INTERVIEW WITH
STEPHEN BROOKES AND PETER W. O’HEARN
REecrIpiENTS OF THE 2016 GODEL PRIZE

Luca Aceto
ICE-TCS, School of Computer Science,
Reykjavik University
luca@ru.is

Stephen Brookes (Carnegie Mellon University, USA) and Peter W. O’Hearn
(Facebook and University College London, UK) are the recipients of the 2016
Godel Prize for their invention of Concurrent Separation Logic, as described in
the following two papers:

e S. Brookes, A Semantics for Concurrent Separation Logic. Theoretical
Computer Science 375(1-3):227-270 (2007) and

e P. W. O’Hearn, Resources, Concurrency, and Local Reasoning. Theoretical
Computer Science 375(1-3):271-307 (2007).

Quoting from the citation for the prize:

“Concurrent Separation Logic (CSL) is a revolutionary advance over
previous proof systems for verifying properties of systems software,
which commonly involve both pointer manipulation and shared-
memory concurrency. For the last thirty years experts have regarded
pointer manipulation as an unsolved challenge for program verifica-
tion and shared-memory concurrency as an even greater challenge.
Now, thanks to CSL, both of these problems have been elegantly and
efficiently solved; and they have the same solution.”

As highlighted in the citation by the 2016 Godel Prize committee, the impact of
CSL has been extraordinary, both from a theoretical and practical viewpoint. CSL
has led to a wealth of follow-up research over the last decade and “‘its simplicity
and structure also facilitates automation. As a result numerous tools and tech-
niques in the research community are based on it and it is attracting attention in
companies such as Microsoft, Facebook and Amazon.”


luca@ru.is

In order to celebrate the award of the Godel prize to this path-breaking work
and to allow the research community in theoretical computer science at large to
appreciate the origin of the ideas that led to their invention of Concurrent Sepa-
ration Logic, I interviewed Stephen Brookes (abbreviated to SB in what follows)
and Peter W. O’Hearn (referred to as PO in the text below) via email. I hope
that the readers of the Bulletin of the EATCS will enjoy reading the text of the
interview as much as I did.

1 The interview

LA: You are receiving the Godel Prize 2016 for your invention of Concurrent Sep-
aration Logic (CSL), which, quoting from the prize citation, is “a revolutionary
advance over previous proof systems for verifying properties of systems software,
which commonly involve both pointer manipulation and shared-memory concur-
rency.” Could you briefly describe the history of the ideas that led to the invention
of CSL, what were the main inspirations and motivations for its invention and how
CSL advanced the state of the art?

PO: After John Reynolds and I and others had done the initial work on separation
logic for sequential programs it made sense to consider concurrency, just based
on the idea of using the logic to keep track of the separation of resources used by
different processes or threads. In the summer of 2001 I devised initial proof rules
to do just that, by adapting an approach of Hoare to reasoning about concurrency
from Hoare logic to separation logic.

This first step seemed straightforward enough, but then it hit me that we could
use the logic to track dynamically changing partitions rather than the static par-
titioning in Hoare’s approach. I used a little program, the pointer-transferring
buffer, to explore this idea, and I made a program proof in which the fact that
something was allocated seemed to move from one process to another. . .during
the proof. The pointer itself was copied, but the fact that it was allocated (and
hence the right to dereference it) was given up by the sending process. I began
talking about “knowledge” or “ownership” transferring from one process to an-
other. The striking thing was that there was no explicit concept of ownership in
the logic or proof rules, but that this transfer seemed to be encoded in the way that
the proofs of the processes worked. I circulated an unpublished note on proving
the pointer-transferring buffer in August of 2001, and then a longer note in January
2002; these documents got a lot of attention from people working on separation
logic.

It quickly became clear that quite a few concurrent programs would have much
simpler proofs than before. Modular proofs were provided of semaphore pro-
grams, of a toy memory manager, and programs with interacting resources. I got



up a huge head of steam because it seemed as if the logic could explain the way
that synchronisation had been used in the fundamental works on concurrent pro-
gramming by Dijkstra, Hoare and Brinch Hansen. For example, in the paper that
essentially founded concurrent programming, Dijkstra in 1965 (Co-operating Se-
quential Processes, still the most important paper in concurrency) had explained
that the point of synchronisation was to enable programmers to avoid minute con-
siderations of timing, to simplify reasoning. Brinch Hansen had hammered into
me the importance of speed independence and resource separation for simplify-
ing thinking about concurrent processes when I was his colleague at Syracuse in
the 1990s, and what he said to me seemed to be mirrored in the proofs in this
early concurrent separation logic. And although I had never written a paper on
concurrency, I was opinionated: I thought that work in the theory of concurrency
was often missing the mark because while it could describe semaphores and other
synchronisation primitives, it did not explain their significance because it did not
connect back to simplifying reasoning; which was their whole point. Hoare had
made important steps in various points in his work, but it seemed as if we could
go much further armed with the separating conjunction.

So, years of thinking about these issues seemed poised to come together at
once in this concurrent separation logic. But, for all my opinionated excitement,
I ran into a blocker of a problem: I wasn’t able to prove soundness of my proof
rules. And it was the very feature which gave rise to the unexpected power, the
ownership or knowledge transfer, that made soundness non-obvious. I worked
hard on this problem for several months in the second half of 2001 and early in
2002, and got nowhere. Reynolds, Yang, and Calcagno, all semantics experts, also
looked at the problem. Finally, I admitted to myself that it was technically beyond
my expertise in concurrency theory and that I needed help. Luckily, I knew where
to turn. Steve Brookes and I had never worked together before, but knew one
another from way back. He was the external examiner of my 1991 PhD thesis, I
was well aware of his fundamental work with Hoare and Roscoe on the founda-
tions of CSP, and he had recently produced striking results on full abstraction for
shared-memory parallelism, what I though of as the most impressive theoretical
results in semantics of concurrency at the time. What is more, Steve had built up
a powerful repertoire of techniques for proving properties of concurrent program-
ming languages. So, sometime in 2002, I picked up the phone and gave him a
call: “Steve, I have a problem!”.

SB: As Peter said, he called me out of the blue. I knew Peter well, having served
as the external examiner on his PhD thesis, and I had kept in contact with him after
he took up his first academic positions at Syracuse and at Queen Mary (University
of London). We were in fairly regular email contact, but he didn’t normally phone
me from England; I knew this must be important. I sat in my office at Carnegie



Mellon University in Pittsburgh, intrigued and fascinated to hear his ideas and
excited by the challenge he was offering me. I think he also spoke by phone at
a different time to John Reynolds, whose office was right next to mine. We all
agreed that the best plan was for Peter to come to Pittsburgh and give a talk, after
which we would do some brainstorming. That was how it started, from my view-
point. Peter came to CMU in March of 2002 and gave a talk on his new logic.
Peter was proposing a subtle and clever combination of key ideas from separation
logic and a much earlier Owicki-Gries logic for shared-memory concurrency, it-
self based on ideas appearing in a classic paper of Tony Hoare (Towards a theory
of parallel programming). Superficially the new logic was both very simple and
also very perplexing. The Hoare-style logic has a simple rule for parallel compo-
sition that combines pre- and post-conditions using conventional conjunction, and
a rule for conditional critical regions (essentially, binary semaphores) that makes
use of “resource invariants”. The inference rules ensure that a provable program
obeys what has come to be known as a “rely-guarantee” discipline: each process
assumes that whenever it acquires a semaphore the relevant invariant holds, and
guarantees that the invariant holds again when releasing the semaphore. How-
ever, the earlier logic is not sound for programs using pointers, because of the
possibility of aliasing. On the other hand separation logic was originally for-
mulated for reasoning about sequential programs using pointers, but lacked rules
for shared-memory concurrency and (until then) it was not clear how to gener-
alize. Peter introduced a radically simple and elegant way to combine the two:
an overly simplistic summary is that he allows separation logic formulas as pre-
and post-conditions (and resource invariants) and strategically replaces certain
occurrences of conjunction in the Hoare-Owicki-Gries rules with the separating
conjunction operator from separation logic. Of course this naive characterization
glosses over some profound issues: in Peter’s approach the invariants and pre-
and post-conditions are not really talking about the “global” state, but serve to
specify the “footprint” of a program component, just the piece of state on which
that component acts. I think this was the first time I saw use of terms such as
“footprint” and “ownership transfer”, notions which now seem very intuitive but
as yet had no formal semantic counterpart. (Until this point, I think it is fair to say,
semantic models for concurrent languages had typically dealt entirely with global
state, and it was conventional wisdom that it was already hard enough to find a
decent semantics for simple shared-memory programs, let alone try to incorpo-
rate mutable state, heap cells, allocation and deallocation.) My challenge was to
develop a semantic model robust and flexible enough to handle the combination
of concurrency and pointers, in which such notions as ownership transfer could
be properly formalized: to build a foundation on which to establish soundness of
Peter’s proposal. Furthermore, prior semantic models for concurrent languages
had pretty much ignored race conditions, typically by assuming that assignments



were executed atomically so that races never happen. While that worked well for
“simple” shared-memory it was clearly an insufficiently sophisticated way to cope
with mutable state and the more localized view of state that is so fundamental in
Peter’s approach.

During this visit we basically barricaded ourselves in a room with Reynolds
and Calcagno, dropping all other distractions and tossing ideas around in an at-
tempt to lay out a groundplan, exploring the apparent benefits of the new logic
while probing for limitations and possibly even counterexamples. John’s wife
Mary recalls very intense discussions at the Reynolds’s household, walls covered
with sticky paper, only breaking for meals. Peter enunciated what became known
as the Separation Principle: “at all stages, the global heap is partitioned into dis-
joint parts...”, another way to articulate the idea of “ownership transfer”. Again
it is easy to express these notions informally, but it turned out to be surprisingly
tricky to encapsulate them semantically, and Peter was right to be cautious.

I remember marveling at the ease with which Peter was able to articulate,
with simple-looking little programs like a one-place buffer, the kinds of problem
that arise when concurrent threads manipulate the heap. And the logic seemed
elegantly suited for reasoning about the correctness of such programs, with the
decided advantage that provable programs are guaranteed to be free of data races.
(This was also true of the earlier Hoare-Owicki-Gries logic, but only in the much
more limited setting of “simple” shared-memory without pointers.)

The use of separation in the logic neatly embodies a kind of disciplined use
of resources in programs. Yet it was by no means clear how to formalize these
ideas, and Peter was quite forthright about his unwillingness to publicize the ideas
until it had been demonstrated that it all made sense. He had circulated an “un-
published manuscript” with the title Notes on separation logic for shared-variable
concurrency, dated January 2002. Meanwhile I was excited to have a challenging
problem to work on, and intense interactions continued between Peter, John and
me as our understanding evolved.

I had plenty of experience in developing denotational semantic models for
(simple) shared-memory programs and also for communication-based languages
such as CSP. Just like the earliest denotational accounts of concurrency (dating
back to David Park in the late 70’s) the most widespread and generally most
adaptable approach was to use traces (or sequences of actions) of some kind; I had
introduced “transition traces”, built from steps that represent (finite sequences of)
atomic operations by a process, with gaps allowing for state changes made by the
“environment”. I think that transition trace semantics is what Peter was referring
to, when he mentioned full abstraction, but I should emphasize that this model
was tailored specifically to simple shared-memory and I could not see an obvious
way to adapt it to incorporate pointers. I did try! My more recent focus had been
on “‘action traces”, in which steps represent atomic actions but the details con-



cerning state (when an action is enabled, and what state change it causes) are kept
apart: a process denotes a set of action traces, and one can then plug in a model of
state, give an interpretation of actions as state transformers, and be able to reason
rigorously about program execution. It seemed to me that action traces offered the
best basis for expansion to incorporate pointers: by augmenting the “alphabet”
of actions to include heap look-up, update, allocation and deallocation. It should
also be quite natural to treat semaphore operations (for acquiring and releasing)
as actions. It took until some time in 2003 for me to iron out the technical details
and be able to explain the key definitions and results clearly enough to be ready
for publication.

In retrospect I regard this period of a couple of years as probably the most
exciting and stimulating sustained research in which I have been involved. I am
immensely grateful to have had the opportunity to work with Peter on this project.
And throughout all of this I was strongly influenced by John Reynolds, whose
good taste, deep originality of thought and sheer intellectual inquisitiveness served
to keep me focussed. Echoing Peter’s reluctance to publish without being sure, I
always said to myself that I wouldn’t be sure until I could convince John (and
Peter!). John and I had lunch together almost every day, and I camped out in his
office whenever I had an idea that needed a sounding board. He prompted me
to always seek clearer explanations, isolate the key concepts and make the right
definitions, and strive for generality. I remember in particular that at one point,
after several weeks trying to figure out how to extend action traces, I told John
that I might be able to give a semantics in which (only) provable programs would
be definable. My naive idea was to modify the way that parallel composition gets
modelled to keep track of the preservation of resource invariants explicitly and
treat any violation as a “disaster”. I recall John upbraiding me gently about this
plan; in his view, one should develop a semantics that is “agnostic” about any in-
tended logic, and instead built to express computational properties of programs in
general terms. He did agree that we needed a semantics that reported the potential
for race conditions, an idea that is echoed in his own work. Having found such a
semantics, it ought then to be possible to show using the semantics that programs
provable in the logic are indeed race-free. In essence, that’s what happened. But
it didn’t happen overnight, and the path from start to end involved a few detours
and dead-ends before finding a robust solution.

There was a crucial role in this played by the concept of “precise” assertion. I
will hand back to Peter to make a few remarks on that.

PO: Yes, a memorable moment came when John poked his head into my office
one day: “want some bad news?”. He showed me an example where the proof rule
for critical regions together with the usual Hoare proof rule for using conjunction
in the postcondition lead to an inconsistency. This problem had nothing to do



with concurrency per se, but rather was about the potential indeterminacy of the
“angel” affecting ownership transfer. (We had been attempting to get a handle on
ownership transfer by couching it in adversarial terms, involving an “angel” mak-
ing program choices and a “demon” trying to invalidate invariants or induce race
conditions.) The problem also arose in a sequential setting, in proof rules for mod-
ules that I was working on with John and Yang (which we eventually published
in Separation and Information Hiding, in POPL’04). In any case, I quickly pro-
posed a concept of “precise” assertion, one that unambiguously picks out an area
of storage, as a way to get around the problems cause by the indeterminacy of the
angel, and this concept is used in the resource invariants in concurrent separation
logic.

This indicates what a subtle problem we were up against. Some experienced
semantics researchers had been working on soundness of CSL and of information
hiding and there lurked a problem that none of us had spotted. We were lucky
that John Reynolds was not only keeping us honest by tracking our progress, but
thinking deeply about these problems himself. Concurrent separation logic owes
a lot to John’s brilliance.

That being said, this problem with the ownership angel was not the biggest
hurdle Steve had to get over. Setting up the concurrency semantics and identifying
the right properties to prove to get inductions to go through was just hard. Once he
had done it, others were able to generalize and sometimes (arguably) simplify his
proof method; e.g., in work of Calcagno, Yang, Gotsman, Parkinson, Vafeiadis,
Nanevsky, Sergey and others, and some of it drops the precision requirement (but
also the conjunction rule). But, from my perspective, Steve solving this problem
for the first time was difficult, and important. I like to say: he saved my logic!

LA: I noticed that you each published short versions of your papers in the same
conference, CONCUR’04, and then again the long versions appeared in the same
journal issue in TCS’07. How did that come about?

SB: My email to Peter and John, announcing that I had found the “right” se-
mantics and that the concurrency rules can be shown to be sound when resource
invariants are chosen to be precise, dates from early June 2003. (I also showed
that the rules remain sound when invariants are chosen to be “supported”, so that
in any state with a sub-heap satisfying an invariant there is a unique minimal sub-
heap with that property.) This was obviously very exciting and I headed over to
England to spend some time in London with Peter. Peter organized informal dis-
cussion meetings (called “yak sessions” to distinguish from full-blown seminars)
and Peter and I both gave presentations there on CSL. Philippa Gardner witnessed
these presentations, and she was so enthusiastic that she decided (as organizer for
the CONCUR 2004 conference in the following year) to invite us to give back-to-
back hour-long tutorials at that meeting. That’s how the original short versions of



our papers ended up at the same conference. We felt honoured to be asked, effec-
tively, to give tutorial invited lectures on as-yet unpublished work! And thanks to
Philippa for her part in encouraging this scenario.

We published the full, journal-length versions together in TCS as tributes to
John on his 70th birthday. The Festschrift volume appeared as a book, under the
TCS imprimatur, edited by Peter along with Olivier Danvy and Phil Wadler, in
2007. There’s an amusing story that Peter reminded me of. One day Philippa was
walking with me, John and Peter, some time before the CONCUR short versions
were finalized. John was berating Peter for what he perceived perhaps as dilatori-
ness in not submitting long versions to POPL or some other conference instead of
preparing the journal-length versions; he couldn’t understand why it was taking
us so long to get around to it. What he did not realize was that the plans were
already afoot for his birthday festschrift, and we had already agreed to publish
there. After all, what better way to acknowledge the profound influence John had
on the work. Philippa leaned over to Peter and whispered that we couldn’t tell him
because those (long) papers are for his “bloody festschrift”.

LA: In your opinion and experience, how important are modularity and composi-
tionality in proving properties of programs and systems?

SB: I think the benefits of modularity — in particular, allowing more “localized”
reasoning by considering each component largely in isolation from the others —
have been touted right from the early days. For example Dijkstra was in favor of
“loose coupling”, and argued that the art of parallel program design was to en-
sure that processes can be regarded almost as independent, except for the (ideally
small number of) places where they synchronize. The claim was, and continues
to be, that this would improve our ability to manage the sheer complexity caused
by interactions between concurrent threads. For similar reasons, and dating back
to Hoare logic (1969!), we seek compositional proof systems for proving program
properties. In a compositional proof system one can derive correctness properties
of a program by reasoning about program components individually, and the in-
ference rules show how the properties of components determine the behaviour of
the whole program. In short, compositional means “syntax-directed”, and again a
major desire is to exploit syntax-directed analysis to tame the combinatorial explo-
sion. But to design a compositional logic for a specific programming language, for
use in establishing a specific class of program behaviour, you need to start with a
suitably chosen assertion language — one for which compositional reasoning like
this is even possible. This is particularly difficult for concurrent programs, since it
has long been known that Hoare-style partial correctness assertions about a multi-
threaded program cannot be deduced simply on the basis of partial correctness
properties of individual threads. A partial correctness assertion of form {p} ¢ {g}
says that every terminating execution of ¢ from an initial state satisfying p ends in



a state satisfying ¢. In the early Hoare-style logics for shared-memory programs
(Hoare-Owicki-Gries, as mentioned earlier) assertions look just like conventional
partial correctness but are interpreted semantically as expressing a much more so-
phisticated property, allowing for the program to be running in an “environment”
of other processes. It has become common to describe this interpretation in terms
of “rely/guarantee”. I think one of the key ingredients in my semantic model is
that it allows formalization of the kind of ownership transfer discipline inherent
in Peter’s inference rules. Turning this on its head, you could say that the seman-
tic model supports compositional reasoning about programs whose correctness is
justified by appeal to Peter’s separation principle and the ownership discipline.
I’11 let Peter step in here too, as I’m sure he feels strongly about compositionality
as a virtue. Maybe he can say something about monitors as well, which I know
were a strong motivating factor in how he came up with the inference rules.

PO: Generally speaking, when proving a program it is possible in principle to
construct a global proof, one that talks about the global state of the system. But
global proofs tend to be much harder to maintain when the program is changed.
And programs are constantly being changed in the real world: the world won’t ac-
cept prove-it-and-forget-it proof efforts, verification needs to be active and move
with the programmers. This, even more than efficiency considerations in con-
structing proofs at the outset, is the strongest reason for wanting modularity.

Separation logic has just provided a theory that often matches the intuitive
modularity that comes up in data structure designs. The degree of modularity in
proofs that have been done has been surprising. For instance, when I was thinking
about proof rules for CSL my first idea was to axiomatize monitors (class-like
abstractions for concurrency due to Brinch Hansen and Hoare), because I thought
that low-level primitives like semaphores were too unstructured and that modu-
lar proofs would be impossible. Of course I knew that monitors could simulate
semaphores, but I didn’t expect to find nice proofs of semaphore programs. It
therefore came as a bit of a shock when I was able to provide very local indepen-
dent reasoning about semaphores in some nontrivial examples.

But, while modularity is important, you should be careful not to try to take
it too far. For instance, sometimes multiple resources participate together in the
implementation of a data abstraction, like the use of several locks in hand-over-
hand locking on linked lists. Vafeiadis and Parkinson have some lovely work
on RGSep, a descendant of the original concurrent separation logic, in which
they show how you can describe the effects of operations in a very local way,
but where the description sometimes involves two locks and a bit of a linked list,
rather than only one lock; you would just be causing yourself trouble if you tried
to formulate everything in terms of independent reasoning about the individual
locks in this case. So I like to think that you should make your specifications and



proofs as modular as is natural, but not more so; logic should not block making
specifications and proofs modular, but neither should it force you to shoehorn your
descriptions into a fixed granularity of modularity.

Some of the work that follows on from mine and Steve’s work is very flexible
in the degree of abstraction that can be given to the way that state is composed
and decomposed. For instance, work of Nanevski, Sergey, Dreyer, Birkedal and
others is all based on proof methods which allow the granularity of modularity or
separation to be chosen, but specifying a partial commutative monoid of compo-
sition (in place of the standard separation logic monoid of heaplets and disjoint
union).

LA: What are some of the main developments since your papers appeared.

PO: First let me mention developments in theory. To me, the most surprising
has been the demonstration that the most basic principles of concurrent separa-
tion logic, particularly independent reasoning about threads using the separating
conjunction, cover a much broader range of situations than we ever expected.
There have been proofs of fine-grained locking and non-blocking concurrency
and cases that involve interference and general graph structures, what might have
been though of as bad cases originally for separation logic.

SB: We should also mention generalizations based on permissions (for example,
Boyland’s account of fractional permissions). In particular this path led to ver-
sions of CSL capable of dealing naturally with concurrent reads, and to some very
elegant program proofs (due to Peter with Calcagno and Bornat) in which the
correctness of the program depends on a permissive form of ownership transfer.

PO: Interestingly, the unexpected power of this is based on what you might call
“non-standard models” of separation logic; I mean this by analogy with the usual
situation in logic, where a theory (e.g. reals, or integers) has an intended model,
but then additional non-standard models of the same axioms. The proof theory
can then accomplish unexpected things when applied to the non-standard models.
The standard model of separation logic is the original model based on splitting
portions of the heap, or heaplets. There are lots of other models stemming from
the “resource semantics” of bunched logic invented by David Pym (based on hav-
ing a partial commutative monoid of possible worlds). The surprise is that some of
these nonstandard models involve composing highly intertwined structures and in-
terfering processes. Gardner coined the phrase “fiction of separation” to describe
this phenomenon in the nonstandard models.

For example, in their POPL’ 13 work on Views, Dinsdale-Young, Parkinson
and colleagues show that a simple abstract version of concurrent separation logic
can embed many other techniques for reasoning about concurrency including type
systems and even the classic rely-guarantee method, which was invented for the



purpose of reasoning about interference. Work of Nanevski and Sergey on their
Fine-Grained Concurrent Separation Logic shows how one of the sources of non-
modularity in the classic Owicki-Gries approach to concurrency, the treatment of
auxiliary variables, can be addressed by a suitable non-standard model of sepa-
ration. They also obtain great mileage out of a model that interprets the separat-
ing conjunction in terms of a composition of histories, thus combining temporal
and spatial aspects of reasoning. Finally, Hoare and others have been pursuing
a very general theory of “Concurrent Kleene Algebra”, which encompasses mes-
sage passing as well as shared variable concurrency, and its associated program
logic is again a very general form of CSL.

Although they technically use simple abstract version of CSL, these works
conceptually go well beyond the original because the nonstandard models have
meanings so far removed from the standard models. And they represent techni-
cally significant advances as well. For instance, the Views work has a new and
very flexible proof of soundness, which is needed I think to cover the concurrency
in the nonstandard models. There is a lot happening in this space, and I have left
out other very good work by Birkedal, Dreyer, Raad, Feng, Shao and others; a
number of competing logics are being advanced, and there is just too much good
work to mention it all here. It will take some time to see these developments shake
out, but already it is clear that the principles of CSL apply much more broadly one
could have guessed at the time of mine and Steve’s papers.

Second, I would like to mention that a surprising practical development has
been the degree of progress in tools for mechanized verification. The first imple-
mentation of CSL actually preceded the publication of mine and Steve’s papers.
Cristiano Calcagno included CSL in his earliest prototypes of Smallfoot, the first
separation logic verification tool, around 2002. But, since then, many tools have
appeared for verification with CSL and relatives. Examples of the state of the
art include the Verifast tool of Jacobs et al. and the implementation in Coq of
the aforementioned Fine-grained CSL: in both tools there are examples of mecha-
nized proofs of nontrivial concurrent programs including hand-over-hand locking
on linked lists, lock-free queues, and a concurrent spanning tree construction. It
is also possible to verify custom synchronisation primitives, such as for locks
implemented using compare-and-swap, and then to use the specifications of the
primitives in verifications of client code without having to look at the lock inter-
nals.

L A: What are some of the current directions of interest, or future problems, for
research.

PO: One important direction in pure theory is unification, to bring to a form of
local conclusion all of the developments on non-standard models. I sense that
there is good and possibly deep theoretical work to be done there.



SB: I agree. And I think the time is ripe for a systematic attempt to develop a
denotational framework capable of supporting such a unification. My own recent
research into the foundations of weak memory concurrency is an attempt to start
in this direction, and seems like a natural generalization from the action trace se-
mantics that we used to formalize CSL. The main idea here is to go from traces
(essentially, linearly ordered sets of actions) to a more general partial-order set-
ting. Similar themes are also appearing in work of others, and we are starting to
see papers proposing the use of pomsets (my own work, building on early ideas
of Vaughan Pratt) and event structures (originally introduced by Winskel) in se-
mantic accounts of weak memory. I think this is exciting, and I believe it would
be a valuable service to cast these developments into a uniform framework, and
to use such a framework to establish soundness of new CSL-style logics for weak
memory and explore the relationships between such logics.

PO: As I said above, there has been tremendous progress in mechanized verifica-
tion of concurrent programs; but there has been less in automatic program analy-
sis. With program analysis we would like to give programmers feedback without
requiring annotations, say by trying to prove specific integrity properties (such as
memory safety or race freedom); annotations can help the analysis along, but are
not needed to get started, and this greatly eases broad deployment. A number of
prototype concurrency analyses based on CSL have been developed, but there has
been much more work applying sequential separation logic to program analysis.
For example, the Infer program analyser, which is in production at Facebook, uses
sequential but not concurrent separation logic. To make advanced program analy-
sis for concurrency which brings value to programmers in the real world is in the
main an open problem. And not an easy one.

I would finally like to mention language design. There have been experimen-
tal type systems which incorporate ideas from CSL into a programming language,
such as the Mezzo language and Asynchronous Liquid Separation Types. Related
ideas can be found earlier in Cyclone, and more recently in the ownership typ-
ing that happens in the Rust language. It seems as if there is a lot of room for
experimentation and innovation in this space.

LA: Peter, Steve, thank you very much for sharing your recollections and knowl-
edge with the theoretical-computer-science community, and congratulations for
the 2016 Godel Prize!



	The interview

