provides an excellent model of a pro-
grammable machine as the current state and the properties of the turtle
are directly observable, which serves as the aforementioned direct feedback.
Besides that, the basic instructions for movement fit well into the students’
mental models [7], and the turtle serves as a metaphor for introducing various
new concepts. Defining a new function, for instance, can be motivated as
“teaching the Turtle a new word” [10]. Yet, the students learn that the com-
munication with the computer (the turtle, respectively) needs to be precise.
Since computers have no intellect, there is no room for interpretation.

2 Modular Design of Algorithms
Students start out with a very limited set of words, each standing for a specific
instruction given to the machine. Assume that the students already know
how to move the turtle forward (fd) and backward (back) on a straight line,
how to raise (pu) and lower (pd) the pen, how to rotate it (lt and rt) as
well as how to iterate over a sequence of instructions for a predefined number
of times (the aforementioned repeat-loop); these commands constitute the
current “vocabulary” of the turtle. Teaching these basic building blocks of
Logo does not take more time than four lessons.

In subsequent activities, the students learn how to develop a table that
consists of rows of identical objects in a proper modular way [8]. More
specifically, while the program for drawing a house is already available in the
teaching material [4, 5, 6], the students are expected to consequently apply
the concept of modular design, which they have practiced before. The steps
are to

• identify the next shape or pattern they can systematically reuse,

• write a sequence of instructions for drawing it,

• give this subprogram a name, and

• test and iteratively improve the code until the solution meets the
assignment.

Figure 1: A small town that consists of 15 houses in XLogo4Schools.

To this end, the primary-school students are given the following program
accompanied by an exercise, which asks them to study the effects of each
command in detail.

to HOUSE
rt 90
repeat 4 [fd 50 rt 90]
lt 60 fd 50 rt 120 fd 50 lt 150

end

Next, they are told how to design the following program HOUSEROW.
to HOUSEROW

repeat 5 [HOUSE rt 90 pu fd 50 lt 90 pd]
end

This program uses HOUSE as a subprogram. Here, the most difficult task is
to position the turtle in such a way that, after each iteration, the new house
is drawn at the correct coordinates.

Finally, the students are asked to use the modular approach in order to
draw the town that consists of multiple streets. This way, the students learn
how to extend the vocabulary of the turtle step by step with more complex
programs. The crucial observation is that the overall complexity is hidden in
the smaller subprograms. The students learn that modular development is a
systematic and efficient problem-solving strategy. Moreover, they experience

that subsequent changes in a basic module of a properly developed complex
program require no or very limited additional programming effort.

3 Spiral Curriculum
As mentioned above, our goal is to spend as little time as possible on syntacti-
cal details of the programming language used, especially at the beginning. In
fact, this section exemplifies the notion of repeatedly building on, and expand-
ing the understanding of, one single programming construct throughout the
curriculum. Students are not exposed to the full syntax from the beginning,
but expand their knowledge of one construct as they progress throughout the
curriculum. The focus here is not on the form of a loop, but rather on how it
can be used to solve specific problems, and simplify the students’ programs.

Both XLogo4Schools and TigerJython allow us to introduce and apply
the concept of a loop without having to even mention variables. The following
programs show implementations of drawing squares (as already used as part
of the program HOUSE) first in XLogo4Schools and then TigerJython, which
is one of the first tasks students are confronted with.

repeat 4 [forward 100 left 90]

repeat 4:
forward (100)
left (90)

At a later stage, we revisit loops after having introduced the concept of
parameters (variables whose values are not changed during runtime); the
following two programs give examples.

to polygon :n
repeat :n [forward 100 left 360/ :n]

end

def polygon (n):
repeat n:

forward (100)
left (360/n)

Yet later, either at lower or at the beginning of higher secondary school,
and after having generalized parameters to variables, we can use loops in a
more general way, by first using a variable inside a repeat-loop, and finally
while-loops. This way, the concept of loops gets revisited again and again
with increasing both complexity and ability of the students.

x = 30
repeat 20:

forward (x)
left (90)
x += 10

x = 30
while x < 250:

forward (x)
left (90)
x += 10

Such spiral approaches combined into a spiral curriculum proved to be
very precious in order to keep the students interested all along the way while
simultaneously focusing on teaching problem-solving strategies of increasing
complexity and continuously extending the programming abilities of the
students.

4 Conclusions
Algorithmic or computational thinking has become an essential part of any
comprehensive general education. To succeed, it is vital that we start with
algorithmic thinking early on, and help the students advance towards, ulti-
mately, mastery of the subject.

Instead of a sequential curriculum, starting with programming, and then
moving on to algorithmic thinking, we propose an interleaved approach,
a spiral curriculum. Programming is not seen as a mere prerequisite for
intermediate and advanced topics in computer science, but rather as an
opportunity to start teaching the core principles of algorithmic thinking from
the beginning on. An example of algorithmic thinking in early programming
is modular design as presented in this article.

References
[1] Alfred V. Aho. Computation and Computational Thinking. The Computer

Journal, Volume 55 Issue 7:832–835, Oxford University Press, 2012.

[2] Jarka Arnold, Tobias Kohn, and Aegidius Plüss. http://www.tigerjython.
ch. Last visited on January 30th, 2017.

[3] Jerome S. Bruner. The Process of Education. Harvard University Press, revised
edition, 1976.

http://www.tigerjython.ch
http://www.tigerjython.ch

[4] Heidi Gebauer, Juraj Hromkovič, Lucia Keller, Ivana Kosírová, Gio-
vanni Serafini, and Björn Steffen. Programmieren mit LOGO. http:
//abz.inf.ethz.ch/wp-content/uploads/unterrichtsmaterialien/
primarschulen/logo_heft_de.pdf.

[5] Heidi Gebauer, Juraj Hromkovič, Lucia Keller, Ivana Kosírová, Gio-
vanni Serafini, and Björn Steffen. Programming in LOGO. http:
//abz.inf.ethz.ch/wp-content/uploads/unterrichtsmaterialien/
primarschulen/logo_heft_en.pdf.

[6] Juraj Hromkovič. Einführung in die Programmierung mit LOGO – Lehrbuch
für Unterricht und Selbststudium. Springer, 3rd edition, 2014.

[7] Juraj Hromkovič, Tobias Kohn, Dennis Komm, and Giovanni Serafini. Combin-
ing the power of Python with the simplicity of Logo for a sustainable computer
science education. In Proceedings of the 9th International Conference on
Informatics in Secondary Schools (ISSEP 2016), volume 9973 of LNCS, pages
155–166, Springer-Verlag 2016.

[8] Juraj Hromkovič, Tobias Kohn, Dennis Komm, and Giovanni Serafini. Ex-
amples of algorithmic thinking in programming education. Olympiads in
Informatics 10:111–124, 2016.

[9] Loïc Le Coq. xLogo. http://xlogo.tuxfamily.org/. Last visited on January
30th, 2017.

[10] Seymour Papert. Mindstorms. Basic Books, 2nd edition, 1993.
[11] Jacqueline Staub. xLogo online – a web-based programming IDE for Logo.

Master’s Thesis, ETH Zurich, 2016. https://e-collection.library.ethz.
ch/view/eth:49742?lang=en.

[12] John Sweller. Cognitive load theory. Volume 55 of Psychology of Learning
and Motivation, pages 37–76. Academic Press, 2011.

[13] Marko Zivković. XLogo4Schools. http://sourceforge.net/projects/
xlogo4schools/. Last visited on January 30th, 2017.

http://abz.inf.ethz.ch/wp-content/uploads/unterrichtsmaterialien/primarschulen/logo_heft_de.pdf
http://abz.inf.ethz.ch/wp-content/uploads/unterrichtsmaterialien/primarschulen/logo_heft_de.pdf
http://abz.inf.ethz.ch/wp-content/uploads/unterrichtsmaterialien/primarschulen/logo_heft_de.pdf
http://abz.inf.ethz.ch/wp-content/uploads/unterrichtsmaterialien/primarschulen/logo_heft_en.pdf
http://abz.inf.ethz.ch/wp-content/uploads/unterrichtsmaterialien/primarschulen/logo_heft_en.pdf
http://abz.inf.ethz.ch/wp-content/uploads/unterrichtsmaterialien/primarschulen/logo_heft_en.pdf
http://xlogo.tuxfamily.org/
https://e-collection.library.ethz.ch/view/eth:49742?lang=en
https://e-collection.library.ethz.ch/view/eth:49742?lang=en
http://sourceforge.net/projects/xlogo4schools/
http://sourceforge.net/projects/xlogo4schools/

	BEATCS_119___Education_Column
	algorithmic_thinking
	Our Approach in a Nutshell
	Modular Design of Algorithms
	Spiral Curriculum
	Conclusions

