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1 Sampling from Discrete Distributions
Sampling from a probability distribution is a fundamental problem that lies at
the heart of randomized computation, and has never been as important as today,
as most sciences perform computer simulations of models involving randomness.
We approach this problem area from an algorithm theory perspective. The central
problem in the first part of this dissertation is proportional sampling, defined as
follows. We are given non-negative numbers p1, . . . , pn that define a probability
distribution on {1, . . . , n} by picking i with probability proportional to pi, i.e., the
probability of sampling i is pi∑

j p j
. The task is to build a data structure that supports

sampling from this distribution as a query. The classic solution to this problem
is the alias method by Walker from ’74 [38], which uses O(1) query time and
O(n) preprocessing time, i.e., the time for building the data structure is O(n). It is
easy to see that both time bounds of Walker’s method are optimal. We extend this
classic data structure in various directions as follows.

Succinct Sampling While the time bounds are well understood, space usage of
discrete sampling algorithms has received little attention. To bound its space us-
age, we show that Walker’s alias method can be implemented on the Word RAM
model of computation (where each cell stores w = Ω(log n) bits) with a space us-
age of n(w + 2 lg n + O(1)) bits [12]. Using the terminology of succinct data struc-
tures, this solution has a redundancy of 2n lg n+O(n) bits, i.e., it uses 2n lg n+O(n)
bits in addition to the information theoretic minimum required for storing the in-
put. We examine whether this space usage can be improved in two common mod-
els for data structures from the field of succinct data structures: In the systematic
model, in which the input is read-only, we present a novel data structure using
r +O(w) redundant bits, O(n/r) expected query time, and O(n) preprocessing time
for any r. This is an improvement in redundancy by a factor of Ω(log n) over the



alias method for r = n, even though the alias method is not systematic. Moreover,
we complement this data structure with a lower bound showing that this trade-
off is tight for systematic data structures. In the non-systematic model, in which
the input numbers may be represented in more clever ways than just storing them
one-by-one, we demonstrate a very surprising separation from the systematic case:
With only 1 redundant bit, it is possible to support optimal O(1) expected query
time and O(n) preprocessing time! On the one hand, these results improve upon
the space requirement of the classic solution for a fundamental sampling prob-
lem, and on the other hand, they provide the strongest known separation between
the systematic and non-systematic model for any data structure problem. Finally,
we also believe that these upper bounds are practically efficient and simpler than
Walker’s alias method.

Restricted Inputs Since the preprocessing and query time bounds of Walker’s
alias method are optimal in the worst case, we examine the situation where we
have additional knowledge about the input distribution [14]. For example, assume
that we have the guarantee that the input is sorted. We show that, in this case,
the preprocessing time can be reduced to O(log n) while still achieving expected
query time O(1). Moreover, one can further reduce the preprocessing time at
the price of increasing the query time, specifically, any expected query time O(t)
can be achieved with O(logt n) preprocessing time. In particular, we can achieve
preprocessing and expected query time O(log n/ log log n). We also show tight
lower bounds for this trade-off curve at all of its points.

Subset Sampling Let us consider a different sampling problem [14]: In subset
sampling we are given p1, . . . , pn and consider n independent events, where event
i occurs with probability pi. The task is to sample the set of occurring events.
This problem can be seen as a generalization of proportional sampling, since we
show that any data structure for subset sampling can be transformed into a data
structure for proportional sampling with the same asymptotic running times. As
for proportional sampling, we consider sorted and unsorted input sequences and
in both cases present data structures with optimal preprocessing-query time trade-
offs. The situation is more complex than for proportional sampling, since the
running times now also depend on the expected size µ of the sampled subset. For
instance, we design a data structure for subset sampling on sorted inputs with
preprocessing and expected query time O(1 + µ +

log n
log(log(n)/µ) ), which corresponds

to one point on an optimal trade-off curve.

Special distributions Particularly fast sampling methods are known for special
distributions such as Bernoulli, geometric, or binomial random variables. For



instance, a geometric random variable Geo(p) can be sampled using the simple
formula

⌈ log R
log(1−p)

⌉
, where R is a uniformly random real in (0, 1). On a Real RAM,

this formula can be evaluated in constant time. However, on real-life computers
this formula is typically evaluated with the usual floating point precision, so that
it is not exact. Hence, we study whether special distributions can be sampled
exactly and efficiently on a bounded-precision machine such as the Word RAM.
We prove that a geometric random variable Geo(p) can be sampled in expected
time O(1 + log(1/p)/w) on the Word RAM [10]. This is optimal, as it matches
the expected number of output words. To this end, we have to avoid the simple
formula above, as it is a long-standing open problem to compute logarithms in
linear time. We also present optimal sampling algorithms on the Word RAM for
Bernoulli and binomial random variables as well as ErdÅŚsâĂŞRÃl’nyi random
graphs.

Applications The insights on the above fundamental problems also prove ben-
eficial for sampling more complex random structures motivated by physics. Con-
sider the following simple exemplary process. The Internal Diffusion Limited
Aggregation (IDLA [33]) process places particles on the initially empty integer
grid Z2. In every step, a new particle is born at the origin and performs a ran-
dom walk until it hits an empty grid cell and occupies it. This process models
certain chemical and physical phenomena such as corrosion and the melting of a
solid around a heat source. The emerging shape is roughly a ball. Proving this
rigorously turned out to be a challenging mathematical problem which has only
recently been resolved [32]. From a computational perspective, the trivial simu-
lation algorithm takes time O(n2) to generate an IDLA shape with n particles. We
prove that O(n log2 n) time and O(

√
n log n) space are sufficient for exactly sam-

pling from the IDLA distribution [15], which allows for experiments on a much
larger scale.

2 Computing Fréchet Distances
The second part of this dissertation belongs to the area of computational geometry
and deals with algorithms for the Fréchet distance, which is a popular measure of
similarity of curves. Intuitively, the (continuous) Fréchet distance of two curves
P,Q is the minimal length of a leash required to connect a dog to its owner, as
they walk along P and Q, respectively, without backtracking.

Alt and Godau introduced the Fréchet distance to computational geometry in
1991 [4, 27]. For polygonal curves P and Q with n and m vertices, respectively,
n ≥ m, they presented an O(nm log(nm)) algorithm. Since Alt and Godau’s semi-
nal paper, Fréchet distance has become a rich field of research, with many variants,



extensions, and generalizations (see, e.g., [3, 17, 20, 24]). Being a natural mea-
sure for curve similarity, Fréchet distance has found applications in various areas
such as signature verification (see, e.g., [34]), map-matching tracking data (see,
e.g., [7]), and moving objects analysis (see, e.g., [18]).

A particular variant that we also discuss in this dissertation is the discrete
Fréchet distance. Here, intuitively the dog and its owner are replaced by two
frogs, and in each time step each frog can jump to the next vertex along its curve
or stay at its current vertex. Defined in [25], the original algorithm for the discrete
Fréchet distance has running time O(nm).

Quadratic time complexity? Recently, improved algorithms have been found
for the classic variants. Agarwal et al. [2] showed how to compute the dis-
crete Fréchet distance in (mildly) subquadratic time O

(
nm log log n

log n

)
. Buchin et

al. [19] designed algorithms for the continuous Fréchet distance with running
time O(n2

√
log n(log log n)3/2) on the Real RAM and O(n2(log log n)2) on the

Word RAM. However, the problem remained open whether there is a strongly
subquadratic1 algorithm for the Fréchet distance, i.e., an algorithm with running
time O(n2−δ) for any δ > 0. The only known lower bound shows that the Fréchet
distance takes time Ω(n log n) (in the algebraic decision tree model) [16]. The
typical way of proving (conditional) quadratic lower bounds for geometric prob-
lems is via 3SUM [26]. In fact, Helmut Alt conjectured that the Fréchet distance
is 3SUM-hard, but this conjecture remains open. Instead of relating the Fréchet
distance to 3SUM, we consider the Strong Exponential Time Hypothesis.

Strong Exponential Time Hypothesis (SETH) The hypothesis SETH, intro-
duced by Impagliazzo, Paturi, and Zane [30, 31], provides a way of proving con-
ditional lower bounds. SETH asserts that satisfiability has no algorithms that are
much faster than exhaustive search.

Hypothesis SETH: For no ε > 0, k-SAT can be solved in time O(2(1−ε)N) for all
k ≥ 3.

Note that exhaustive search takes time O∗(2N) and the best-known algorithms for
k-SAT have a running time of the form O(2(1−c/k)N) for some constant c > 0 [36].
Thus, SETH is a reasonable hypothesis and, due to lack of progress in the last
decades, can be considered unlikely to fail. It has been observed before this work
that SETH can be used to prove lower bounds for polynomial time problems such

1We use the term strongly subquadratic to differentiate between this running time and the
(mildly) subquadratic O(n2 log log n/ log n) algorithm from [2].



as k-Dominating Set and others [35], the diameter of sparse graphs [37], and dy-
namic connectivity problems [1].

Main lower bound Our main result of the second part of this dissertation gives
strong evidence that the Fréchet distance may have no strongly subquadratic al-
gorithms by relating it to the Strong Exponential Time Hypothesis. We prove that
there is no O(n2−δ) algorithm for the (continuous or discrete) Fréchet distance
for any δ > 0, unless SETH fails [9]. Since SETH is a reasonable hypothesis,
by this result one can consider it unlikely that the Fréchet distance has strongly
subquadratic algorithms. In particular, any strongly subquadratic algorithm for
the Fréchet distance would not only give improved algorithms for k-SAT that are
much faster than exhaustive search, but also for various other problems such as
Hitting Set, Set Splitting, and NAE-SAT via the reductions in [22]. Alternatively,
in the spirit of [35], one can view the above theorem as a possible attack on k-SAT,
as algorithms for the Fréchet distance now could provide a route to faster k-SAT
algorithms. In any case, anyone trying to find strongly subquadratic algorithms
for the Fréchet distance should be aware that this is as hard as finding improved
k-SAT algorithms, which might be impossible.

We remark that all our lower bounds (unless stated otherwise) hold in the
Euclidean plane, and thus also in Rd for any d ≥ 2.

Extensions We extend our main lower bound in two important directions: We
show approximation hardness and we show tight lower bounds if one curve has
much fewer vertices than the other, m � n. In order to state our result, we first for-
malize that a statement holds for “m ≈ nγ for any γ”. We say that a statement holds
for any polynomial restriction of nγ0 ≤ m ≤ nγ1 if it holds restricted to instances
with nγ−δ ≤ m ≤ nγ+δ for any constants δ > 0 and γ0 + δ ≤ γ ≤ γ1 − δ. We prove
that there is no 1.001-approximation with running time O((nm)1−δ) for the (con-
tinuous or discrete) Fréchet distance for any δ > 0, unless SETH fails. This holds
for any polynomial restriction of 1 ≤ m ≤ n [9]. In recent work together with
Wolfgang Mulzer focussing on the discrete Fréchet distance [13], we improve
this result further by excluding 1.399-approximation algorithms even for one-
dimensional curves, assuming SETH. Moreover, we present an α-approximation
in time O(n2/α + n log n) for any α ≥ 1.

Realistic input curves In attempts to break the apparent quadratic time barrier
at least for realistic inputs, various restricted classes of curves have been con-
sidered, such as backbone curves [6], κ-bounded and κ-straight curves [5], and
φ-low density curves [24]. The most popular model of realistic inputs are c-
packed curves. A curve π is c-packed if for any point z ∈ Rd and any radius



r > 0 the total length of π inside the ball B(z, r) is at most cr, where B(z, r)
is the ball of radius r around z. This model is well motivated from a practical
point of view. The model has been used for several generalizations of the Fréchet
distance [21, 23, 28, 29]. Driemel et al. [24] introduced c-packed curves and
presented a (1 + ε)-approximation for the continuous Fréchet distance in time
O(cn/ε + cn log n), which works in any Rd, d ≥ 2.

While this algorithm takes near-linear time for small c and 1/ε, is is not
clear whether its dependence on c and 1/ε is optimal for c and 1/ε that grow
with n. We give strong evidence that the algorithm of Driemel et al. has opti-
mal dependence on c for any constant 0 < ε ≤ 0.001. We prove that there is no
1.001-approximation with running time O((cn)1−δ) for the (continuous or discrete)
Fréchet distance on c-packed curves for any δ > 0, unless SETH fails. This holds
for any polynomial restriction of 1 ≤ c ≤ n [9]. Since we prove this claim for
any polynomial restriction c ≈ nγ, this result also excludes 1.001-approximations
with running time, say, O(c2 + n).

Regarding the dependence on ε, in any dimension d ≥ 5 we can prove a
conditional lower bound that matches the dependency on ε of the algorithm by
Driemel et al. up to a polynomial. We prove that in Rd, d ≥ 5, there is no (1 +

ε)-approximation for the (continuous or discrete) Fréchet distance on c-packed
curves running in time O(min{cn/

√
ε, n2}1−δ) for any δ > 0, unless SETH fails.

This holds for sufficiently small ε > 0 and any polynomial restriction of 1 ≤ c ≤ n
and ε ≤ 1 [9].

This, however, still leaves open a gap between the best-known upper and (con-
ditional) lower bounds. We resolve this issue positively by giving a faster algo-
rithm with time complexity O(cn log2(1/ε)/

√
ε + cn log n) [11]. This dependence

on c, n and ε is optimal in high dimensions apart from lower order factors, unless
SETH fails. In fact, the new algorithm was obtained by examining and exploiting
properties that prevent a stronger lower bound, thus demonstrating that SETH-
based lower bounds may also inspire algorithmic improvements. We leave open
the challenging problem of determining the optimal running time in dimensions
d = 2, 3, 4.
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