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Subject matter

With the rapid development of computer network and communication technology,
the study of concurrent and distributed systems has become increasingly impor-
tant. Among various models of concurrent computation, process calculi have been
widely investigated and successfully used in the specification, design, analysis and
verification of practical concurrent systems. In recent years, probabilistic process
calculi have been proposed to describe and analyse quantitative behaviour of con-
current systems, which calls for the study of semantic foundations of probabilistic
processes.

In “Semantics of Probabilistic Processes” [4] we adopt an operational ap-
proach to describing the behaviour of nondeterministic and probabilistic processes.
The semantic comparison of different systems is based on appropriate behavioural
relations such as bisimulation equivalences and testing preorders.

This book mainly consists of two parts. The first part provides an elementary
account of bisimulation semantics for probabilistic processes from metric, logical
and algorithmic perspectives. The second part sets up a general testing framework
and specialises it to probabilistic processes with nondeterministic behaviour. The
resulting testing semantics is treated in depth. A few variants of it are shown to
coincide, and they can be characterised in terms of modal logics and coinductively
defined simulation relations. Although in the traditional (nonprobabilistic) setting,
simulation semantics is in general finer (i.e. it distinguishes more processes) than
testing semantics, for a large class of probabilistic processes, the gap between
simulation and testing semantics disappears. Therefore, in this case, we have a
semantics where both negative and positive results can be easily proved: to show
that two processes are not related in the semantics, we just give a witness test,
and to prove that two processes are related, we only need to establish a simulation
relation.
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Why yet another book?
Three decades have passed since the well-known books on process algebras by
Hoare [8], Milner [10], Baeten and Weijland [3], and Hennessy [7] were pub-
lished. In the meanwhile some excellent textbooks have appeared, including those
by Roscoe [13, 14], Milner [11], Fokkink[6], Sangiorgi and Walker [17], Aceto
et al. [1], Sangiorgi [15], as well as Sangiorgi and Rutten [16]. They are mainly
about classical (nonprobabilistic) process algebras. For probabilistic concurrency
theory, the book by Panangaden [12] is dedicated to the model of labelled Markov
Processes and the book by Doberkat [5] treats stochastic logics in depth. Proba-
bilistic model checking is well covered in the books by Baier and Katoen [2], and
Kwiatkowska et al. [9]. This book, however, collects some recent developments
in probabilistic testing semantics and gives an elementary account of probabilistic
bisimulation semantics. Below we give a rough overview of the book’s contents.

Mathematical preliminaries
In order to study the semantics of probabilistic processes, several mathematical
concepts and results turn out to be very useful. They are collected in Chapter 2,
including, for example, continuous functions over complete lattices, the Knaster-
Tarski fixed-point theorem, induction and coinduction proof principles, compact
sets in topological spaces, the separation theorem in geometry, the Banach fixed-
point theorem in metric spaces, the π-λ theorem in probability spaces and the
duality theorem in linear programming. The purpose of introducing these contents
is to make the proofs in later chapters more accessible to postgraduate students and
junior researchers entering the discipline of theoretical computer science.

Probabilistic bisimulation
In this book we work within a framework that features the co-existence of proba-
bility and nondeterminism. More specifically, we deal with probabilistic labelled
transition systems (pLTS’s) that are an extension of the usual labelled transition
systems so that a step of transition is in the form s a

−−→ ∆, meaning that state s can
perform action a and evolve into a distribution ∆ over some successor states. The
diagram in Figure 1 describes a pLTS; states are represented by nodes of the form
• and distributions by nodes of the form ◦.

Let s and t be two states in a pLTS. They are related by probabilistic simulation
R, written s R t, if for each transition s a

−−→ ∆ from s there exists a transition
t a
−−→ Θ from t such that Θ can somehow mimic the behaviour of ∆ according to
R. To formalise the mimicking of ∆ by Θ, we have to lift R to be a relation R†

between distributions over states so that we can require ∆ R† Θ.
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Figure 1: A pLTS

Various methods of lifting relations have appeared in the literature, but they
can be reconciled. Essentially, there is only one lifting operation, which has been
rediscovered in different occasions and presented in different forms. Moreover,
we argue that the lifting operation is interesting in itself. This is justified by its
intrinsic connection with some fundamental concepts in mathematics, notably the
Kantorovich metric. For example, it turns out that our lifting of binary relations
from states to distributions nicely corresponds to the lifting of metrics from states
to distributions by using the Kantorovich metric. In addition, the lifting operation
is closely related to the maximum flow problem in optimisation theory.

In Chapter 3 we provide three characterisations of probabilistic bisimulation,
from the perspectives of modal logics, metrics, and decision algorithms.

• Our logical characterisation of probabilistic bisimulation consists of two
aspects: adequacy and expressivity. A logic L is adequate when two states
are bisimilar if and only if they satisfy exactly the same set of formulae in
L. The logic is expressive when each state s has a characteristic formula
ϕs in L such that state t is bisimilar to s if and only if t satisfies ϕs. We
introduce a probabilistic-choice modality to capture the behaviour of distri-
butions. Intuitively, distribution ∆ satisfies the formula

⊕
i∈I pi · ϕi if there

is a decomposition of ∆ into a convex combination of some distributions,
∆ =
∑

i∈I pi ·∆i, and each ∆i conforms to the property specified by ϕi. When
the new modality is added to the Hennessy-Milner logic we obtain an ad-
equate logic for probabilistic bisimilarity; when it is added to the modal
mu-calculus we obtain an expressive logic.

• By metric characterisation of probabilistic bisimulation, we mean to give



a pseudometric such that two states are bisimilar if and only if their dis-
tance is 0 when measured by the pseudometric. More specifically, we show
that bisimulations correspond to pseudometrics that are postfixed points of
a monotone function, and in particular bisimilarity corresponds to a pseu-
dometric that is the greatest fixed point of the monotone function.

• As to the algorithmic characterisation, we first introduce a partition refine-
ment algorithm to check whether two states are bisimilar. Then we provide
an “on-the-fly" algorithm that checks whether two states are related by prob-
abilistic bisimilarity. The schema of the algorithm is to approximate proba-
bilistic bisimilarity by iteratively accumulating information about state pairs
(s, t) where s and t are not bisimilar. In each iteration we dynamically con-
struct a relation R as an approximant. Then we verify that every transition
from one state should be matched by a transition from the other state, and
that their resulting distributions are related by the lifted relation R†. The
latter involves solving the maximum flow problem of an appropriately con-
structed network, by taking advantage of the close relationship between our
lifting operation and the above mentioned maximum flow problem.

Probabilistic testing semantics
It is natural to view the semantics of processes as being determined by their ability
to pass tests; two processes are deemed to be semantically equivalent unless there
is a test that can distinguish them. The actual tests used typically represent the
ways in which users, or indeed other processes, can interact with the processes
under examination. To formulate this idea, in Chapter 4 we set up a general testing
scenario. It assumes

• a set of processes Proc

• a set of tests T , which can be applied to processes

• a set of outcomes O, the possible results from applying a test to a process

• a function A : T × Proc → P(O), representing the possible results of
applying a specific test to a specific process.

Here P(O) denotes the collection of non-empty subsets of O; so the result of ap-
plying a test T to a process P,A(T, P), is in general a non-empty set of outcomes,
representing the fact that the behaviour of processes, and indeed tests, may be
nondeterministic.

Moreover, some outcomes are considered better then others; for example, the
application of a test may simply succeed, or it may fail, with success being better



than failure. So we can assume that O is endowed with a partial order, in which
o1 ≤ o2 means that o2 is a better outcome than o1.

When comparing the results of applying tests to processes we need to compare
subsets of O. There are two standard approaches to make this comparison, based
on viewing these sets as elements of either the Hoare or Smyth powerdomain of
O1. Consequently, we have two different semantic preorders for processes:

(i) For P,Q ∈ Proc let PvmayQ if for any test T and every outcome o1 ∈ A(T, P)
there exists some o2 ∈ A(T,Q) such that o1 ≤ o2.

(ii) Similarly, let P vmust Q if for any test T and every o2 ∈ A(T,Q) there exists
some o1 ∈ A(T, P) such that o1 ≤ o2.

Let us have a look at two typical instances of the setO and its associated partial
order ≤.

1. For probabilistic processes we consider an application of a test to a process
to succeed with a given probability. Thus we take as the set of outcomes the
unit interval [0, 1], with the standard ordering: if 0 ≤ p < q ≤ 1 then suc-
ceeding with probability q is considered better than succeeding with proba-
bility p. We refer to this approach as scalar testing.

2. Another approach of testing, as originally proposed by Segala, employs a
countable set of special actions Ω = {ω1, ω2, ...} to report success. When
applied to probabilistic processes, this approach uses the function space
[0, 1]Ω as the set of outcomes and the standard partial order for real func-
tions: for any o1, o2 ∈ O, we have o1 ≤ o2 if and only if o1(ω) ≤ o2(ω)
for every ω ∈ Ω. When Ω is fixed, an outcome o ∈ O can be considered
as a vector 〈o(ω1), o(ω2), ...〉, with o(ωi) representing the probability of suc-
cess observed by action ωi. Therefore, this approach is called vector-based
testing.

Surprisingly, it turns out that for finitary systems, i.e. finite-state and finitely
branching systems, scalar testing is equally powerful as vector-based testing. This
is the main result shown in Chapter 4. Other variants of testing approaches, such
as reward testing and extremal reward testing are also discussed. They all coincide
with vector-based testing as far as finitary systems are concerned.

1A third approach is to use the Plotkin powerdomain, which can be obtained by combining the
Hoare and Smyth powerdomains.



Testing finite probabilistic processes
Chapter 5 investigates the connection between testing and simulation semantics.
The simulation semantics is based on a notion of failure simulation and a notion of
forward simulation; a distinguishing feature of them is to allow for the comparison
of states with distributions. We say a relation R ⊆ S ×D(S ) is a failure simulation
if s R Θ implies

(i) for any action α, if s α
−−→ ∆ then there exists some Θ′ such that Θ

α
==⇒ Θ′

and ∆ R† Θ′

(ii) for any set of actions A, if s fails to perform any action in A, then so does
some Θ′ with Θ

τ
==⇒ Θ′.

Here we write α
==⇒ for a weak transition that abstracts away the internal action τ.

Similarly, we define forward simulation by dropping the clause (ii) above.
For finite processes, i.e. processes whose behaviour can be described by

pLTS’s with finite tree structures, testing semantics is not only sound but also
complete for simulation semantics. More specifically, may testing preorder coin-
cides with forward simulation preorder and must testing preorder coincides with
failure simulation preorder. Therefore, unlike the traditional (nonprobabilistic)
setting, here there is no gap between testing and simulation semantics. To prove
this result we make use of logical characterisations of testing preorders. For ex-
ample, each state s has a characteristic formula ϕs in the sense that another state
t can simulate s if and only if t satisfies ϕs. We can then turn this formula ϕs into
a characteristic test Ts so that if t is not related to s via the may testing preorder
then Ts is a witness test that distinguishes t from s. Similarly for the case of failure
simulation and must testing. We also give a complete axiom system for the testing
preorders in the finite fragment of a probabilistic process algebra.

Testing finitary probabilistic processes
In Chapter 6 we extend the results in the previous chapter from finite processes
to finitary processes. Testing preorders can still be characterised as simulation
preorders and admit modal characterisations. The soundness and completeness
proofs inherit the general schemata from Chapter 5. However, the technicalities
are much more subtle and more interesting. For example, the weak transition re-
lation τ

==⇒ needs to be carefully defined so as to abstract away infinitely many
internal transition steps, and we make a significant use of subdistributions. A
crucial topological property shown in this chapter is that from any given subdistri-
bution, the set of stable subdistributions reachable from it by weak transitions can
be finitely generated. Consider the pLTS in Figure 1 again. Both the point distri-
bution s5 and the distribution ( 1

2 s3 + 1
2 s6) are stable and reachable from s0. In fact,



by taking linear combinations of them we obtain the set of all stable subdistribu-
tions reachable from s0. The proof is highly non-trivial and involves techniques
from Markov decision processes such as rewards and static policies. This result
enables us to approximate coinductively defined relations by stratified inductive
relations. As a consequence, if two processes behave differently we can tell them
apart by a finite test.

We also introduce a notion of real-reward testing that allows for negative re-
wards. It turns out that real-reward may preorder is the inverse of real-reward must
preorder, and vice versa. More interestingly, for finitary convergent processes,
real-reward must testing preorder coincides with nonnegative-reward testing pre-
order.

Weak probabilistic bisimulation
In Chapter 7 we introduce a notion of weak probabilistic bisimulation simply by
taking the symmetric form of the forward simulation preorder given in Chap-
ter 6. It provides a sound and complete proof methodology for an extensional be-
havioural equivalence, a probabilistic variant of the traditional reduction barbed
congruence well-known in concurrency theory.

More information
More information on this book can be found at

www.springer.com/978-3-662-45197-7
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