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Perhaps the oldest algorithmic technique used for the Graph Isomorphism
prob-lem is the Weisfeiler-Lehman procedure. Invented in the late 1960’s, it
has attracted research in several directions over the last five decades, and
continues to be an actively researched topic. Algorithmists invariably use this
procedure in combination with others tools for Graph Isomorphism. Logicians
interested in descriptive complexity have found logical characterizations for it.
There is a linear programming connection to the Weisfeiler-Lehman proce-
dure, and the Sherali-Adams hierarchy for the natural LP relaxation of a 0-1
integer linear pro-gram for Graph Isomorphism turns out to be intimately con-
nected to ”higher dimensional” versions of the procedure.

This brief essay, meant as an invitation to the topic, will touch upon these
as-pects of the Weisfeiler-Lehman procedure. However, it is by no means a
complete survey.
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1 Introduction
Two simple, undirected n-vertex graphs X = (V,E) and X ′ = (V ′, E ′) are
isomorphic if there is a bijection π : V → V ′ that maps edges to edges and
non-edges to non-edges. I.e.

{uπ, vπ} ∈ E ′ ↔ {u, v} ∈ E.
The Graph Isomorphism problem is to test if a given pair of graphs X,X ′

are isomorphic. A generic procedure for the Graph Isomorphism problem
builds on a simple color refinement procedure. It is an iterative procedure
for coloring the vertices of a graph X:

• To begin with, all vertices have the same color.

• In each color refinement step, if two vertices u and v have the same
color but their neighborhoods are differently colored (counting color
multiplicity), then u and v get fresh different colors.

This iterative procedure stops when the coloring does not refine any fur-
ther, i.e. it becomes a stable coloring.

Color refinement y ields a  s imple i somorphism t est when a pplied t o the 
disjoint union X t X ′ of X and X ′. In the stable coloring for X t X ′, if 
the number of vertices colored c, for some color c is different in X and X ′
then they are clearly not isomorphic. But the converse is not always true. 
For example, if X and X ′ are two regular nonisomorphic graphs then the 
stable coloring is just the initial coloring which does not distinguish between 
any two vertices. Nevertheless, this simple method is a basic tool in many 
of the current algorithms for Graph Isomorphism. Even practical Graph 
Isomorphism testing tools like NAUTY [18] are based on color refinement.

The color refinement method d ates b ack t o a  1 968 p aper by Weisfeiler 
and Lehman [23], where they actually proposed a stronger method of coloring



pairs of vertices. This was subsequently generalized to the k-dimensional
Weisfeiler-Lehman method (k-WL for short) for a graph X = (V,E). The
k-WL procedure colors k-tuples of vertices of X. Two k-tuple (u1, . . . , uk)
and (v1, . . . , vk) are i-adjacent if uj = vj for all j 6= i.

• Initially all k-tuples of vertices (u1, u2, . . . , uk) are colored by the iso-
morphism type of the induced ordered subgraphs. I.e. (u1, . . . , uk) and
(v1, . . . , vk) are colored the same if and only if the map ui 7→ vi is an
isomorphism between the respective induced k-vertex subgraphs.

• In a general refinement step, the k-tuples (u1, . . . , uk) and (v1, . . . , vk)
are colored different if for some index i, there are a different number of
k-tuples colored c that are i-adjacent to (u1, . . . , uk) and (v1, . . . , vk).

The above procedure stops when a stable coloring is reached, which will 
clearly be in at most |V |k refinement s teps. It turns out that 2-WL coincides 
with the color refinement procedure.

A graph X is said to be identified by c olor r efinement if  fo r an y noni-
somorphic graph X ′, the above procedure distinguishes them. For instance, 
trees (and forests) are identified by c olor r efinement. Fu rthermore, Babai, 
Erdös and Selkow [4] have shown that a random graph is identified by color 
refinement w ith h igh p robability; i n f act, t he s table c oloring g ives distinct 
colors to all vertices in a mere two rounds. For larger k, the k-WL method 
is known to be more powerful. For instance, it follows from [16] that 3-WL 
succeeds with high probability on random regular graphs. There is a fixed k 
such that k-WL succeeds on all planar graphs [11]. Furthermore, Grohe has 
extended this result to all graph classes characterized by excluded minors 
[12].

When precisely are two graphs X and X ′ indistinguishable by color re-
finement? I .e. for which pair of graphs X  and X ′ does it hold that when we 
run color refinement o n t heir d isjoint u nion X  t X ′ a nd o btain t he stable 
coloring, for any color c the number of vertices colored c is the same in X and 
X ′? It turns out that there is are two nice characterizations of this property. 
One is logical and descriptive complexity-theoretic. The other is a geometric 
characterization, based on linear programming. We first e xplain t he linear 
programming based characterization.

1.1 A linear programming characterization
There is a natural integer programming formulation of the Graph Isomor-
phism problem.



Let X and X ′ be two undirected simple graphs on vertex set [n], with
adjacency matrices A and B respectively. Suppose the graphs X and X ′ are
isomorphic witness by permutation π : [n]→ [n] that maps X to X ′. Let P
be the permutation matrix corresponding to π:

Pij = 1↔ π(i) = j.

Then AP = PB. Conversely, if AP = PB for a permutation matrix P ,
then the permutation π corresponding to P is an isomorphism from X to X ′.
We can express this as a 0-1 integer linear program given in the statement
below.

Fact 1. Let X and X ′ be two n-vertex graphs with adjacency matrices A and
B respectively. An n × n permutation matrix P encodes an isomorphism π
from X to X ′ if and only if P is a solution to the following 0-1 integer linear
program:

AP = PB,
n∑
i=1

Pij = 1, 1 ≤ j ≤ n,

n∑
j=1

Pij = 1, 1 ≤ i ≤ n,

Pij ∈ {0, 1}, 1 ≤ i, j ≤ n.

The above Integer Linear Program (ILP) is feasible if and only if the
graphs corresponding to A and B are isomorphic. Notice that the row and
column sum being 1, and the Pij taking 0-1 values forces P to be a permu-
tation matrix. A natural LP relaxation of the above ILP is

AP = PB,
n∑
i=1

Pij = 1, 1 ≤ j ≤ n,

n∑
j=1

Pij = 1, 1 ≤ i ≤ n,

Pij ≥ 0, 1 ≤ i, j ≤ n,

and the solutions to this LP are called fractional isomorphisms. Clearly, 
the fractional isomorphisms P are all doubly stochastic matrices. If we drop 
the equality constraints given by AP = PB, the resulting system of linear



inequalities defines the polytope of all doubly stochastic matrices which, by
Birkhoff’s theorem, has as its extreme points all the n! many permutation
matrices.

We say that the graphs X and X ′ are fractionally isomorphic if the above
LP relaxation has a fractional solution, where A and B are the adjacency
matrices of X and X ′. The following theorem by Ramana, Schneierman, and
Ullman [19] shows a remarkable connection between fractional isomorphisms
and the color refinement procedure.

Theorem 2. [19] The graphs X and X ′ are fractionally isomorphic if and
only if they are indistinguishable by color refinement.

The proof relies on the Perron-Frobenius theorem and the notion of eq-
uitable partitions of a graph X = (V,E). It is a partition of the vertex
set

V = C1 t C2 t · · · t Cr
such that the subgraph X[Ci] induced by Ci is regular and the bipartite

graph X[Ci, Cj] is semi-regular for all i 6= j. For instance the discrete parti-
tion in which each Ci is a singleton is equitable. As it turns out, at the other
extreme we have the equitable partition given by the stable coloring com-
puted by color refinement, which is actually the coarsest equitable partition:
any other equitable partition is a refinement of the stable coloring.

Let A be the adjacency matrix of graph X. A doubly stochastic matrix
P is a fractional automorphism of X if AP = PA. We can interpret the
matrix P as the adjacency matrix of a directed graph GP with nonnegative
weights. An important observation of [19] is that the strongly connected
components of the directed graph GP must form an equitable partition of X.
As a consequence, it follows that any fractional automorphism P has to be
block diagonal, where the blocks correspond to the stable coloring partition
of V .

1.2 The convex set of fractional automorphisms

Let X = (V,E) be an undirected graph with adjacency matrix A. The set
of all fractional automorphisms P forms a convex set defined by the LP:
AP = PA such that

∑
i Pij = 1,

∑
j Pij = 1, and Pij ≥ 0, for 1 ≤ i, j ≤ n.

Proposition 3. The fractional automorphisms of X forms a semigroup 
FracA(X) under matrix multiplication.

Proof. If P1, P2 ∈ FracA(X) are fractional automorphisms of X then we have 
AP1 = P1A and AP2 = P2A. It follows that

AP1P2 = P1AP2 = P1P2A.



The semigroup also has the identity matrix I which is the identity element.
�

Since FracA(X) is a convex set, it is also closed under convex combina-
tions. I.e. if Pi ∈ FracA(X), 1 ≤ i ≤ t and αi, 1 ≤ i ≤ t are nonnegative such
that

∑
i αi = 1 then

∑
i αiPi ∈ FracA(X).

Let Aut(X) denote the automorphism group of X (we use the same no-
tation Aut(X) whether we treat its elements as permutations on the vertices
or |V | × |V | permutation matrices). Clearly, Aut(X) ⊆ FracA(X).

Proposition 4. Aut(X) coincides with FracA(X) if and only if the stable
coloring of the graph X yields the discrete partition.

Proof. If the stable coloring yields the discrete partition, then by Theorem 2
stated above it follows that the only fractional automorphism of X is the
identity matrix which implies Aut(X) = FracA(X).

Conversely, suppose Aut(X) = FracA(X). Now, suppose the stable col-
oring is the equitable partition

V = C1 t C2 t · · · t Cr,

is not discrete. Consider the block diagonal doubly stochastic matrix P , with
blocks defined by subsets C1, C2, . . . , Cr, such that for all u, v ∈ Ck we have
Puv = 1

|Ck|
. As the stable coloring is an equitable partition, it follows that

P is a fractional automorphism. Furthermore, P is not in Aut(X) which
contradicts the assumption. �

If X is a regular graph with no nontrivial automorphisms then Aut(X) is
a proper subset of FracA(X), because Aut(X) = {1} and FracA(X) contains
1
d
A, where d is the degree of each vertex in X.
By Birkhoff’s theorem we know that the extreme points of the polytope of

doubly stochastic matrices are precisely the n! many permutation matrices. 
As a consequence, for any graph X, all matrices in Aut(X) are extreme points 
of FracA(X). However, in general, the fractional automorphism polytope 
FracA(X) may have non-integral extreme points.

For graphs X and X ′, let FracI(X, X ′) denote the (possibly empty) convex 
polytope of all fractional isomorphisms from X to X ′ given by Equation 1. 
We note that FracA(X)P ⊆ FracI(X, X ′), where P is some fractional solution 
to Equation 1. Now, there are graphs X (like forests, for instance) such that 
FracI(X, X ′) 6= ∅ if and only if there is an integral solution in FracI(X, X ′)
(i.e., X and X ′ are isomorphic). This will happen if the set of all extreme 
points of the convex polytope FracA(X) is precisely Aut(X). This property



was noticed by Tinhofer [21, 22], and he called such graphs X compact. For
example, forests are compact. If X is compact, Tinhofer [21, 22] gives an
algorithm to compute an isomorphism from X to another graph X ′, if it
exists, by computing an extreme point solution for the linear program given
by Equation 1 [21, 22].

2 Logical perspective

Immerman and Lander [15] wrote a seminal paper introducing a first-order
logic based approach to understanding the color refinement procedure. In
order to state their results precisely, we will require some basic definitions
from their paper.

The first-order language of graphs is built from variables xi, the binary
edge relation E and equality =, along with the usual logical connectives and
quantifiers ∀ and ∃. The quantifiers range over the vertex set of a given
graph. Occasionally, it is useful to consider vertex colored graphs, where the
colors are defined by unary predicates.

For any given language L (either first-order or a suitable extension of it,
usually), we say that graphs G and H are L-equivalent iff for all sentences
ϕ ∈ L we have

G |= ϕ↔ H |= ϕ.

A k-valuation over graph G is an assignment u of vertices to variables
x1, x2, . . . , xk. Suppose u and v are k-valuations for graphs G and H respec-
tively. We say that G, u and H, v are L-equivalent iff for all formulas ϕ ∈ L
with free variables from x1, . . . , xk

G, u |= ϕ↔ H, v |= ϕ.

We say that L k-characterizes G iff for all graphs H, and all k-valuations
u and v over G and H respectively, if G, u and H, v are L-equivalent then
there is an isomorphism extending the correspondence given by (u, v).

2.1 The first-order language Ck
The language Lk is defined to be first-order formulas which use k variables.
The language Ck is defined to be first-order formulas with k variables, where
the formulas use counting quantifiers : For example, the formula (∃ix)ϕ(x)
means there are at least i vertices v such that ϕ(v) is true.

It turns out that the language C2 precisely corresponds to color refinement.



Theorem 5. [15] Given a graph G = (V,E), let f denote the stable coloring
of V produced by color refinement. let v1 and v2 be two vertices of G. The
following conditions are equivalent:

• f(v1) = f(v2).

• For each formula ϕ(x) ∈ C2

G |= ϕ(v1)↔ G |= ϕ(v2).

The proof is by an inductive argument on the number of color refinement
rounds which corresponds to the quantifier depth of the formula ϕ. I.e. v1
and v2 are indistinguishable by color refinement in r rounds precisely when
C2 formulas ϕ(x) of quantifier depth r cannot distinguish between v1 and v2.
An important tool in analyzing the power of C2 is the following two-player
pebble game. For a pair of graphs G and H the C2-game on them is defined
as follows: there are two pairs of pebbles (g1, h1), (g2, h2):

1. The first player takes a pebble, say gi, and chooses a subset A of vertices
from one of the graphs. The second player has to choose a subset B of
vertices from the other graph such that |A| = |B|.

2. The first player places hi on some vertex in B and the second player
has to respond by placing gi on some vertex in A.

The first player wins iff the subgraph induced by g1, g2 is not the same as
that induced by h1, h2. Otherwise, the second player wins.

The above theorem actually shows that f(v1) = f(v2) iff the first player
has a winning strategy in the above game played on two copies of G with g1
placed on v1 in the first copy and h1 placed on v2 in the second copy.

The Immerman-Lander theorem combined with Theorem 2 gives a beau-
tiful three-way characterization of graphs G and H that are indistinguishable
by color refinement. This can be briefly summarized as below:

Theorem 6. [19, 15] The following statements are equivalent:

• Graphs G and H are indistinguishable by color refinement.

• Graphs G and H are indistinguishable by formulas in C2.

• Graphs G and H are fractionally isomorphic.

Immerman and Lander [15] also generalize their result to show that graphs
G and H are indistinguishable in Ck if and only if they are indistinguishable 
by (k − 1)-WL (the (k − 1)-dimensional Weisfeiler-Lehman procedure).



2.2 Weisfeiler-Lehman and Graph Isomorphism

Coming back to the color refinement p rocedure a s a n a lgorithm f or Graph 
Isomorphism, it is natural to ask for which graphs does it give the correct 
answer. We say that color refinement s ucceeds o n a  g raph G  i f f or any 
nonisomorphic graph H, color refinement d istinguishes b etween G  a nd H. 
Equivalently, G and H are isomorphic iff they are indistinguishable in C2. 
As already noted, color refinement succeeds on f orests, and a lso on random 
graphs with high probability. In [2, 20] the class of graphs on which color 
refinement succeeds i s completely c haracterized. In particular, these graphs 
can also be eciently recognized. However, the problem of precisely char-
acterizing the class of graphs on which k-WL succeeds remains open, for 
k ≥ 3.

In this connection, it is natural to wonder if k-WL for some k could be 
powerful enough to solve Graph Isomorphism on all instances. It is easy 
to see that k = n suces. We have already noted that for each n-vertex 
graph G there is a first-order formula using n variables that is true on G and 
not on any nonisomorphic graph H. Whether a smaller k suces remained 
open until the seminal paper by Cai, Fürer, and Immerman [7] in which they 
showed a lower bound of k = Ω(n). More precisely, they proved the following 
result.

Theorem 7. [7] There exists a sequence of nonisomorphic graph pairs 
{Gn, Hn}n such that Gn and Hn have Θ(n) vertices, but Gn and Hn are 
indistinguishable by n-WL.

It is interesting to note that the graphs Gn and Hn, ingeniously con-
structed, are actually very simple instances of Graph Isomorphism. That is to 
say, they are vertex-colored graphs with at most 4 vertices of each color, and 
the problem is to check if Gn and Hn have a color-preserving isomorphism. 
Such instances of Graph Isomorphism (with bounded size color classes) are 
easily solved in polynomial time by simple group-theoretic techniques from 
[10].

Since the k-WL procedure takes essentially nk time, it is clear from this 
theorem that the Weisfeiler-Lehman procedure alone is not enough to get an 
ecient algorithm for Graph Isomorphism.

Nevertheless, it is often a crucial component in many algorithms for Graph 
Isomorphism. For instance, Lindell’s logspace algorithm for Tree Isomor-
phism (and Canonization) [17] is essentially a clever logspace implementation 
of color refinement on t rees. Another appealing paper in this direction is due 
to Grohe and Verbitsky [14]. They note that if graphs from a graph class C 
can be identified in Ck for small k using a formula of logarithmic quantifier



depth, then it is possible to find efficient parallel algorithms for isomorphism
(and even canonization) for such graphs. Using their method they could
show that planar graph isomorphism can be solved in the parallel circuit
class AC1 (which is contained in NC2). Similarly, they show that bounded
treewidth graph isomorphism is in the circuit class TC1 (also contained in
NC2). Recent work with much more complicated algorithms has improved
these upper bounds to logarithmic space.

Remark 8. The Immerman-Lander theorem has also driven a lot of research
in the study of new extensions of first-order logic. There is interesting work
of Dawar et al [8] using a rank operator based extension of first-order logic.

Remark 9. Finally, we briefly mention that the technique of Individual-
ization of vertices combined with Weisfeiler-Lehman is a powerful tool for
obtaining efficient ismorphism algorithms. Originally, it was introduced by
Zemlyachenko as a “degree reduction trick” yielding the 2O(

√
n lnn) time iso-

morphism algorithm [5]. It also plays a significant role in Babai’s recent
breakthrough algorithm [6].

3 More linear programming
This section is essentially based on the work of Atserias and Maneva [3]
in which they consider the different levels of the Sherali-Adams LP relax-
ation hierarchy of Equation 1 and shows a close relationship to k-dimensional
Weisfeiler-Lehman for 1 ≤ k ≤ n. We will state their main result and point
to some questions that arise from their work. We begin with defining the
Sherali-Adams relaxation.

Consider any 0-1 integer linear program

Ax ≥ b,

xi ∈ {0, 1}, ∀ xi.

Let Pint denote the convex polytope which is the convex hull of solutions 
x ∈ {0, 1}n of the above integer linear program.

Its LP relaxation, where the integral constraints are replaced by 0 ≤ xi ≤ 
1, also defines a  convex polytope P .  Clearly,

P ⊇ Pint.

In the special case when P = Pint we can use linear programming to 
find integral solutions. Otherwise, one approach to understanding Pint is by



defining a sequence of relaxations that “interpolate” P and Pint. In particular,
the Sherali-Adams hierarchy is defined by a sequence of “approximating”
polytopes

P = P1 ⊇ P2 ⊇ · · · ⊇ Pn = Pint,

where the kth polytope in the sequence is obtained as follows from P :
For all subsets I ∈

(
[n]
≤k−1

)
, and all partitions I = I1 t I2, each inequality∑n

j=1Aijxj ≥ 0 is multiplied by
∏

i∈I1 xi
∏

j∈I2(1−xj). Overall, this yields a
system of polynomial inequalities, where each polynomial’s degree is at most
k in each inequality.

Next, in each polynomial inequality, each monomial is “flattened” into a
multilinear monomial by repeatedly replacing x2i with xi. This yields a system
of multilinear polynomial inequalities, where each polynomial has degree at
most k. Then, each monomial

∏
i∈A xi is replaced by a new variable yA, and

a fresh constraint y∅ = 1 is included. This results in an LP Qk in variables
yA, A ∈

(
[n]
≤k

)
. Finally, the polytope Pk ⊆ Rn is defined by projecting Qk to

the n variables yA such that |A| = 1. Clearly, the LP defining Pk requires
the variables yA, A ∈

(
[n]
≤k

)
and is of size nO(k).

By examining the integral solutions it is clear that Pint ⊆ Pk. Since the
constraints of Pk are only tighter we have Pk ⊆ P1. Furthermore, it turns
out that Pint = Pn. Thus, the hierarchy is finite. Thus, if Pk = Pk+1 for
some k < n, it follows that Pk = Pint.

Following [3], we consider the Sherali-Adams hierarchy corresponding to
the 0-1 integer linear program defined in Fact 1. Let that polytope be denoted
by P gi

int, and let P gi denote its LP relaxation given in Section 1, which defines
fractional isomorphisms. The Sherali-Adams relaxations yields the following
sequence of polytopes:

P gi = P gi
1 ⊇ P gi

2 ⊇ · · · ⊇ P gi
n = Pint.

Let X and X ′ be two n-vertex graphs with adjacency matrices A and
B, and consider the above Sherali-Adams relaxation hierarchy. Say that
X and X ′ are fractionally k-isomorphic if and only if the polytope P gi

k is
nonempty. Thus, X and X ′ are fractionally n-isomorphic precisely when 
they are isomorphic. We now state the main result of Atserias and Maneva 
[3].

Theorem 10. [3] Let X and X ′ be two n-vertex graphs with adjacency ma-
trices A and B. For any k ≥ 0, if X and X ′ are fractionally k+1-isomorphic 
then X and X ′ are indistinguishable by k + 1-dimensional Weisfeiler-
Lehman. Furthermore, if X and X ′ are indistinguishable by k+1-dimensional 
Weisfeiler-Lehman, then X and X ′ are fractionally k-isomorphic.



In [13] it is shown that the interleaving of fractional k-isomorphism and
k-WL for different k is, in fact, a strict interleaving, except for equality at
the first level, given by Theorem 2.

We recall from Section 1 Tinhofer’s definition of compact graphs. A graph
X is compact iff P gi = P gi

int.
An intriguing open question is the complexity of recognizing compact

graphs. For the general case we have the following simple complexity-
theoretic upper bound.

Fact 11. Given an n-vertex graph X as input, we can decide if X is compact
in coNP.

Proof. This follows because testing integrality of every vertex of the polytope
P gi for X is in coNP. We use the fact that, as the polytope P gi is itself defined
by a small LP, testing if a point is a vertex can be done in polynomial time.

�

It is shown in [1] that the problem of checking if X is compact is P -hard
under logspace reductions. Apart from this we do not have any complexity
lower bound for the problem. It is open whether the problem is coNP-hard.

Similar to compactness, we can define a notion of k-compactness w.r.t.
the k-level of the Sherali-Adams relaxation.

Definition 12. A graph X is k-compact if P gi
k = P gi

int.

Analogous to Tinhofer’s observation [21, 22] we note the following.

Theorem 13. If X is an n-vertex graph that is k-compact then given any
other n-vertex graph X ′ there is an nO(k) time algorithm to check if X and
X ′ are isomorphic.

Proof. Let A and B be the adjacency matrices of X and X ′ respectively. Let
P gi
k (A) and P gi

k (B) denote the polytopes given by the kth level of the Sherali-
Adams hierarchy for X and X ′. As per definition P gi

k (A) is the projection
of another polytope P̂ gi

k (A), where P̂ gi
k (A) is defined by an LP of size nO(k)

on the variables yS, for every subset S ⊆ [n] of size at most k − 1. The
variables y{i} equal xi, 1 ≤ i ≤ n and P gi

k (A) is defined by projection to these
n variables. Suppose X and X ′ are isomorphic and π is an isomorphism. Let
Q be the corresponding permutation matrix. Then we have

QTAQ = B.

I.e. AQ = QB. The permutation π extends to all subsets of [n] naturally,
where π(S) = {π(i) | i ∈ S}. It is easy to see that an

(
[n]
≤k

)
-vector v (of values



to yS, |S| ≤ k − 1) is in P̂ gi
k (A) iff the vector u = π(v) is in P̂ gi

k (B), where
uS = vπ(S) for all S : |S| ≤ k − 1. As P gi

k (A) and P gi
k (B) are obtained by

projecting to the n variables y{i}, it follows that

π(P gi
k (A)) = P gi

k (B).

Hence, if X is k-compact and X ′ is isomorphic to X, then X ′ is also k-
compact.

Now, consider the polytope Sk(X,X ′) obtained as the kth level of the
Sherali-Adams relaxation of the integer linear program in Fact 1. Assuming
X is k-compact, we show that if Sk(X,X ′) is nonempty that all its vertices
are integral. That would immediately yield an nO(k) time isomorphism test
because the size of the LP is nO(k). Let P be an extreme point of Sk(X,X ′).
Suppose P is not integral. We know that AP = PB and P is doubly stochas-
tic. Since QTAQ = B, it follows that APQT = PQTA. Hence, PQT is a
fractional automorphism of A (which is not integral because Q is a permu-
tation matrix and P is not integral). Since X is compact, we can write PQT

as a convex combination of integral automorphisms of X. I.e.

PQT =
N∑
i=1

λiPi,

where
∑

i λi = 1 and 0 ≤ λi < 1 for all i, Pi are permutation matrices and
APi = PiA for all i. The nonzero λi are strictly less than 1 because we have
assumed PQT is fractional.

Hence,

P =
N∑
i=1

λiPiQ.

Now, APiQ = PiAQ = PiQB for all i. Hence, PiQ are all integral isomor-
phisms from X to X ′. This contradicts the extremality of P for the polytope
Sk(X,X

′). �

Characterizing k-compact graphs is an interesting open problem.
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