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1 Introduction

1.1 The Renaming Problem
The theory of distributed computing centers around a set of fundamental prob-
lems, also known as tasks, usually considered in variants of the two classic mod-
els of distributed computation: asynchronous shared-memory and asynchronous
message-passing [50]. These fundamental tasks are important because, in general,
their computability and complexity in a given system model gives a good measure
of the model’s power.

In this article, we survey recent results and open questions regarding one of
the canonical distributed tasks, called renaming. Simply put, in the renaming
problem, a set of processes need to pick unique names from a small namespace.
Intuitively, renaming can be seen as the dual of the classic distributed consensus
problem [48]: if solving consensus means that processes need to agree on a sin-
gle value, renaming asks participants to disagree in a constructive way, by each
returning a distinct value from a small space of options.

More formally, the renaming problem assumes that processes start with unique
initial names from a large, virtually unbounded namespace,1 and requires each
process to eventually return a name (the termination condition), and that the names
returned should be unique (the uniqueness condition). The size of the resulting
namespace should be at most M > 0, which is a parameter given in advance. The
namespace size M should only depend on n, the maximum number of participating
processes.

The adaptive version of renaming requires the size of the namespace M to
only depend on k, the number of processes actually taking steps in the current
execution, also known as the contention in the execution. If the range of the
namespace matches exactly the number of participating processes, renaming is

1In the absence of unique initial identifiers, it is known that renaming is impossible [49].



said to be strong, and the namespace is said to be tight. Otherwise, renaming is
loose. Intuitively, a tight namespace is desirable since it minimizes the number of
“wasted” names, which are allocated but go unused; later, we will see that strong
renaming algorithms can in fact be used to implement other distributed objects,
such as counters and mutual exclusion.

The reader may now want to pause and briefly consider how to solve this prob-
lem. One natural idea is for each participant to pick names at random between
1 and M. Assuming we have a way of handling name collisions (usually done
through auxiliary test-and-set or splitter objects, which we describe later), pro-
cesses may simply re-try new random names until successful. Notice however
that the relationship between n, the number of participants, and M, the range of
available names, critically influences the complexity of this procedure. If M is
much larger than n, for instance M ≥ n2, then, by standard analysis, choices will
almost never collide, and therefore each completes within a constant number of
trials. If M = Cn, for C > 1 constant, then the probability of a collision is constant
< 1 in each trial, and therefore each participant will complete within O(log n) tri-
als, with high probability. A particularly interesting case is when M = n, i.e. we
want a tight namespace. In this case, it appears likely that at least one process
will have to try a large fraction of the names before succeeding, i.e. run for linear
time. For this unlucky participant, this strategy is no better than trying out all
names sequentially, in some order.

The basic intuition above can be turned, with some care, into working renam-
ing algorithms [10]. It also sugests that there is a trade-off between the size of
the namespace we wish to achieve, and the complexity of our algorithm. In the
following, we will see that this trade-off is somewhat slanted in favor of random-
ization: we are able to attain a tight namespace in logarithmic worst-case expected
time, but the (deterministic) worst-case running time for renaming is linear, even
for large namespace size.

Before we delve into the details of these results, let us first cover some histor-
ical background. The renaming problem was formally introduced more than 25
years ago [17]. A significant amount of research, e.g. [25, 29, 51, 42, 3, 20, 37,
54], has studied the solvability and complexity of renaming in an asynchronous
environment. In particular, tight, or strong deterministic renaming, where the size
of the namespace is exactly n, is known to be impossible using only read-write
registers [42, 30]. In fact, (n + t − 1) is the best achievable namespace size when
t processes may crash [30, 31]. The proof of this result is very interesting, and
quite complex, as it requires the use of complex topological techniques [42]. As
for consensus, this impossibility result can be circumvented through the use of
randomization: there exist randomized renaming algorithms that ensure a tight
namespace of n names, guaranteeing name uniqueness in all executions and ter-
mination with probability 1, e.g. [37].



The complexity of renaming has also been the focus of significant research
effort, e.g. [54, 27, 51, 52, 3, 20, 37, 33, 1]. In particular, much of this work
considered the shared-memory model, perhaps due to the simpler way to express
the time complexity of an algorithm. However, in spite of this effort, until recently,
no time optimality results were known for shared-memory renaming, either for
randomized or deterministic algorithms.

1.2 Recent Developments

In the following, we will survey a recent series of papers [10, 6], giving tight
bounds for the time complexity of renaming in asynchronous shared-memory.2

Our survey covers some of the results from these papers, and adopts their notation
and presentation for the technical content.

Specifically, for deterministic algorithms, reference [6] gave a linear lower
bound on the time complexity of renaming into any namespace of sub-exponential
size. This bound can be matched by previously known algorithms. e.g. [51, 52].
(See Section 3 for a detailed discussion.) For randomized algorithms, [6] gave
tight logarithmic upper and lower bounds on the time complexity of adaptive re-
naming into a namespace of linear size. Together, these results give an exponen-
tial time complexity separation between deterministic and randomized implemen-
tations of renaming.

It is also interesting to study connections between renaming and implementa-
tions of other shared objects. Since renaming can be solved trivially using objects
with stronger semantics, such as stacks, queues, or counters supporting fetch-and-
increment, lower bounds for renaming also apply to these widely-used, practical
objects. Thus, the above results can be used to match or improve the previously
known lower bounds for these problems (see Table 1 for an overview), but also
to obtain efficient implementations of more complex shared objects. Due to space
constraints, we refer the reader to [6] for the latter constructions.

Conceptually, the improved upper and lower bounds are based on new connec-
tions between renaming and other fundamental objects: sorting networks [45] and
mutual exclusion [36]. Specifically, the first step is a construction showing that
sorting networks can be used to obtain optimal-time solutions for strong adaptive
randomized renaming. Further, it can be shown that the resulting algorithm can
be extended to an efficient solution to mutual exclusion.

To obtain the linear lower bound on deterministic renaming, we can re-trace
the previous argument: we start from a known linear lower bound on the time com-
plexity of mutual exclusion, and derive by reduction a lower bound on renaming.

2In this model, time is measured in terms of number of steps, that is, shared-memory operations
performed by a processor until completion.



Shared Object Lower Bound Type
Matching

Algorithms
New Result

Deterministic ck-renaming
Ω(k) Local [52] Yes

Ω(k log(k/c)) Global - Yes
Randomized ck-renaming Ω(k log(k/c)) Global Section 5 Yes
c-Approximate Counter Ω(k log(k/c)) Global [15] Yes

Fetch-and-Increment
Ω(k) Local [51] Improves on [39]

Ω(k log k) Global Section 5 Improves on [21]

Queues and Stacks
Ω(k) Local [41] Improves on [39]

Ω(k log k) Global - Improves on [21]

Figure 1: Summary of the lower bound results and relation to previous work.

The lower bound on the time complexity of randomized renaming follows from a
separate information-based argument.

2 Model and Problem Statements

2.1 The Asynchronous Shared Memory Model

In this section, we introduce the asynchronous shared memory model [24], [50] ,
and the cost measures we will use for the analysis of algorithms.

Asynchronous Shared Memory. We consider the standard asynchronous shared-
memory model, in which a set of n processes Π = {p1, . . . , pn} can communicate
through operations on shared multi-writer multi-reader atomic registers. We will
denote by k the contention in an execution, i.e. the actual number of processes
that take steps in the execution. Obviously, k ≤ n throughout.

Processes follow an algorithm, which is composed of instructions. Each in-
struction consists of some local computation, which may include an arbitrary
number of local coin flips, and one shared memory operation, such as a read or
write to a register, which we call a shared-memory step. A number of t < n pro-
cesses may fail by crashing. (Throughout this paper, we assume this upper bound
is t = n−1.) A failed process does not execute any further instructions. A process
that does not crash during an execution is correct.

Identifiers. Initially, each process pi is assigned a unique initial identifier idi,
which, for simplicity, is an integer. We will assume that the space of initial iden-
tifiers is of infinite size. This models the fact that, in real systems, processes



may use identifiers from a very large space, such as the space of UNIX process
identifiers, or the set of all IP addresses.

Wait-Freedom. An algorithm is wait-free if it ensures that every method call
by a correct process returns within a finite number of steps [43]. Throughout this
paper, we will consider wait-free algorithms.

Schedules and Adversaries. The order in which processes take steps and issue
events is determined by an external abstraction called a scheduler, over which
processes do not have control. In the following, we will consider the scheduler
as an adversary, whose goal is to maximize the cost of the protocol (generally
considered to be the number of steps). Thus, we will use the terms adversary
and scheduler interchangeably. The adversary controls the schedule, which is
a (possibly infinite) sequence of process identifiers. If process pi is in position
τ of the sequence, then this implies that pi is active at time τ. The adversary
has the freedom to schedule any interleaving that complies with the given model.
We assume an asynchronous model, therefore the adversary may schedule any
interleaving of process steps.

Consequently, an execution is a sequence of all events and steps issued by
processes in a given run of an implementation. Every execution has an associated
schedule, which yields the order in which processes are active in the execution.
For deterministic algorithms, the schedule completely determines the execution.

For randomized algorithms, different assumptions on the relation between the
scheduler and the random coin flips that processes perform during an execution
may lead to different results. We will assume that the adversary controlling the
schedule is the standard strong adversary, which observes the results of the local
coin flips, together with the state of all processes, before scheduling the next pro-
cess step (in particular, the interleaving of process steps may depend on the result
of their coin flips).

Complexity Measures. We measure complexity in terms of process steps, where
each shared-memory operation is counted as one step. Thus, the (individual) step
complexity of an algorithm is the worst-case number of steps that a single process
may have to perform in order to return from an algorithm, including invocations to
lower-level shared objects. The total step complexity is the total number of shared
memory operations that all participating processes perform during an execution.
For randomized algorithms, we will analyze the worst-case expected number of
steps that a process may perform during an execution as a consequence of the
adversarial scheduler, or give more precise probability bounds for the number of
steps performed during an execution.



2.2 Problem Statements

We now present the definitions and sequential specifications of the problems and
objects considered in this paper.

Renaming. The renaming problem, first introduced in [17], is defined as fol-
lows. Each of the n processes has initially a distinct identifier idi taken from a do-
main of potentially unbounded size M, and should return an output name oi from
a smaller domain. (Note that the index i is only used for description purposes, and
is not known to the processes.) Given an integer T , an object ensuring determin-
istic renaming into a target namespace of size T , also called a T-renaming object,
guarantees the following properties.

1. Termination: In every execution, every correct process returns a name.

2. Namespace Size: Every name returned is from 1 to T .

3. Uniqueness: Every two names returned are distinct.

The randomized renaming problem relaxes the termination condition, ensur-
ing randomized termination: with probability 1, every correct process returns a
name. The other two properties stay the same.

The domain of values returned, which we call the target namespace, is of size
T . In the classical renaming problem [17], the parameter T may not depend on the
range of the original names. On the other hand, it may depend on the parameter n
and on the number of possible faults t.

For adaptive renaming, the size of the resulting namespace, and the complex-
ity of the algorithm, should only depend on the number of participating processes
k in the current execution. In some instances of the problem, processes are as-
sumed not to know the maximum number of processes n, whereas in other in-
stances an upper bound on n is provided. (In this paper, we consider the slightly
harder version in which the upper bound on n is not provided.)

If the size of the namespace matches exactly the number of participating pro-
cesses, then we say that the target namespace is tight. Consequently, the strong
renaming problem requires that the processes obtain unique names from 1 to n,
i.e. T = n. The strong adaptive renaming problem requires that k participating
processes obtain consecutive names 1, 2, . . . , k. Thus, strong adaptive renaming is
the version of the problem with the largest number of constraints. To distinguish
the classical renaming problem from the adaptive version, we will denote the clas-
sical version, where n is given and complexity and namespace depend on n, as the
non-adaptive renaming problem.



1 Variable:;
2 Value, a binary atomic register,
3 initially 0;

4 procedure test-and-set();
5 if Value = 0 then
6 Value← 1;
7 return 0;
8 else
9 return 1;

Figure 2: Sequential specification of a one-
shot test-and-set object.

1 Variable:;
2 V , a register, with initial value ⊥;
3 procedure compare-and-swap(

oldV , newV );
4 s← V;
5 if oldV = s then
6 V ← newV;
7 return s;
8 else
9 return s;

Figure 3: Sequential specification of the
compare-and-swap object.

Test-and-Set. The test-and-set object, whose sequential specification is given in
Figure 2, can be seen as a tournament object for n processes. In brief, the object
has initial value 0, and supports a single test-and-set operation, which atomically
sets the value of the object to 1, returning the value of the object before the in-
vocation. Notice that at most one process may win the object by returning the
initial value 0, while all other processes lose the test-and-set by returning 1. A key
property is that no losing test-and-set operation may return before the winning
operation is invoked.

More precisely, a correct deterministic implementation of a single-use test-
and-set object ensures the following properties:

1. (Validity.) Each participating process may return one of two indications: 0,
or 1.

2. (Termination.) Each process accessing the object eventually returns or crashes.

3. (Linearization.) Each execution has a linearization order L in which each
invocation of test-and-set is immediately followed by a response (i.e., is
atomic), such that the first response is either 0 or the caller crashes, and no
return value of 1 can be followed by a return value of 0.

4. (Uniqueness.) At most one process may return 0.

For randomized test-and-set, the termination condition is replaced by the fol-
lowing randomized termination property: with probability 1, each process access-
ing the object eventually returns or crashes. The other requirements stay the same.



Compare-and-swap. The compare-and-swap object can be seen a generaliza-
tion of test-and-set, whose underlying register supports multiple values (as op-
posed to only 0 and 1). Its sequential specification is presented in Figure 3. More
precisely, a compare-and-swap object exports the following operations:

• read and write, having the same semantics as for registers,

• compare − and − swap(oldV , newV), which compares the state s of the ob-
ject to the value oldV , and either (1) changes the state of the object to newV
and returns oldV if s = oldV , or (b) returns the state s if s , oldV .

Notice that the compare-and-swap object can be seen as an augmented register,
which also supports the conditional compare-and-swap operation. Also note that
it is trivial to implement a test-and-set object from a compare-and-swap object.

Mutual Exclusion. The goal of the mutual exclusion (mutex) problem is to al-
locate a single, indivisible, non-shareable resource among n processes. A process
with access to the resource is said to be in the critical section. When a user is not
involved with the resource, it is said to be in the remainder section. In order to
gain admittance to the critical section, a user executes an entry section; after it is
done with the resource, it executes an exit section. Each of these sections can be
associated with a partitioning of the code that the process is executing.

Each process cycles through these sections in the order: remainder, entry, crit-
ical, and exit. Thus, a process that wants to enter the critical section first executes
the entry section; after that, it enters the critical section, after which it executes the
exit section, returning to the remainder section. We assume that in all executions,
each process executes this section pattern infinitely many times. For simplicity,
we assume that the code in the remainder section is trivial, and every time the
process is in this section, it immediately enters the entry section. An execution is
admissible if for every process pi, either pi takes an infinite number of steps, or
pi’s execution ends in the remainder section. A configuration at a time τ is given
by the code section for each of the processes at time τ.

An algorithm solves mutual exclusion with no deadlock if the following hold.
We adopt the definition of [24].

• Mutual exclusion: In every configuration of every execution, at most one
process is in the critical section.

• No deadlock: In every admissible execution, if some process is in the entry
section in a configuration, then there is a later configuration in which some
process is in the critical section.



• No lockout (Starvation-free): In every admissible execution, if some process
is in the entry section in a configuration, then there is a later configuration
in which the same process is in the critical section.

• Unobstructed exit: In every execution, every process returns from the exit
section in a finite number of steps.

In this paper, we focus on shared-memory mutual exclusion algorithms. As
for renaming, there exists a distinction between adaptive and non-adaptive solu-
tions. A classical, non-adaptive, mutual excusion algorithm is an algorithm whose
complexity depends on n, the maximum number of processes that may participate
in the execution, which is assumed to be known by the processes at the beginning
of the execution. On the other hand, an adaptive mutual exclusion algorithm is
an algorithm whose complexity may only depend on the number of processes k
participating in the current execution.

3 A Brief History of Renaming
Message-passing Models. The renaming problem, defined in Section 2.2, was
introduced by Attiya et al. [17], in the asynchronous message-passing model. The
paper presented a non-adaptive algorithm that achieves (2n−1) names in the pres-
ence of t < n/2 faults, and showed that a tight namespace of n names cannot be
achieved in an asynchronous system with crash failures. It also introduced and
studied a version of the problem called order-preserving renaming, in which the
final names have to respect the relative order of the initial names.

Renaming has been studied in a variety of models and under various timing as-
sumptions. For synchronous message-passing systems, Chaudhuri et al. [32] gave
a wait-free algorithm for strong renaming in O(log n) rounds of communication,
and proved that this upper bound is asymptotically tight if the number of process
failures is t ≤ n−1 and the algorithm is comparison-based, i.e. two processes may
distinguish their states only through comparison operations. Attiya and Djerassi-
Shintel [19] studied the complexity of renaming in a semi-synchronous message-
passing system, subject to timing faults. They obtained a strong renaming algo-
rithm with O(log n) rounds of broadcast and proved a Ω(log n) time lower bound
when algorithms are comparison-based or when the initial namespace is large
enough compared to n. Both these algorithms can be made adaptive, to obtain a
running time of O(log k). Okun [53] presented a strong renaming algorithm that
is also order-preserving, with O(log n) time complexity. The algorithm exploits a
new connection between renaming and approximate agreement [38]. Alistarh et
al. [11] analyzed Okun’s algorithm and showed that it is also early-deciding, i.e.
its running time can adapt to the number of failures f ≤ n − 1 in the execution.



In particular, they showed that the algorithm terminates in a constant number of
rounds, if f <

√
n, and in O(log f ) rounds otherwise. Recent work in the same

model [12] has shown that a expected O(log log n) time can be obtained using
randomization.

Returning to the asynchronous message-passing model, Alistarh, Gelashvili,
and Vladu [13] recently gave a randomized solution which solves tight renam-
ing in O(log2 n) rounds and O(n2) messages. They also show that this message
complexity is optimal.

Shared-Memory Models. The first shared-memory renaming algorithm was
given by Bar-Noy and Dolev [25], who ported the synchronous message-passing
algorithm of Attiya et al. [17] to use only reads and writes. They obtained an
algorithm with namespace size (k2 + k)/2 that uses O(n2) steps per operation, and
an algorithm with a namespace size of (2k− 1) using O(n · 4n) steps per operation.

Early work on lower bounds focused on the size of the namespace that can
be achieved using only reads and writes. Burns and Peterson [29] proved that, for
any T (n) < 2n−1, long-lived renaming3 in a namespace of size T (n) is impossible
in asynchronous shared memory using reads and writes. They also gave the first
long-lived (2n − 1)-renaming algorithm. (However, the complexity of this algo-
rithm depends on the size of the initial namespace, which is not allowed by the
original problem specification [17].) In a landmark paper, Herlihy and Shavit [42]
used algebraic topology to show that there exist values of n for which wait-free
(2n − 2)-renaming is impossible. Recently, Castañeda and Rajsbaum [30], [31]
gave a full characterization, proving that if n is a prime power, then target names-
pace size T (n) ≥ 2n − 1 is necessary, and, otherwise, there exists an algorithm
with 2n − 2 namespace size.

A parallel line of work [49], [46] studied anonymous renaming, where pro-
cesses do not have initial identifiers and start in identical state. In this case, renam-
ing cannot be achieved with probability 1 using only reads and writes, since one
cannot distinguish between processes in the same state, and thus two processes
may always decide on the same name with non-zero probability.

Later work focused on the time-namespace size trade-off. Moir and Anderson
appear to be the first to use deterministic splitters to solve renaming [51]. Afek
and Merritt [3] presented an adaptive read-write renaming algorithm with optimal
namespace of size (2k−1), and O(k2) step complexity. Attiya and Fouren [20] gave
an adaptive (6k−1)-renaming algorithm with O(k log k) step complexity. Chlebus
and Kowalski [33] gave an adaptive (8k− log k−1)-renaming algorithm with O(k)
step complexity. For long-lived adaptive renaming, there exist implementations

3The long-lived version of renaming allows processes to release names as well as to acquire
them.



with O(k2) time complexity for renaming into a namespace of size O(k2), e.g. [1].
The fastest such algorithm with optimal (2k − 1) namespace size has O(k4) step
complexity [20].

The time lower bound in Section 6 shows that linear-time deterministic al-
gorithms are in fact time optimal (since they ensure namespaces of polynomial
size). On the other hand, the existence of a deterministic read-write algorithm
which achieves both an optimal namespace and linear time complexity is an open
problem.

The relation between renaming and stronger primitives such as fetch-and-
increment or test-and-set was investigated by Moir and Anderson [51]. Fetch-
and-increment can be used to solve renaming trivially, since each process can
return the result of the operation plus 1 as its new name. Renaming can be solved
by using an array of test-and-set objects, where each process accesses test-and-set
objects until winning the first one. The process then returns the index of the test-
and-set object that it has acquired. Moir and Anderson [51] also present imple-
mentations of renaming from registers supporting set-first-zero and bitwise-and
operations. In this paper, the authors also notice the fact that adaptive tight re-
naming can solve mutual exclusion. (This connection is also mentioned in [18].)
Using load-linked and store-conditional primitives, Brodsky et al. [28] gave a
linear-time algorithm with a tight namespace. (Their paper also presents an ef-
ficient synchronous shared-memory algorithm.)

Randomization is a natural approach for obtaining names, since random coin
flips can be used to “balance” the processes’ choices. A trivial solution when n is
known is to have processes try out random names from 1 to n2. Name uniqueness
can be validated using deterministic splitter objects [14], and the algorithm uses
a constant number of steps in expectation, since, by the birthday paradox, the
probability of collision is very small. The feasibility of randomized renaming in
asynchronous shared memory was first considered by Panconesi et al. [54]. They
presented a non-adaptive wait-free solution with a namespace of size n(1 + ε) for
ε > 0 constant, with expected O(M log2 n) running time, where M is the size of
the initial namespace.

A second paper to analyze randomized renaming was by Eberly et al. [37]. The
authors obtain a strong non-adaptive renaming algorithm based on the randomized
wait-free test-and-set implementation by Afek et al. [2]. Their algorithm is long-
lived, and is shown to have amortized step complexity O(n log n). The average-
case total step complexity is Θ(n3).

A paper by Alistarh et al. [10] generalized the approach by Panconesi et
al. [54] by introducing a new, adaptive test-and-set implementation with loga-
rithmic step complexity, and a new strategy for the processes to pick which test-
and-set to compete in: each process chooses a test-and-set between 1 and n at
random. The authors prove that this approach results in a non-adaptive tight algo-



rithm with O(nn) total step complexity.4 (However, in this algorithm, individual
processes may still perform a linear number of accesses.) A modified version
of this approach generates an adaptive algorithm with similar complexity, which
ensures a loose namespace of size (1 + ε)k, for ε > 0 constant. Recent work
by Alistarh, Aspnes, Giakkoupis and Woelfel [8] showed that, if we allow the
algorithm to break the namespace requirement with some probability, then we
can solve renaming in expected O(log log n) time, by using a multi-level random
choice strategy. This strategy can also be extended to adaptive algorithms, with a
similar running time.

The renaming network algorithm presented in this paper first appeared in [7].
It is the first algorithm to achieve strong adaptive renaming in sub-linear time,
improving exponentially on the time complexity of previous solutions. The same
paper shows that this algorithm is in fact time-optimal. The fact that any sorting
network can be used as a counting network when only one process enters on each
wire was observed by Attiya et al. [22] to follow from earlier results of Aspnes et
al. [16]; this is equivalent to our use of sorting networks for non-adaptive renaming
in Section 5.1.1. The lower bounds in this paper first appeared in [9].

Recent work also looked into the space complexity of this problem. Refer-
ence [40] gives linear lower bounds using a novel version of covering arguments,
while reference [35] gave the first space-optimal renaming algorithm, which uses
only O(n) registers.

4 Renaming Building Blocks
In this section, we illustrate some of the main building blocks developed for re-
naming algorithms by way of example. We present a randomized algorithm which
renames into a namespace of size polynomial in k, with logarithmic step complex-
ity in expectation. This algorithm can also be extended to solve adaptive test-and-
set [10], and will be a useful sub-routine for achieving a tight namespace in loga-
rithmic time. We focus on the structure of the algorithm; its proof of correctness
follows from the original analysis [10].

4.1 Deterministic and Randomized Splitters
The deterministic splitter object, was introduced by Lamport to solve mutual ex-
clusion efficiently in the absence of contention [47]. This object, whose structure
is given in Figure 5, provides the following semantics.

• Every correct process returns either stop, left, or right.
4In the following, by n we denote logc n, for some integer c ≥ 1.
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Figure 4: Structure and labeling of a deterministic splitter network.

• At most one process returns stop.

• If a single correct process calls split, then it returns stop.

• In an execution in which k ≥ 1 processes access the object, at most k − 1
processes return left, and at most k − 1 processes return right.

A very interesting use of the deterministic splitter is in the context of the re-
naming problem: Moir and Anderson [51] noticed that splitters connected in a
rectangular grid, as depicted in Figure 4, solve renaming.

More precisely, the key property of the splitter is that it changes direction for
at least one of the calling processes, they show that a single process may access at
most k − 1 distinct splitter objects in the grid before returning stop at one of these
objects. Given a labelling of the splitters as in Figure 4, each process may return
the label of the splitter it returned stop from as its new name. A simple analysis
yields that the names returned are from 1 to k2.

The randomized splitter object is a weak synchronization primitive which al-
lows a process to acquire it if is running alone, which splits the participants prob-
abilistically if more than one process accesses the object. More precisely, a ran-
domized splitter has the following properties.

• At most one process returns stop.



• If a single correct process calls split, then the process returns stop.

• If a correct process does not return stop, then the probability that it returns
left equals the probability that it returns right, which equals 1/2.

The randomized splitter was introduced in [23], where it was shown that it can
be implemented wait-free using registers. Next, we will see how splitters can be
used to solve renaming in expected logarithmic time.

4.2 The RatRace Adaptive Renaming Algorithm
Description. The algorithm is based on a binary tree structure, of unbounded
height. Each node v in this tree contains a randomized splitter object RS v. Each
randomized splitter RS v has two pointers, referring to randomized splitter objects
corresponding to the left and right children of node v. Thus, if node v has children
` (left) and r (right), the left pointer of RS v will refer to RS `, while the right
pointer refers to RS r. Any process pi returning left from the randomized splitter
RS v will call the split procedure of RS `, while processes returning right will call
the split procedure of RS r.

Processes start at the root node of the tree, and proceed left or right (with prob-
ability 1/2) through the tree until first returning stop at the randomized splitter RS v

associated to some node v. We say that a process acquires a randomized splitter
s if it returns stop at the randomized splitter s. Once it acquires a randomized
splitter, the process stops going down the tree. The key property of this process
is that, in an execution with k participants, each reaches depth at most O(log k)
in the tree before acquiring a name, with high probability, and that every process
returns, with probability 1.

Decision. Each process that acquires a randomized splitter in the tree returns the
label of the corresponding node in a breadth-first search labelling of the primary
tree.

Properties. The RatRace renaming algorithm ensures the following properties.
The proof follows in a straightforward manner from the analysis for the test-and-
set version of RatRace [10]. We provide a short proof here for completeness.

Name uniqueness follows since no two processes may stop at the same ran-
domized splitter, which is one of the basic properties of this object [23]. We now
provide a probabilistic upper bound on namespace size.

[RatRace Renaming] For c ≥ 3 constant, the RatRace renaming algorithm de-
scribed above yields an adaptive renaming algorithm ensuring a namespace of size
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Figure 5: Deterministic splitter.

stop
≤ 1 

process

k 
processes

Pr [left] = 
1/ 2

Pr [right] = 
1/ 2

Figure 6: Randomized splitter.

O(kc) in O(log k) steps, both with high probability in k. Every process eventually
returns with probability 1.

Proof. Pick a process p, and assume that the process reaches depth d in the binary
tree without acquiring a randomized splitter. By the properties of the randomized
splitter, and by the structure of the algorithm, this implies that there exists (at
least) one other process q which follows exactly the same path through the tree as
process p. Necessarily, q must have made the same random choices as process p,
at every randomized splitter on the path.

Let k be the number of participants in the execution, and pick d = c log k,
where c ≥ 3 is a constant. The probability that an arbitrary process makes exactly
the same c log k random choices as p is (1/2)c log k = (1/k)c. By the union bound,
the probability that there exists another process q which makes the same choices
as p is at most (k−1)(1/k)c ≤ (1/k)c−1. Applying the union bound again, we obtain
that the probability that there exists a process p which takes more than c log k steps
is at most (1/k)c−2. This also implies that every process returns a name between
1 and kc with probability 1 − (1/k)c. The termination bound follows by the same
argument, by taking d → ∞. �

5 Adaptive Strong Renaming in Logarithmic Expected
Time

In the previous section, we have seen a way of obtaining a namespace that is
polynomial in the number of participants k, in logarithmic time. We now give a
way of tightening the namespace to an optimal one, of size k, while preserving
logarithmic running time. Logarithmic time is in fact optimal [6].
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output x' = min ( x, y )

output y' = max ( x, y )

Figure 7: Structure of a comparator.

Renaming networks. The key ingredient behind the algorithm is a connection
between renaming and sorting networks, a data structure used for sorting se-
quences of numbers in parallel. In brief, we start from a sorting network, and
replace the comparator objects with two-process test-and-set objects, to obtain an
object we call a renaming network. The algorithm works as follows: each pro-
cess is assigned a unique input port (running a loose renaming algorithm such as
the one from the previous section), and follows a path through the network deter-
mined by leaving each two-process test-and-set on its higher output wire if it wins
the test-and-set, and on its lower output wire if it loses. The output name is the
index (from top to bottom) of the output port it reaches.

There are two major obstacles to turning this idea into a strong adaptive re-
naming algorithm. The first is that this construction is not adaptive. Since the
step complexity of running the renaming network depends on the number of input
ports assigned, then, if we simply use the processes’ initial names to assign input
ports, we could obtain an algorithm with unbounded worst-case step complexity,
since the space of initial identifiers is potentially unbounded. The second obsta-
cle is that a regular sorting network construction has a fixed number of input and
output ports, therefore the construction would not adapt to the contention k. Since
we would like to avoid assuming any bound on the contention, we need to build
a sorting network that “extends" its size as the number of participating processes
increases.

In the following, we show how to overcome these problems, and obtain a
strong adaptive renaming algorithm with complexity O(log k), with high proba-
bility in k.5

5Notice that, if the contention k is small, the failure probability O(1/kc) with c ≥ 2 constant
may be non-negligible. In this case, the failure probability can be made to depend on the parameter
n at the cost of a multiplicative Θ(log n) factor in the running time of the algorithm.



1 Shared:;
2 Renaming network R;

3 procedure rename(vi);
4 w← input wire corresponding to vi in R;
5 while w is not an output wire do
6 T ← next test-and-set on wire w of R;
7 res← T.test − and − set( );
8 if res = 0 then
9 w← output wire x′ of T ;

10 else
11 w← output wire y′ of T ;
12 return w.index;

Figure 8: Pseudocode for executing a renaming network.

5.1 Renaming using a Sorting Network

We now give a strong renaming algorithm based on a sorting network. For sim-
plicity, we describe the solution in the case where the bound on the size of the
initial namespace, M, is finite and known. We circumvent this limitation in Sec-
tion 5.2.

5.1.1 Renaming Networks

We start from an arbitrary sorting network with M input and output ports, in which
we replace the comparators with two-process test-and-set objects. The structure
of a comparator is given in Figure 7 (please see standard texts, e.g. [34], for back-
ground on sorting networks). The two-process test-and-set objects maintain the
input ports x, y and the output ports x′, y′. We call this object a renaming network.

We assume that each participating process pi has a unique initial value vi from
1 to M. (These values can be the initial names of the processes, or names obtained
from another renaming algorithm, as described in Section 5.2). Also part of the
process’s algorithm is the blueprint of a renaming network with M input ports,
which is the same for all participants.

We use the renaming network to solve adaptive tight renaming as follows.
(Please see Figure 8 for the pseudocode.) Each participating process enters the
execution on the input wire in the sorting network corresponding to its unique
initial value vi. The process competes in two-process test-and-set instances as
follows: if the process returns 0 (wins) a two-process test-and-set, then it moves
“up” in the network, i.e. follows output port x′ of the test-and-set; otherwise it
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Figure 9: Execution of a renaming network. The two processes start at arbitrary distinct
input ports, and proceed through the network until reaching an output port. The two-
process test-and-set objects are depicted as locks. A two process test-and-set object is
highlighted if it has been won during the execution. The execution depicted is one in
which processes proceed sequentially (the upper process first executes to completion, then
the lower process executes). The two processes reached output ports 1 and 2, even though
they started at arbitrary input ports.

moves “down,” i.e. follows output port y′. Each process continues until it reaches
an output port b`. The process returns the index ` of the output port b` as its output
value. See Figure 9 for a simple illustration of a renaming network execution.

Test-and-set. In this section, the test-and-set objects used as comparators are
implemented using the algorithm of Tromp and Vitányi [55]; in Section 6, we
will assume hardware implementations of test-and-set. This distinction is only
important when computing the complexity of the construction, and does not affect
its correctness.

5.1.2 Renaming Network Analysis

In the following, we show that the renaming network construction solves adaptive
strong renaming, i.e. that processes return values between 1 and k, the total con-
tention in the execution, as long as the size of the initial namespace is bounded by
M.

Theorem 1 (Renaming Network Construction). Whenever starting from a cor-
rect sorting network, the renaming network construction solves strong adaptive
renaming, with the same progress property as the test-and-set objects used. If the
sorting network has depth d (defined below), then each process will perform O(d)
test-and-set operations before returning from the renaming network.



Proof. First, we prove that the renaming network is well-formed, i.e. that no two
processes may access the same port of a two-process test-and-set object. No two
processes may access the same port of a two-process test-and-set object.

Proof. Recall that each renaming network is obtained from a sorting network.
Therefore, for any renaming network, we can maintain the standard definitions of
network and wire depth as for a sorting network [34]. In particular, the depth of a
wire is defined as follows. An input wire has depth 0. A test-and-set that has two
input wires with depths dx and dy will have depth max(dx, dy) + 1. A wire in the
network has depth equal to the depth of the test-and-set from which it originates.
Because there can be no cycles of test-and-sets in a renaming network, this notion
is well-defined. The depth of a network is the maximum depth of an output wire.

The claim is equivalent to proving that no two processes may occupy the same
wire in an execution of the network. We prove this by induction on the depth
of the current wire. The base case, when the depth is 0, i.e. we are examining
an input wire, follows from the initial assumption that the initial values vi of the
processes are unique, hence no two processes may join the same input port.

Assume that the claim holds for all wires of depth d ≥ 0. We prove that
it holds for any wire of depth d + 1. Notice that the depth of a wire may only
increase when passing through a two-process test-and-set object. Consider an
arbitrary two-process test-and-set object, with two wires of depth at most d as
inputs, and two wires of depth d + 1 as outputs. By the induction hypothesis,
the test-and-set is well formed in all executions, since there may be at most two
processes accessing it in any execution. By the specification of test-and-set, it
follows that, in any execution, there can be at most one process returning 0 from
the object, and at most one process returning 1 from the object. Therefore, there
can be at most one process on either output wire, and the induction step holds.
This completes the proof of this claim. �

Termination follows since the base sorting network has finite depth and, by
definition, contains no cycles. Therefore, the renaming network has the same
termination guarantees as the two-process test-and-set algorithm we use. In par-
ticular, if we use the two-process test-and-set implementation of [55], the network
guarantees termination with probability 1. We prove name uniqueness and names-
pace tightness by ensuring the following claim.

The renaming network construction ensures that no two processes return the
same output, and that the processes return values between 1 and k, the total con-
tention in the execution. The proof is based on a simulation argument from an
execution of a renaming network to an execution of a sorting network. We start
from an arbitrary execution E of the renaming network, and we build a valid ex-
ecution of a sorting network. The structure of the outputs in the sorting network



execution will imply that the tightness and uniqueness properties hold in the re-
naming network execution.

Let P be the set of processes that have taken at least one step in E. Each process
pi ∈ P is assigned a unique input port vi in the renaming network. Let I denote the
set of input ports on which there is a process present. We then introduce a new set
of “ghost" processes G, each assigned to one of the input ports in {1, 2, . . . ,M} \ I.
We denote by C the set of “crashed" processes, i.e. processes that took a step in
E, but did not return an output port index.

The next step in the transformation is to assign input values to these processes.
We assign input value 0 to processes in P (and correspondingly to their input
ports), and input value 1 to processes in G.

Note that, in execution E, not all test-and-set objects in the renaming network
may have been accessed by processes (e.g., the test-and-set objects corresponding
to processes in G), and not all processes have reached an output port (i.e., crashed
processes and ghost processes). The next step is to simulate the output of these
test-and-set operations by extending the current renaming network execution.

We extend the execution by executing each process in C ∪G until completion.
We first execute each process in C, in a fixed arbitrary order, and then execute
each process in G, in a fixed arbitrary order. The rules for deciding the result of
test-and-set objects for these processes are the following.

• If the current test-and-set T already has a winner in the extension of E, i.e.
a process that returned 0 and went “up", then the current process automati-
cally goes “down" at this test-and-set.

• Otherwise, if the winner has not yet been decided in the extension of E,
then the current process becomes the winner of T and goes “up," i.e. takes
output port x′.

In this way, we obtain an execution in which M processes participate, and each
test-and-set object has a winner and a loser. By Claim 5.1.2, the execution is well-
formed, i.e. there are never two processes (or two values) on the same wire. Also
note that the resulting extension of the original execution E is a valid execution
of a renaming network, since we are assuming an asynchronous shared memory
model, and the ghost and crashed processes can be seen simply as processes that
are delayed until processes in P \C returned.

The key observation is that, for every two-process test-and-set T in the net-
work, T obeys the comparison property of comparators in a sorting network, ap-
plied to the values assigned to the participating processes. We take cases on the
processes p and q participating in T .

1. If p and q are both in P, then both have associated value 0, so the T respects
the comparison property irrespective of the winner.



2. If p ∈ P and q ∈ G, then notice that p necessarily wins T , while q neces-
sarily loses T . This is trivial if p ∈ P \ C; if p ∈ C, this property is ensured
since we execute all processes in C before processes in G when extending E.
Therefore, the process with associated value 0 always wins the test-and-set.

3. If p and q are both in G, then both have associated value 1, so T respects
the comparison property irrespective of the winner.

The final step in this transformation is to replace every test-and-set operation
with a comparator between the binary values corresponding to the two processes
that participate in the test-and-set. Thus, since we have started from a sorting net-
work, we obtain a sequence of comparator operations ordered in stages, in which
each stage contains only comparison operations that may be performed in paral-
lel. The above argument shows that all comparators obey the comparison property
applied to the values we assigned to the corresponding processes. In particular,
when input values are different, the lower value (corresponding to participating
processes) always goes “up," while the higher value always goes “down."

Thus, the execution resulting from the last transformation step is in fact a
valid execution of the sorting network from which the renaming network has been
obtained. Recall that we have associated each process that took a step to a 0
input value, and each ghost process to a 1 input value to the network. Since,
by Claim 5.1.2, no two input values may be sorted to the same output port, we
first obtain that the output port indices that the processes in P return are unique.
For namespace tightness, recall that we have obtained an execution of a sorting
network with M input values, M−k of which, i.e. those corresponding to processes
in G, are 1. By the sorting property of the network, it follows that the lower M − k
output ports of the sorting network are occupied by 1 values. Therefore, the M− k
“ghost" processes that have not taken a step in Emust be associated with the lower
M−k output ports of the network in the extended execution. Conversely, processes
in P must be associated with an output port between 1 and k in the extension of the
original execution E. The final step is to notice that, in E, we have not modified the
output port assignment for processes in P \ C, i.e. for the processes that returned
a value in the execution E. Therefore, these processes must have returned a value
between 1 and k. This concludes the proof of this claim and of the Theorem. �

We now apply the renaming network construction starting from sorting net-
works of optimal logarithmic depth, whose existence is ensured by the AKS con-
struction [4]. (Recall that the AKS construction [4] gives, for any integer N > 0,
a network for sorting N integers, whose depth is O(log N). The construction is
quite complex, and therefore we do not present it here.)

[AKS] The renaming network obtained from an AKS sorting network [4] with
M input ports solves the strong adaptive renaming problem with M initial names,



guaranteeing name uniqueness in all executions, and using O(log M) test-and-set
operations per process in the worst case. The termination guarantee is the same as
that of the test-and-set objects used.

Proof. The fact that this instance of the algorithm solves strong adaptive renaming
follows from Theorem 1. For the complexity claims, notice that the number of
test-and-set objects a process enters is bounded by the depth of the sorting network
from which the renaming network has been obtained. In the case of the AKS
sorting network with M inputs, the depth is O(log M). �

5.2 A Strong Adaptive Renaming Algorithm

We present an algorithm for adaptive strong renaming based on an adaptive sort-
ing network construction. For any k ≥ 0, the algorithm guarantees that k processes
obtain unique names from 1 to k. We start by presenting a sorting network con-
struction that adapts its size and complexity to the number of processes executing
it. We will then use this network as a basis for an adaptive renaming algorithm

5.2.1 An Adaptive Sorting Network

We present a recursive construction of a sorting network of arbitrary size. We
will guarantee that the resulting construction ensures the properties of a sorting
network whenever truncated to a finite number of input (and output) ports. The
sorting network is adaptive, in the sense that any value entering on wire n and
leaving on wire m traverses at most O(log max(n,m)) comparators.

Let the width of a sorting network be the number of input (or output) ports in
the network. The basic observation is that we can extend a small sorting network B
to a wider range by inserting it between two much larger sorting networks A and
C. The resulting network is non-uniform—different paths through the network
have different lengths, with the lowest part of the sorting network (in terms of
port numbers) having the same depth as B, whereas paths starting at higher port
numbers may have higher depth.

Formally, suppose we have sorting networks A, B, and C, where A and C have
width m and B has width k < m. Label the inputs of A as A1, A2, . . . , Am and the
outputs as A′1, A

′
2, . . . , A

′
m, where i < j means that A′i receives a value less than or

equal to A′j. Similarly label the inputs and outputs of B and C. Fix ` ≤ k/2 and
construct a new sorting network ABC with inputs B1, B2, . . . B`, A1, . . . Am and out-
puts B′1, B

′
2, . . . B

′
`,C

′
1,C

′
2, . . .C

′
m. Internally, insert B between A and C by connect-

ing outputs A′1, . . . , A
′
k−` to inputs B`+1, . . . , Bk; and outputs B′`+1, . . . B

′
k to inputs

C1, . . .Ck−`. The remaining outputs of A are wired directly across to the corre-
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Figure 10: One stage in the construction of the adaptive sorting network. The small labels
indicate port number: upper is higher.

sponding inputs of C: outputs A′k−`+1, . . . , A
′
m are wired to inputs Ck−`+1, . . . ,Cm.

(See Figure 10.)

Lemma 1. The network ABC constructed as described above is a sorting network.

Proof. The proof uses the well-known Zero-One Principle [34]: we show that the
network correctly sorts all input sequence of zeros and ones, and deduce from this
fact that it correctly sorts all input sequences.

Given a particular 0-1 input sequence, let zB and zA be the number of zeros in
the input that are sent to inputs B1 . . . B` and A1 . . . Am. Because A sorts all of its
incoming zeros to its lowest outputs, B gets a total of zB + max(k − `, zA) zeros
on it inputs, and sorts those zeros to outputs B′1 . . . B

′
zB+max(k−`,zA). An additional

zA −max(k − `, zA) zeros propagate directly from A to C.
We consider two cases, depending on the value of the max:

• Case 1: zA ≤ k − `. Then B gets zB + zA zeros (all of them), sorts them to its
lowest outputs, and those that reach outputs B′`+1 and above are not moved
by C. Therefore, the sorting network is correct in this case.

• Case 2: zA > k − `. Then B gets zB + k − ` zeros, while zA − (k − `) zeros are
propagated directly from A to C. Because ` ≤ k/2, zB + k− ` ≥ k/2 ≥ `, and
B sends ` zeros out its direct outputs B′1 . . . B`. All remaining zeros are fed
into C, which sorts them to the next zA + zB − ` positions. Again, the sorting
network is correct.

�



When building the adaptive network, it will be useful to constrain which parts
of the network particular values traverse. The key tool is given by the following
lemma:

Lemma 2. If a value v is supplied to one of the inputs B1 through B` in the network
ABC, and is one of the ` smallest values supplied on all inputs, then v never leaves
B.

Proof. Immediate from the construction and Lemma 1; v does not enter A initially,
and is sorted to one of the output B′1 . . . B

′
`, meaning that it also avoids C. �

Now let us show how to recursively construct a large sorting network with
M depth when truncated to the first M positions. We assume that we are using
a construction of a sorting network that requires at most a logc n depth to sort
n values, where a and c are constants. For the AKS sorting network [4], we
have c = 1 and very large a; for constructible networks (e.g., the bitonic sorting
network [45]), we have c = 2 and small a.

Start with a sorting network S 0 of width 2. In general, we will let w j be the
width of S j; so we have w0 = 2. We also write d j for the depth of S j (the number
of comparators on the longest path through the network).

Given S j, construct S j+1 by appending two sorting networks A j+1 and C j+1

with width w2
j −w j/2, and attach them to the top half of S j as in Lemma 1, setting

` = w j/2.
Observe that w j+1 = w2

j and d j+1 = 2a logc(w2
j − w j/2) + d j ≤ 4a logc w j + d j.

Solving these recurrences gives w j = 22 j
and d j =

∑ j
i=0 2c(i+2)a = O(2c j).

If we set M = 22 j
, then j = lg lg M, and d j = O(2c lg lg M) = O(logc M). This

gives us polylogarithmic depth for a network with M lines, and a total number of
comparators of O(M logc M).

We can in fact state a stronger result, relating the input and output port indices
for a value with the complexity of sorting that value:

Theorem 2. For any j ≥ 0, the network S j constructed above is a sorting network,
with the property that any value that enters on the n-th input and leaves on the m-
th output traverses O(logc max(n,m)) comparators.

Proof. That S j is a sorting network follows from induction on j using Lemma 1.
For the second property, let S j′ be the smallest stage in the construction of S j

to which input n and output m are directly connected. Then w j′−1/2 < max(n,m) ≤
w j′/2, which we can rewrite as 22 j′−1

< 2 max(n,m) ≤ 22 j′

or j′−1 < lg lg max(n,m) ≤
j′, implying j′ = lg lg max(n,m). By Lemma 2, the given value stays in S j′ ,
meaning it traverses at most d j′ = O

(
2c j′

)
= O

(
2clg lg max(n,m)

)
= O

(
lgc max(n,m)

)
comparators. �



5.2.2 Transformation to a Renaming Nework

We now apply the previous results to renaming networks.
Consider the sequence of networks R j resulting from replacing comparators

with two-process test-and-set objects in the extensible sorting network construc-
tion from Section 5.2.1. For any M ≥ k > 0, assuming initial names from 1 to M,
these networks solve strong renaming for k processes with O(log M) test-and-set
accesses per process.

Proof. Fix a M ≥ k > 0, and let j be the first index in the sequence such that
the resulting network S j has at least M inputs and M outputs. By Theorem 2, this
network sorts, and has depth O(log M) (considering the version of the construction
using the AKS sorting network as a basis). By Theorem 1, the corresponding
renaming network R j solves adaptive strong renaming for any k processes with
initial names between 1 and M, performing O(log M) test-and-set accesses per
process. �

5.2.3 An Algorithm for Strong Adaptive Renaming

We show how to apply the adaptive sorting network construction to solve strong
adaptive renaming when the size of the initial namespace, M, is unknown, and
may be unbounded. This procedure can also be seen as transforming an arbitrary
renaming algorithm A, guaranteeing a namespace of size M, into strong renaming
algorithm S (A), ensuring a namespace from 1 to k. In case the processes have
initial names from 1 to M, then A is a trivial algorithm that takes no steps. We
first describe this general transformation, and then consider a particular case to
obtain a strong adaptive renaming algorithm with logarithmic time complexity.
Notice that, in order to work for unbounded contention k, the algorithm may use
unbounded space, since the adaptive renaming network construction continues to
grow as more and more processes access it.

Description. We assume a renaming algorithm A with complexity C(A), guar-
anteeing a namespace of size M (which may be a function of k, or n). We assume
that processes share an instance of algorithm A and an adaptive renaming network
R, obtained using the procedure in Section 5.2.1.

The transformation is composed of two stages. In the first stage, each process
pi executes the algorithm A and obtains a temporary name vi from 1 to M. In the
second stage, each process uses the temporary name vi as the index of its (unique)
input port to the renaming network R. The process then executes the renaming
network R starting at the given input port, and returns the index of its output port
as its name.



Wait-freedom. Notice that, technically, this algorithm may not be wait-free if
the number of processes k participating in an execution is infinite, then it is pos-
sible that a process either fails to acquire a temporary name during the first stage,
or it continually fails to reach an output port by always losing the test-and-set ob-
jects it participates in. Therefore, in the following, we assume that k is finite, and
present bounds on step complexity that depend on k.

Constructibility. Recall that we are using the AKS sorting network [4] of O(log M)
depth for M inputs as the basis for the adaptive renaming network construction.
However, the constants hidden in the asymptotic notation for this construction are
large, and make the construction impractical [45]. On the other hand, since the
construction accepts any sorting network as basis, we can use Batcher’s bitonic
sorting network [45], with O(log2 M) depth as a basis for the construction. Using
bitonic networks trades a logarithmic factor in terms of step complexity for ease
of implementation.

5.2.4 Analysis of the Strong Adaptive Renaming Algorithm

We now show that the transformation is correct, transforming any renaming al-
gorithm A with namespace M and complexity C(A) into a strong renaming algo-
rithm, with complexity cost C(A) + O(log M).

Theorem 3 (Namespace Boosting). Given any renaming algorithm A ensuring
namespace M with expected worst-case step complexity C(A), the renaming net-
work construction yields an algorithm S (A) ensuring strong renaming. The num-
ber of test-and-set operations that a process performs in the renaming network is
O(log M). Moreover, if A is adaptive, then the algorithm S (A) is also adaptive.
When using the randomized test-and-set construction of [55], the number of steps
that a process takes in the renaming network is O(log M) both in expectation and
with high probability in k.

Proof. Fix an algorithm A with namespace M and worst-case step complexity
C(A). Therefore, we can assume that, during the current execution, each process
enters a unique input port between 1 and M in the adaptive renaming network. By
Corollary 5.2.2, each process reaches a unique output port between 1 and k, which
ensures that the transformation solves strong renaming.

If the algorithm A is adaptive, i.e. the namespace size M and its complexity
C(A) depend only on k, then the entire construction is adaptive, since the adaptive
renaming network guarantees a namespace size of k, and complexity O(log M),
which only depends on k. This concludes the proof of correctness.



For the upper bound on worst-case step complexity, notice that a process may
take at most C(A) steps while running the first stage of the algorithm. By Corol-
lary 5.2.2, we obtain that a process performs O(log M) test-and-set accesses in
any execution. Since the randomized test-and-set construction of [55], has con-
stant expected step complexity, the worst-case expected step complexity of the
whole construction is C(A) + O(log M).

To obtain the high probability bound on the number of read-write operations
performed by a process in the renaming network, first recall that the number of
test-and-set operations that a process may perform while executing the renaming
network is Θ(log M). Therefore, we can see the number of read-write steps that
a process takes while executing the renaming network as a sum of Θ(log M) geo-
metrically distributed random variables, one for each two-process test-and-set. It
follows that the number of steps that a process performs while executing the re-
naming network is O(log M) with high probability in M. Since M ≥ k, this bound
also holds with high probability in k. �

We now substitute the generic algorithm A with the RatRace loose renaming
algorithm of [10], whose structure and properties are given in the Appendix. We
obtain a strong renaming algorithm with logarithmic step complexity. First, the
properties of the RatRace renaming algorithm are as follows.

[RatRace Renaming] For c ≥ 3 constant, the RatRace renaming algorithm de-
scribed above yields an adaptive renaming algorithm ensuring a namespace of size
O(kc) in O(log k) steps, both with high probability in k. Every process eventually
returns with probability 1.
This implies the following.

There exists an algorithm T such that, for any finite k ≥ 1, T solves strong
adaptive renaming with worst-case step complexity O(log k). The upper bound
holds in expectation and with high probability in k.

Proof. We replace the algorithm A in Theorem 3 with RatRace renaming. We
obtain a correct adaptive strong renaming algorithm.

For the upper bounds on complexity, by Proposition 5.2.4, the RatRace re-
naming algorithm ensures a namespace of size O(kc) using O(log k) steps, with
probability at least 1 − 1/kc, for some constant c ≥ 3. The complexity of the
resulting strong renaming algorithm is at most the complexity of RatRace renam-
ing plus the complexity of executing the renaming network. By Theorem 3, with
probability at least 1 − 1/kc, this is at most

O(log k) + O(log kc) = O(log k).

The expected step complexity upper bound follows identically. Finally, since
RatRace is adaptive, the transformation also yields an adaptive renaming algo-
rithm. �



We also obtain the following corollary, which applies to the case when test-
and-set is available as a base object.

Given any renaming algorithm A ensuring namespace M with worst-case step
complexity C(A), and assuming test-and-set base objects with constant cost, the
renaming network construction yields an algorithm S (A) ensuring strong renam-
ing with worst-case step complexity C(A) + O(log M). Moreover, if A is adaptive,
then the algorithm S (A) is also adaptive.

6 From an Optimal Randomized Algorithm to a Tight
Deterministic Lower Bound

In this section, we prove a linear lower bound on the time complexity of deter-
ministic renaming in asynchronous shared memory. The lower bound holds for
algorithms using reads, writes, test-and-set, and compare-and-swap operations,
and is matched within constants by existing algorithms, as discussed in Section 3.
We first prove the lower bound for adaptive deterministic renaming, and then ex-
tend it to non-adaptive renaming by reduction. The lower bound will hold for
algorithms that either rename into a sub-exponential namespace in k (if the algo-
rithm is adaptive) or into a polynomial namespace in n (if the algorithm is not
adaptive).

The Strategy. We obtain the result by reduction from a lower bound on mutual
exclusion. The argument can be split in two steps, outlined in Figure 11. The first
step assumes a wait-free algorithm R, renaming adaptively into a loose namespace
of sub-exponential size M(k), and obtains an algorithm T (R) for strong adaptive
renaming. As shown in Section 5, the extra complexity cost of this step is an
additive factor of O(log M(k)).6

The second step uses the strong renaming algorithm T (R) to solve adaptive
mutual exclusion, with the property that the RMR complexity of the resulting
adaptive mutual exclusion algorithm ME(T (R)) is O(C(k)+ log M(k)), where C(k)
is the step complexity of the initial algorithm R. Finally, we employ an Ω(k)
lower bound on the RMR complexity of adaptive mutual exclusion by Anderson
and Kim [44]. When plugging in any sub-exponential function for M(k) in the
expression bounding the RMR complexity of the adaptive mutual exclusion al-
gorithm ME(T (R)), we obtain that the algorithm R must have step complexity at
least linear in k.

6Since we are assuming a system with atomic test-and-set and compare-and-swap operations,
we can use such operations with unit cost in the construction from Section 5.
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Figure 11: The structure of the reduction in Theorem 4.

Applications. This result also implies a linear lower bound on the time com-
plexity of non-adaptive renaming algorithms, which guarantee names from 1 to
some polynomial function in n, with n known. This generalization holds by re-
duction, and is proven in full in [6].

A second application follows from the observation that many common shared-
memory objects such as queues, stacks, and fetch-and-increment registers can be
used to solve adaptive strong renaming. In turn, this will imply that the linear
lower bound will also apply to deterministic shared-memory implementations of
these objects using read, write, compare-and-swap or test-and-set operations.

6.1 Adaptive Lower Bound

In this section, we prove the following result.

Theorem 4 (Individual Time Lower Bound). For any k ≥ 1, given n = Ω(k2k
), any

wait-free deterministic adaptive renaming algorithm that renames into a names-
pace of size at most 2 f (k) for any function f (k) = o(k) has a worst-case execution
with 2k−1 participants in which (1) some process performs Ω(k) RMRs (and Ω(k)
steps) and (2) each participating process performs a single rename operation.

Proof. We begin by assuming for contradiction that there exists a deterministic
adaptive algorithm R that renames into a namespace of size M(k) = 2 f (k) for
f (k) ∈ o(k), with step complexity C(k) = o(k). The first step in the proof is to show
that any such algorithm can be transformed into a wait-free algorithm that solves
adaptive strong renaming in the same model, augmented with test-and-set base
objects; the complexity cost of the resulting algorithm will be O(C(k) + log M(k)).
This result follows immediately from Corollary 5.2.4.

Assuming test-and-set as a base object, any wait-free algorithm R that renames
into a namespace of size M(k) with complexity C(k) can be transformed into a
strong adaptive renaming algorithm T (R) with complexity O(C(k) + log M(k)).



Returning to the main proof, in the context of assumed algorithm R, the claim
guarantees that the resulting algorithm T (R) solves strong adaptive renaming with
complexity o(k) + O(log 2 f (k)) = o(k) + O( f (k)) = o(k).

The second step in the proof shows that any wait-free strong adaptive renaming
algorithm can be used to solve adaptive mutual exclusion with only a constant
increase in terms of step complexity. We note that the mutual exclusion algorithm
obtained is single-use (i.e., each process executes it exactly once).

Any deterministic algorithm R for adaptive strong renaming implies a correct
adaptive mutual exclusion algorithm ME(R). The RMR complexity of ME(R)
is upper bounded asymptotically by the RMR complexity of R, which is in turn
upper bounded by its step complexity.

Proof. We begin by noting a few key distinctions between renaming and mutual
exclusion. Renaming algorithms are usually wait-free, and assume a read-write
shared-memory model which may be augmented with atomic compare-and-swap
or test-and-set operations; complexity is measured in the number of steps that a
process takes during the execution. For simplicity, in the following, we abuse
notation and call this the wait-free (WF) model. Mutual exclusion assumes a
more specific cache-coherent (CC) or distributed shared memory (DSM) shared-
memory model with no process failures (otherwise, a process crashing in the criti-
cal section would block the processes in the entry section forever). Thus, solutions
to mutual exclusion are inherently blocking; the complexity of mutex algorithms
is measured in terms of remote memory references (RMRs). We call this second
model the failure-free, local spinning model, in short LS.

The transformation from adaptive tight renaming algorithm R in WF to the
mutex algorithm ME(R) in LS uses the algorithm R to solve mutual exclusion.
The key idea is to use the names obtained by processes as tickets to enter the
critical section.

Processes share a copy of the algorithm R, and a right-infinite array of shared
bits Done[1, 2, . . .], initially false. For the enter procedure of the mutex imple-
mentation, each of the k participating processes runs algorithm R, and obtains a
unique name from 1 to k. Since the algorithm R is wait-free, it can be run in the
LS model with no modifications.

The process that obtained name 1 enters the critical section; upon leaving, it
sets the Done[1] bit to true. Any process that obtains a name id ≥ 2 from the
adaptive renaming object spins on the Done[id − 1] bit associated to name id − 1,
until the bit is set to true. When this occurs, the process enters the critical section.
When calling the exit procedure to release the critical section, each process sets
the Done[id] bit associated with its name to true and returns. This construction is
designed for the CC model.

We now show that this construction is a correct mutex implementation.



• For the mutual exclusion property, let qi be the process that obtained name i
from the renaming network, for i ∈ {1, . . . , k}. Notice that, by the structure
of the protocol, for any i ∈ {1, . . . , k − 1}, process qi+1 may enter the critical
section only after process qi has exited the critical section, since process
qi sets the Done[i] bit to true only after executing the critical section. This
creates a natural ordering between processes’ accesses in the critical section,
which ensures that no two processes may enter it concurrently.

• For the no deadlock and no lockout properties, first notice that, since the mu-
tex algorithm runs in a failure-free model, and the test-and-set instances we
use in the renaming network are deterministically wait-free, it follows that
every process will eventually reach an output port in the renaming network.
Thus, by Theorem 3, each process will eventually be assigned a name from
1 to k. Conversely, each name i from 1 to k will eventually get assigned to
a unique process qi. Therefore, each of the Done[ ] bits corresponding to
names 1, . . . , k will be eventually set to true, which implies that eventually
each process enters the critical section, as required.

• The unobstructed exit condition holds since each process performs a single
operation in the exit section.

For the complexity claims, notice that, once a process obtains the name from algo-
rithm R, it performs at most two extra RMRs before entering the critical section,
since RMRs may be charged only when first reading the Done[v − 1] register,
and when the value of this register is set to true. Therefore, the (individual or
global) RMR complexity of the mutex algorithm is the same (modulo constant
multiplicative factors) as the RMR complexity of the original algorithm R. Since
the algorithm R is wait-free, its RMR complexity is a lower bound on its step
complexity.

The last remaining claim is that the resulting renaming algorithm is adaptive,
i.e. its complexity only depends on the contention k in the execution, and the
algorithm works for any value of the parameter n. This follows since the original
algorithm R was adaptive, and by the structure of the transformation. In fact, the
transformation does not require an upper bound on n to be known; if such an upper
bound is provided, then it can be used to bound the size of the Done[ ] array. This
concludes the proof of the claim. �

Final argument. To conclude the proof of Theorem 4, notice that the algorithm
resulting from the composition of the two claims, ME(T (R)), is an adaptive mu-
tual exclusion algorithm that requires o(k) + O( f (k)) = o(k) RMRs to enter and
exit the critical section, in the cache-coherent model, where 2 f (k) is the size of the
namespace guaranteed by the renaming algorithm.



However, the existence of this algorithm contradicts the Ω(k) lower bound on
the RMR complexity of adaptive mutual exclusion by Anderson and Kim [44,
Theorem 2], stated below.

Theorem 5 (Mutex Time Lower Bound [44]). For any k ≥ 1, given n = Ω(k2k
),

any deterministic mutual exclusion algorithm using reads, writes, and compare-
and-swap operations that accepts at least n participating processes has a compu-
tation involving (2k − 1) participants in which some process performs k remote
memory references to enter and exit the critical section [44].

The algorithm R is adaptive and therefore works for unbounded n. Therefore,
the adaptive mutual exclusion algorithm ME(T (R)) also works for unbounded
n. Hence the above mutual exclusion lower bound contradicts the existence of
algorithm ME(T (R)). The contradiction arises from our initial assumption on the
existence of algorithm R. The claim about step complexity follows since, for wait-
free algorithms, the RMR complexity is always a lower bound on step complexity.
The claim about the number of rename operations follows from the structure of
the transformation and from that of the mutual exclusion lower bound of [44], in
which each process performs the entry section once. �

6.1.1 Technical Notes

Relation between k and n. The lower bound of Anderson and Kim [44] from
which we obtain our result assumes large values of n, the maximum possible num-
ber of participating processes, in the order of k2k

. Therefore, for a fixed n, the rel-
ative value of k for which the linear lower bound is obtained may be very small.
For example, the lower bound does not preclude an algorithm with running time
O(min(k, log n)) if n is known in advance.

Read-write algorithms. Notice that, although the first reduction step employs
compare-and-swap (or test-and-set) operations for building the renaming network,
the lower bound also holds for algorithms that only employ read or write opera-
tions, since the renaming network is independent from the original renaming al-
gorithm R.

Single-Use Mutex. As noted above, the mutual exclusion algorithm we ob-
tained is single-use. This is not a problem for the lower bound, since it holds
for executions where each process invokes the entry section once, however it lim-
its the usefulness of the algorithm. We note that the algorithm can be extended
to a variant where processes invoke the critical section several times, however in
this case the time complexity will be logarithmic in the total number of mutual
exclusion calls in the execution.



Progress conditions. Known adaptive renaming algorithms, e.g. [52], [7], do
not guarantee wait-freedom in executions where the number of participants is un-
bounded, since a process may be prevented indefinitely from acquiring a name by
new incoming processes. Note that our lower bound applies to these algorithms
as well, as the original mutual exclusion lower bound of Anderson and Kim [44]
applies to all mutex algorithms ensuring livelock-freedom, and our transformation
does not require a strengthening of this progress condition.

6.2 Applications

6.2.1 Non-Adaptive Renaming

The above argument can be extended to apply to non-adaptive renaming algo-
rithms as well, as long as they start with names from a namespace of unbounded
size, which matches the problem definition we considered. The argument is tech-
nical, and requires the definition of an auxiliary task called renaming with fails,
which allows for the possibility of failure when acquiring a name. We refer the
reader to [6] for the complete argument, and simply state the claim here.

Any deterministic non-adaptive renaming algorithm, with the property that for
any n ≥ 1 the algorithm ensures a namespace polynomial in n, has worst-case step
complexity Ω(n).

6.2.2 Lower Bounds for Other Objects

These results imply time lower bounds for implementations of other shared ob-
jects, such as fetch-and-increment registers, queues, and stacks. Some of these
results are new, while others improve on previously known results.

We first show reductions between fetch-and-increment, queues, and stacks, on
the one hand, and adaptive strong renaming, on the other hand.

Lemma 3. For any k > 0, we can solve adaptive strong renaming using a fetch-
and-increment register, a queue, or a counter.

Proof. Given a linearizable fetch-and-increment register, we can solve adaptive
strong renaming by having each participant call the fetch-and-increment operation
once, and return the value received plus 1. The renaming properties are follow
trivially from the sequential specification of fetch-and-increment.

Given a linearizable shared queue, we can solve renaming as follows. If
an upper bound on n is given, then we initialize the queue with distinct inte-
gers 1, 2, . . . , n; otherwise, we initialize it with an unbounded string of integers
1, 2, 3, . . .. In both cases, 1 is the element at the head of the queue. Given this



initialized object, we can solve adaptive strong renaming by having each partici-
pant call the dequeue operation once, and return the value received. Correctness
follows trivially from the sequential specification of the queue.

Finally, given a stack, we initialize it with the same string of integers, where 1
is the top of the stack. To solve renaming, each process performs pop on the stack
and returns the element received. �

This implies a linear time lower bound for these objects.
[Queues, Stacks, Fetch-and-Increment] Consider a wait-free linearizable im-

plementation A of a fetch-and-increment register, queue, or stack, in shared mem-
ory with read, write, test-and-set, and compare-and-swap operations. If the algo-
rithm A is deterministic, then, for any k ≥ 1, given n = Ω(k2k

), there exists an
execution of A with 2k − 1 participants in which (1) each participant performs a
single call to the object, and (2) some process performs k RMRs (or steps).

7 Discussion and Open Questions
We have surveyed tight bounds on the complexity of the renaming problem in
asynchronous shared-memory, both for deterministic and randomized algorithms.
In particular, we have seen that, using randomization, we can achieve a tight
namespace in logarithmic expected time, and that deterministic implementations
of renaming have linear time complexity as long as they ensure a polynomial-size
namespace.

Several open questions remain. In shared-memory, the deterministic lower
bound is matched by several algorithms in the literature. For algorithms using
only reads and writes, which have been studied more extensively, the algorithm of
Chlebus and Kowalski [33] matches the linear time lower bound, giving a names-
pace of size (8k − log k − 1); an elegant algorithm by Attiya and Fouren [20]
achieves a tighter namespace of size (6k − 1); however, this last algorithm only
matches the time lower bound within a logarithmic factor. The fastest known
algorithm to achieve an optimal namespace using only reads and writes (of size
(2k − 1)) was given by Afek et al. [3], with time complexity O(k2). We have thus
reached our first open question.

Q1. What are the trade-offs between time complexity and namespace size
for deterministic asynchronous renaming?

One disadvantage of the renaming network algorithm is that it is based on an
AKS sorting network [4], which has prohibitively high constants hidden inside
the asymptotic notation [45]. Thus, it would be interesting to see whether one can



obtain constructible randomized solutions that are time-optimal and namespace-
optimal. On the other hand, the total lower bound holds only for adaptive algo-
rithms; it is not known whether faster non-adaptive algorithms exist, which could
in theory go below the logarithmic threshold. We conjecture that Ω(log n) steps is
a lower bound for non-adaptive randomized algorithms as well.

Q2. What are the tight bounds on the time complexity of randomized
non-adaptive renaming?

One aspect of these concurrent data structures, which has been somewhat ne-
glected by research is space complexity, i.e. the number of registers necessary for
correct shared-memory implementations. Recent work [35, 40] has begun looking
into this area as well. The question of tight bounds for renaming parametrized by
namespace size is still open however, and should yield interesting new insights on
this problem.

Q3. What are the space-time-namespace trade-offs for renaming?

Our lower bounds apply to implementations of more complex objects, such
as queues, stacks, or fetch-and-increment counters. The total step lower bound
suggests that there are complexity thresholds which cannot be avoided even with
the use of randomization. In particular, the average step complexity for adaptive
versions of these data structures is logarithmic, even when using randomization.
However, for many such objects there do not exist algorithms that match this loga-
rithmic lower bound. In terms of circumventing this bound, recent results [5], [26]
suggest that weaker adversarial models and relaxing object semantics, e.g. al-
lowing approximate implementations, could be used to go below this logarithmic
threshold.

Q4. Give tight bounds for asynchronous queues, stacks, and counters.

An area where open questions are still abundant is that of message-passing
implementations. In particular, the round complexity of renaming is open in both
synchronous and asynchronous models, and known techniques do not appear to
apply in this setting. Recent work [13] has given tight quadratic bounds for the
message complexity of renaming in the classic asynchronous model, but the ques-
tion of time (round) complexity of renaming in this model is still open.

Q5. What is the time complexity of renaming in asynchronous
message-passing?
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