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Abstract
The field of arithmetic circuit complexity has lately seen a flurry of re-

sults. Several of these results are centered homogeneous depth four cir-
cuits, and come tantalizingly close to separating the algebraic analogue of
P from the algebraic analogue of NP. In this article, we survey some of the
more recent results and present the key intuitions. We also look at some re-
sults on depth reduction and some approaches aimed towards proving super-
polynomial lower bounds for homogeneous formulas.

1 Introduction
“What is the best way to compute a given polynomial f (x1, . . . , xn) from basic
operations such as + and ×?” This is the main motivating problem in the field
of arithmetic circuit complexity. The notion of complexity of a polynomial is
measured via the size of the smallest arithmetic circuit computing it. Arithmetic
circuits provide a robust model of computation for polynomials. Formally, these
are directed acyclic graphs with a unique sink vertex, where internal nodes are
labelled by + and × and each source node labelled with either a variable or a
field constant. Each + gate computes the sum of the polynomials computed at
its children, and × gates the product. The unique sink vertex is called the root
or the output gate, and the polynomial computed by that gate is the polynomial
computed by the circuit.
There are several interesting questions that can be asked about arithmetic circuits,
and polynomials that they compute. One category of problems are of the form, “Is
there an explicit polynomial f (x1, . . . , xn) that require (perhaps restricted) arith-
metic circuits of size 2Ω(n) to compute them?”, or questions about proving lower
bounds. Another category of problems are of the form, “Is the given circuit
computing the 0 polynomial?”, which is also called ‘Polynomial Identity Test-
ing (PIT)’. Yet another class of questions are of the form “Given oracle access to



a circuit, can you write down the polynomial computed by this circuit?”, which
are also called ‘polynomial reconstruction’. Several of these problems have very
strong connections between each other despite being of very different flavours.
Formal connections between PIT and lower bounds have been shown by [18, 1].
Further, strong lower bounds for restricted models have often been succeeded by
reconstruction algorithms (at least on average). In this article we shall mainly
be looking at lower bounds. For more on reconstruction and PIT questions, the
author is invited to read other excellent surveys such as [34, 6].

1.1 Arithmetic complexity classes
In the seminal paper of [36], Valiant defined two classes of polynomials which we
now call VP and VNP.

Definition 1. The class VP is defined as the set of all polynomial f (x1, . . . , xn)
with deg( f ) = nO(1) that can be computed by an arithmetic circuit of size s = nO(1).
The class VNP is defined as the set of all polynomial f (x1, . . . , xn) such that there
exists a g(x1, . . . , xn, y1, . . . , ym) with m = nO(1) such that

f (x1, . . . , xn) =

1∑
y1=0

· · ·

1∑
ym=0

g(x1, . . . , xn, y1, . . . , ym)

The class VP is synonymous to what we understand as efficiently computable
polynomials. The class VNP, whose definition is similar to the boolean class NP,
is in some sense a notion of what deem as explicit.

Fact 1. Let f (x1, . . . , xn) be a polynomial such that deg( f ) = nO(1) and given any
exponent vector e1, . . . , en, the coefficient of the monomial xe1

1 . . . xen
n in f can be

computed in polynomial time. Then, f ∈ VNP.

For example, consider the permanent of a symbolic n × n matrix. In fact, [36]
showed that the symbolic n× n permanent is in some sense complete for the class
VNP. Further, he also showed that the determinant of a symbolic n × n matrix is
(almost) complete for the class VP. Separating the determinant and the permanent
is the Holy Grail in the field of arithmetic circuit complexity.

Remark. Note that the above fact merely gives a sufficient condition for a poly-
nomial to be in VNP. There are examples of polynomials f where computing the
coefficient of a given monomial is believed to be very hard but f ∈ VNP.1 In

1For example, consider the n2 variate multilinear polynomial f such that the coefficient
xe11

11 . . . xenn
nn is the permanent of the n × n matrix ((ei j))i, j. Turns out f ∈ VNP. In fact, a nec-

essary and sufficient condition is that the coefficient of a given monomial can be computed in
#P/poly.



this article however, all the polynomials we shall be dealing with would have this
property that the coefficient of a given monomial can be efficiently computed. For
more about completeness classes in arithmetic complexity, [4] is a wonderful text.

1.2 Prior lower bounds
Proving lower bounds is generally considered challenging, in most models of
computation. For general circuits, the best lower bound we have for an explicit
polynomial is by [5] who prove an Ω(n log n) lower bound. For the subclass of
arithmetic formulas, [17] has shown a Ω(n3/2) lower bound. On the other hand,
we know by standard counting methods that most n-variate degree d polynomials

require circuits of size Ω

(√(
n+d

d

))
.

To gain better understanding of computation by arithmetic circuits, researchers
focused on proving lower bounds for restricted models of computation. One very
natural restriction is the depth of the circuit. Proving lower bounds for depth
two circuits are trivial. For general depth three circuits, the best lower bound we
have is by [33] who present an Ω(n2) lower bound. Exponential lower bounds are
known with additional restrictions like homogeneity [27], multilinearity [28, 30],
over finite fields [13, 10], monotonicity [16] etc.
For multilinear models, more is known for even larger depth. [28] showed an
nΩ(log n) lower bound for the class of multilinear formulas. [30] extended those
techniques to show an 2nΩ(1/∆)

lower bound for multilinear formulas of depth ∆.

1.3 Relevance of shallow circuits for “VP vs VNP”
The study of lower bounds for shallow circuits is not just an attempt to simplify
the problem and gain insight on the larger goal. The class of shallow arithmetic
circuits are surprisingly powerful, unlike the boolean case. Shallow circuits in the
arithmetic world almost capture the entire computational power of unrestricted
circuits!
There has been a long series of results that simulate a general arithmetic circuit
C by a shallow circuit of size comparable to the size of C. This task simulating
a circuit but another not-too-large circuit of small depth is called depth reduction.
The first result in this regard is by [37] who proved the following.

Theorem 2 ([37]). Let f be an n-variate degree d polynomial computed by an
arithmetic circuit C of size s. Then, f can be equivalently computed by a homoge-
neous circuit C′ of depth O(log d) with unbounded fan-in + and × gates and size
s′ = (nds)O(1).

In fact, the resulting circuit C′ has the following useful structure.



• The circuit is made up of alternating layers consisting of + and × gates.

• All multiplication gates have fan-in at most 5.

• If g is the polynomial computed at a multiplication gate, and g′ is the poly-
nomial computed at one of its children, then deg(g′) ≤ deg(g)/2.

The above theorem allows us to focus on just homogeneous circuits of O(log d)
depth and attempt lower bounds for this model. Any super-polynomial lower
bound for the class of O(log d) depth circuits automatically yields a super-polynomial
lower bound for general circuits.

However, if we really hope to prove much stronger lower bounds for Permn like
say 2Ω(n), maybe we can afford to incur a slightly larger blow-up in size to obtain
an even shallower circuit. This line was first pursued by [3], and subsequently
strengthened by [20] and [35] to yield the following result.

Theorem 3 ([3, 20, 35]). Let f be an n-variate degree d polynomial computed
by an arithmetic circuit of size s. Then f can be computed by a homogeneous
ΣΠ[O(

√
d)]ΣΠ[

√
d] circuit of size s′ ≤ sO(

√
d)

More generally, for any 0 ≤ r ≤ d, there is a homogeneous ΣΠ[O(d/r)]ΣΠ[r] circuit
of top fan-in at most sO(d/t) computing f .

Recall that a ΣΠ[O(
√

d)]ΣΠ[
√

d] circuit computes a polynomial of the form

f =

s∑
i=1

Qi1 . . .Qia , where a = O(
√

d) and deg Qi j ≤
√

d

In other words, if we can prove a lower bound of nω(
√

d) for the class of ΣΠ[O(
√

d)]ΣΠ[
√

d]

circuits, we would have a super-polynomial lower bound for the class of general
arithmetic circuits! In fact, the model of depth 4 circuits seem so central in that
almost all known lower bounds for other restricted models proceed by proving a
suitable lower bound for a depth 4 analogue. Several examples of this may be
seen in [22].

The first breakthrough was obtained by [11] who showed an 2Ω(
√

d) lower bound
for such circuits computing the symbolic d × d determinant or permanent. Sub-
sequently, there was a flurry of activity2 towards achieving the goal of proving
nω(

√
d) lower bounds [25, 9, 23], and this is where we currently stand.

2so much this is the second survey on arithmetic circuit lower bounds that the author is involved
in within a year!



Theorem 4. There is an explicit homogeneous n-variate degree d polynomial
f that can be computed by a homogeneous depth 4 circuit of size nO(1) but any
ΣΠ[O(

√
d)]ΣΠ[

√
d] computing it requires top fanin s = nΩ(

√
d).

If we could change the nΩ(
√

d) to nω(
√

d) in the above theorem (of course, the poly-
nomial f cannot then have a small arithmetic circuit computing it), we would have
proved a super-polynomial lower bound for general arithmetic circuits! The fol-
lowing is the simplest formulation of a lower bound of shallow circuit that would
imply lower bounds for general circuits.

Open Problem 1. Find an explicit n-variate degree d polynomial f such that
any expression of the form

f = (Q1)
√

d + · · · + (Qs)
√

d , deg(Qi) ≤
√

d for all i

must have s = nω(
√

d).

Subsequent to this line of work, several researchers addressed the task of proving
lower bounds for homogeneous depth 4 circuits without any restriction on the fan-
ins. It is worth noting that a lower bound for homogeneous depth 4 circuits must
be on the total size and not the top fan-in, as otherwise one could just compute the
polynomial f in a single gate of the bottom two layers.



Why another survey?

So why are super polynomial lower bounds still not proved? Maybe
it’s because not enough people are working on it.

– Ran Raz (in [29])

We strongly believe that the above statement really hits the nail on the head. For-
tunately, over the last few years we have seen such a phenomenal activity in arith-
metic circuit lower bounds and an increased optimism that we can indeed soon
separate VP and VNP. The open problem stated above is simple enough (to state!)
that any one can start thinking about it. Further, we already have an nΩ(

√
d) lower

bound, and we only need to make that nω(
√

d). We believe that separating VP and
VNP would be solved in the not-so-distant future and the hope is that the recent
surveys would assist people familiarize with the known lower bounds and develop
the necessary tools. As a student, the surveys of [34, 6] were immensely helpful
and this is an attempt to give back to the community.
Recently, with Neeraj Kayal [22], we presented a comprehensive exposition of
almost all known lower bounds known until then with nearly complete proofs. We
tried to present all of them from a single perspective of constructing complexity
measures for appropriate depth 4 analogues. Subsequently, there has been fresh
lower bounds which, although are modifications of the earlier measures, are much
more delicate to analyze and employ several new ideas to assist in the calculations.
The goal of this survey is to complement [22] and present the key intuitions in the
newer lower bounds for restricted arithmetic circuits. This article would not have
complete proofs of the newer lower bounds but would hopefully present the main
subtleties involved to help the interested reader to work through the full proofs
themselves.

Organization

We first begin with some preliminaries and notation that would be required in Sec-
tion 2. We then move on to present the depth reduction to depth 4 circuits to put
the lower bounds in context. We then outline the general road map followed by
almost all lower bound proofs in Section 4 and then proceed to the lower bounds
of [19] and [24] in Section 5. In Section 6, we focus on non-homogeneous depth
3 circuits and present the depth reduction of [12] and the recent lower bound of
[21] for depth three circuits with small bottom fan-in. We look at some specula-
tive approaches towards proving superpolynomial lower bounds for homogeneous
formulas in Section 7 before concluding in Section 8.



2 Notation and preliminaries

2.1 Subclasses of circuits
We shall be considering various subclass of constant depth circuits in this article
and it would be useful to fix some notation for the parameters involved.

• A ΣΠ[a]ΣΠ[b] circuit computes a polynomial of the form

f =
∑

i

Qi1 . . .Qia where deg Qi j ≤ b

• A ∧ refers to a layer of exponentiation gates. For example, a Σ∧Σ circuit
computes a polynomial of the form

f = `d1
1 + · · · + `ds

s

where each `i is a linear polynomial.

• In general, we shall add super script such as Σ[a] or Π[a] to denote a bound
on the fan-in of gates in that layer. For example, ΣΠΣ[a] would refer to depth
three circuits where every linear polynomial depends on at most a variables.

Throughout the article, we would be dealing mainly with multilinear polynomials
with zero-one coefficients. Thus, it would be useful to identify such any monomial
of such a polynomial P(x1, . . . , xn) by the set of variables that divide it. This shall
allow us to say “m1 ∩m2” instead of gcd(m1,m2). Further, we shall abuse notation
and say “m ∈ P(x)” to mean that the monomial m has a non-zero coefficient in
P(x).

2.2 Some useful estimates
We shall be seeing a lot of binomial coefficients and the following lemma would
be useful to have a handle on how large they are.

Lemma 5. Let n and ` be parameters such that ` = n
2 (1 − ε) for some ε = o(1).

For any a, b such that a, b = O(
√

n),(
n − a
` − b

)
=

(
n
`

)
· 2−a · (1 + ε)a−2b · poly(n)

Proof. The proof of the above lemma would repeated use [11, Lemma 6] that

(n + a)! = n! · na · poly(n)



for any a = O(
√

n).
Hence, (

n−a
`−b

)(
n
`

) =
(n − a)!

n!
·

`!
(` − b)!

·
(n − `)!

(n − ` − a + b)!

poly
≈

1
na · `

b ·
(n − `)a

(n − `)b

=

(
n
2

)a
(1 + ε)a

na ·
(1 − ε)b

(1 + ε)b

poly
≈ 2−a · (1 + ε)a−2b

�

2.3 Polynomials of interest

There are a few polynomials that are the usual suspects while proving lower
bounds. The polynomials that we would be dealing with in this article are de-
fined below.

The determinant and the permanent families

The determinant of an n × n symbolic matrix shall be denoted by Detn and is
defined as

Detn =
∑
σ∈S n

sign(σ)x1,σ(1) . . . xn,σ(n)

The permanent of an n × n symbolic matrix shall be denoted by Permn and is
defined as

Permn =
∑
σ∈S n

x1,σ(1) . . . xn,σ(n)

Both of these polynomials are of degree n and over n2 variables. We know that
Detn can be computed by a polynomial sized arithmetic circuit and it is widely
believed that the permanent requires circuits of size 2Ω(n).

The Nisan-Wigderson polynomial families

Let n,m, d be arbitrary parameters with m being a power of a prime, and n, d ≤ m.
Since m is a power of a prime, let us identify the set [m] with the field Fm of m



elements. Note that since n ≤ m, we have that [n] ⊆ Fm. The Nisan-Wigderson
polynomial with parameters n,m, d, denoted by NWn,m,d is defined as

NWn,m,d(x) =
∑

p(t)∈Fm[t]
deg(p)≤d

x1,p(1) . . . xn,p(n)

That is, for every univariate polynomial p(t) ∈ Fm[t] of degree at most d, we
add one monomials that encodes the ‘graph’ of p on the points [n]. This is a
polynomial of degree n over mn variables.
This monomials of this polynomial satisfy a very useful low-pairwise-intersection
property.

Lemma 6. Let m1 and m2 be any two distinct monomials in NWn,m,d(x). Then,
there are at most d variables that divide both m1 and m2.

Proof. Let m1 and m2 correspond to univariates p1(t), p2(t) ∈ Fm[t] of degree at
most d. Then if xi j divides m1, then p1(i) = j, similarly for m2. But since p1 and
p2 are two distinct polynomials of degree at most d, they can agree in at most d
evaluations. Thus, there can be at most d variables that divide both m1 and m2. �

For most generic choices of the parameters, the polynomial NWn,m,d is believed to
require circuits of exponential size to compute them.

The Iterated-Matrix-Multiplication polynomial

For parameters n and d, the Iterated-Matrix-Multiplication polynomial, denoted
by IMMn,d, is defined as follows

IMMn,d =
∑

1≤i1,...,id≤n

x(1)
1,i1

x(2)
i1,i2

. . . x(d−1)
id−2,id−1

x(d)
id−1,1

.

An equivalent way of defining the polynomial as the (1, 1)-th entry of the product
of d generic n × n matrices:

IMMn,d =




x(1)
11 . . . x(1)

1n
...

. . .
...

x(1)
n1 . . . x(1)

nn

 · · ·


x(d)
11 . . . x(d)

1n
...

. . .
...

x(d)
n1 . . . x(d)

nn




(1,1)

.

It is often useful to think of this as the polynomial computed by a generic al-
gebraic branching program of width n and depth n (where the edge connecting
vertex i of layer ` to vertex j of layer ` + 1 has weight x(`)

i j ).
This is a polynomial of degree d and over n2(d − 2) + 2n variables. Further, since
the polynomial corresponds to a generic algebraic branching program, IMMn,d can
be computed by an arithmetic circuit of size poly(n, d).



3 A primer on depth reduction to depth 4 circuits
In this section, we shall look at depth reduction for arithmetic circuits. As men-
tioned earlier, the starting point of all known depth reductions is the result of [37].

Theorem 2 (restated). Let f be an n-variate degree d polynomial computed by
an arithmetic circuit C of size s. Then, f can be equivalently computed by a
homogeneous circuit C′ of depth O(log d) with unbounded fan-in + and × gates
and size s′ = (nds)O(1).
Further, the circuit C′ has the following structure:

• The circuit is made up of alternating layers consisting of + and × gates.

• All multiplication gates have fan-in at most 5.

• If g is the polynomial computed at a multiplication gate, and g′ is the poly-
nomial computed at one of its children, then deg(g′) ≤ deg(g)/2.

We shall not be proving this theorem here but with this as the starting point, we
shall given an alternate proof of the depth reduction by [3, 20, 35]. This alternate
proof was obtained jointly with V Vinay.

Theorem 3 (restated). Let f be an n-variate degree d polynomial computed
by an arithmetic circuit of size s. Then f can be computed by a homogeneous
ΣΠ[O(

√
d)]ΣΠ[

√
d] circuit of size s′ ≤ sO(

√
d)

Proof. Start with the circuit C′ obtained from Theorem 2 computing f of size
s′ = sO(1). Let g be the polynomial computed at any arbitrary gate in the circuit.
From the structure of C′, we have that

g =

s′∑
i=1

gi1 · gi2 · gi3 · gi4 · gi5 (1)

with deg(gi1) + · · · + deg(gi5) ≤ deg(g) and deg(gi j) ≤ deg(g)/2 for all i, j.
Key Observation. For each i, there must be at least two j’s such that deg(gi j) ≥
deg(g)/8.

Since the above decomposition is true for any gate in the circuit, f , polynomial
computed at the root, can be written as

f =

s′∑
i=1

fi1 · fi2 · fi3 · fi4 · fi5. (2)



The RHS is a ΣΠ[5]ΣΠ[d/2] circuit of top fan-in s′. The goal would be to progres-
sively reduce the bottom fan-in at the cost of increasing the top fan-in slightly.
Eventually, we want an expression where all fi j’s involved have degree at most
√

d.
We shall follow an extremely natural strategy:

Start with (2) for f .

For each summand fi1 . . . fir in the RHS, if the largest degree fi j

has degree more than
√

d, expand that fi j with the its correspond-
ing representation using (1).

Repeat this process until all fi j’s on the RHS have degree at most
√

d.

In every round of the above routine, the initial equation (2) for f slowly evolves.
At the end of each round, the top fan-in increases by a factor of s′ but there is
some drop in the degree of terms involved. We now need to show that by O(

√
d)

rounds, all of the fi j’s involved would have degree bounded by
√

d. This would
imply that the top fan-in of that equation is bounded by sO(

√
d) as claimed.

If we take any term fi1 . . . fir with deg( fi1) ≥
√

d and expand fi j via (1), each term
in the expansion of fi1 must have at least two factors of degree more than

√
d/8

(by the key observation). Thus, in each term obtained by expanding fi1 in fi1 . . . fir

must have the number of factors of degree more than
√

d/8 increased by at least
one. Since we know that no term can have more than 8

√
d such factors, this must

imply that the number of rounds is bounded by 8
√

d.
Thus we eventually have an equation of the form

f =

s′8
√

d∑
i=1

fi1 . . . fir where for each i, j, deg( fi j) ≤
√

d

To ensure that r ≤ O(
√

d), the standard trick is to take any ensure that deg( fi j) ≥√
d/2 by multiplying out factors of degree smaller than

√
d/2. Thus, we have a

ΣΠ[O(
√

d)]ΣΠ[
√

d] circuit of top fan-in sO(
√

d) computing f . �

The original proof of Tavenas was not much involved either, but the above proof
would be able to offer more insights towards proving homogeneous formula lower
bounds. We shall however defer this discussion to Section 7.

Surprisingly, it was shown by [12] that over characteristic zero fields, any n-variate
degree d polynomial f can be computed by a depth 3 circuit of size nO(

√
d). We

shall present its proof in Section 6 where it would better placed alongside the
recent lower bound for depth 3 circuits by [21].



4 ‘Natural’ proof strategies
Most lower bounds follow the plan outlined below. There are a few notable ex-
ceptions but by and large this is the general strategy followed by almost all known
lower bound proofs.

Step 1 (normal forms) For every circuit in the circuit class C of inter-
est, express the polynomial computed as a small sum of simple build-
ing blocks.

For example, every ΣΠΣ circuit is a small sum of products of linear polynomials
which are the building blocks here. In this case, the circuit model naturally admits
such a representation. There are cases when obtaining this representation might
itself be non-trivial.

Step 2 (complexity measure) Construct a map Γ : F[x1, . . . , xn] →
Z≥0 with that is sub-additive i.e. Γ( f1 + f2) ≤ Γ( f1) + Γ( f2)

This is really the most crucial part of the lower bounds. In most cases, Γ( f ) is the
rank of a large matrix whose entries are linear functions in the coefficients of f .
This would be the case in the lower bounds considered in this article as well. In
such cases, we immediately get that Γ is sub-additive.
The strength of the choice of Γ is determined by the next step.

Step 3 (potential usefulness) Show that if B is a simple building
block, then Γ(B) is small. Further, check if Γ( f ) for a random polyno-
mial f is large (potentially).

This would suggest that if any f with large Γ( f ) is to be written as a sum of
B1 + · · ·+ Bs, then sub-additivity and the fact that Γ(Bi) is small for each i and Γ( f )
is large immediately imply that s must be large. This implies that the complexity
measure Γ does indeed have a potential to prove a lower bound for the class. The
next step is just to replace the random polynomial by an explicit polynomial.

Step 4 (explicit lower bound) Find an explicit polynomial f for
which Γ( f ) is large.

The bulk of all lower bound proofs goes into this step. In several cases, there
are natural candidate polynomials for which one can show Γ( f ) is large. In some
cases, it might be easier to engineer a polynomial for which it is easier to show
that Γ( f ) is large.

With this general strategy in mind, we can go ahead to see the lower bounds of
[19, 24].



5 Lower bounds for homogeneous depth four cir-
cuits

The model for which we shall be interested in proving lower bounds are homoge-
nous depth four circuits. These circuits compute polynomials of the form

f =
∑

i

Qi1 . . .Qiai

where each Qi j is a homogeneous polynomial. This immediately forces that∑ai
j=1 deg(Qi j) = deg( f ) for all i.

Goal. Find an explicit polynomial f (of degree d, and over n variables) such that
any homogeneous depth four circuit requires size nΩ(

√
d). That is, if

f =
∑

i

Qi1 . . .Qiai

for homogeneous polynomials Qi j’s, then the total number of monomials present
among the Qi j’s must be nΩ(

√
d).

Intuition towards the measure - (1)

Consider an expression of the form

C =

s∑
i=1

Qi1 . . .Qiai

We shall call a summand Qi1 . . .Qiai good if the degree of each Qi j ≤
√

d. Let us
split the above sum into good terms and the rest.

C1 =

s1∑
i=1

Qi1 . . .Qiai where deg(Qi j) ≤
√

d for all i, j (3)

C2 =

s∑
i=s1+1

Qi1 . . .Qiai where deg(Qi1) >
√

d for all i > s1 (4)

If one were to just prove a lower bound for (3), then using the dimension of shifted
partial derivatives we can obtain a lower bound of nΩ(

√
d). Hence let us focus on

an expression of the form (4) and see if we can come up with a measure that gives
a nΩ(

√
d) lower bound there as well.



Starting with (2), let us expand each Qi1 as a sum of monomials to obtain an
expression of the form

C2 =

s′∑
i=1

mi · Q′i

where each mi is a monomial of degree greater than
√

d, and Q′i some polynomial
of degree d − deg(mi). The number of summands s′ would be at most the size of
the circuit we started out with.

Key Idea: Suppose the polynomial C2 was multilinear, i.e. the degree in each
variable is bounded by 1. Further, say s′ ≤ n

√
d/10. Apply a random restriction

ρ on the variables by setting each variable independently to zero with probability
p < 1

n1/20 .
If m was any monomial that was divisible by

√
d disjoint variables, then ρ(m) , 0

with probability at most 1
n
√

d/20 . Hence, the probability that ρ(mi) , 0 for some

i ≤ s′ that is divisible by
√

d variables is at most 1
n
√

d/10 . Hence, the only terms that
would survive on the RHS are terms of the form ρ(mi · Q′i) where mi is divisible
by at most

√
d distinct variables. But recall that deg(mi) >

√
d and this implies

that mi is non-multilinear. If that is the case, then every monomial on the RHS is
non-multilinear! Thus as long as ρ(C2) , 0, there would be at least one multilin-
ear monomial that survives. This would contradict our original assumption that
s′ ≤ n

√
d/10, giving us the lower bound we were after.

Thus, the measure for the sum of good terms is the dimension of shifted par-
tial derivatives. The measure for the sum of non-good terms was the number of
non-zero multilinear monomials after a random restriction. Hopefully some com-
bination of these measures would give us a measure for their sum.3

Intuition towards the measure - (2)

The idea of using random restrictions as defined above essentially kills all mono-
mials that are divisible by ‘too many’ variables. Let us consider an extreme case
where every monomials in each Qi j is just a power of a single variable. We shall
first try to prove a lower bound for expression of the form

C =
∑

i

Qi1 · · ·Qiai

where every monomial in any Qi j is a power of a single variable, i.e. each Qi j is a
sum of univariate polynomials.

3There are some instances when this strategy can fail spectacularly. See [23]



Define the operator MultiQuad that acts on any polynomial Q such that MultiQuad(Q)
is just the sum of monomials of Q of degree at most 2 in every variable. Then,

C =
∑

i

MultiQuad(Qi1) · · ·MultiQuad(Qiai) + other terms

= C1 + C2

Notice that C1 corresponds to a ΣΠ[d/2]ΣΠ[2] circuit since we assume that each Qi j

is a sum of univariates. The dimension of shifted partial derivatives would yield a
lower bound for such ΣΠ[d/2]ΣΠ[2] circuits. But what really happens to C2 as we
take some partial derivative?

Key Observation. For any multilinear monomial m, the partial derivative ∂m(C2)
only consists of non-multilinear monomials.

Thus, this points towards the following modification of the traditional dimension
of shifted partial derivatives:

For any polynomial P, look at the set of polynomials of obtained as
m1 · ∂m2(P) where m1 and m2 are multilinear monomials of a certain
degree, and compute the dimension of the multilinear component of
these polynomials i.e. erase all monomials that are non-multilinear
and then compute the dimension of the residual polynomials.

This basically allows us to completely ignore the contribution of C2 as we have
that multilinear component of m1∂m2(C2)) is zero for every m1 and m2 that are
multilinear.

Both these point us to a modification of the shifted partials, which [19, 24] refer
to as projected shifted partial derivatives.

Definition 7 (Projected Shifted Partial Derivatives). Fix parameters k, ` > 0. For
any polynomial P, the set of projected shifted partials of P, denoted by PSDk,`(P)
is defined as follows

PSDk,`(P) =

{
mult(m1 · ∂m2(P)) :

deg(m1) = ` , deg(m2) = k,
m1 and m2 are multilinear

}
where mult( f ) refers to the polynomial f projected to only the multilinear mono-
mials of f .
The measure ΓPSD

k,` (P) is defined as the dimension of the above set of polynomials,
i.e.

ΓPSD
k,` (P) = dim

(
span(PSDk,`)

)



The works of [19, 24] use this measure to prove a lower bound for “low-support
depth 4 circuits”. As sketched earlier, the task of proving lower bounds for general
homogeneous depth 4 circuits can be reduced to the low-support depth 4 circuits
via random restrictions.

5.1 Reducing to ‘low-support’ depth 4 circuits
We have already seen a sketch of how this can be done via a random restriction
but let us formalize this as a lemma.

Lemma 8. Let P be an n-variate degree d polynomial computed by a homoge-
neous depth 4 circuit C of size s ≤ nc

√
d, for some c > 0. Let ρ be a random

restriction that sets each variable to zero independently with probability 1−1/n2c.
Then with probability at least (1 − 1/s), the polynomial ρ(P) is computed by a
homogeneous depth 4 circuit C′ with bottom support at most

√
d and size at most

s.

Proof. Let {m1, . . . ,mr} be the set of all monomials computed at the lowest layer
of the depth 4 circuit C that are divisible by more than

√
d distinct variables. Since

the size of C is at most s, we also have that r ≤ s. Then,

∀i ∈ [r] Pr[ρ(mi) , 0] ≤
1

n2c
√

d

=⇒ Pr[∃i : ρ(mi) , 0] ≤
r

n2c
√

d
≤

1

nc
√

d
≤

1
s

Thus, with probability at least (1−1/s), all the large support monomials are killed
and C reduces to a homogeneous depth 4 circuit of bottom support at most

√
d.
�

5.1.1 Handling random restrictions

The previous section outlined how in essence, it would suffice to try and find
an explicit polynomial for which we can prove a good enough lower bound for
bounded bottom-support depth 4 circuits. Let us say that we have found an explicit
polynomial g that requires depth 4 circuits of size at least n

√
d/100. Are we done?

Let us write things down formally to see exactly what we need.
Say the polynomial we wish to show requires large homogeneous depth 4 circuits
is f . Let us assume on the contrary that f can be computed by homogeneous depth
4 circuits of size s < n

√
d/10000. Then, by Lemma 8, ρ( f ) can be computed by a

homogeneous depth 4 circuits of bottom support bounded by
√

d/1000 of size s.
We want to be able to say that this is a contradiction. We might be able to say that



if ρ( f ) has g as a projection, that is, but setting more variables to zero in ρ( f ) we
obtain g.
Both the results of [19] and [24] proceed by showing that the polynomial g, for
which they show a lower bound for bounded bottom support circuits, is robust
enough to yield the lower bound even after random restriction. The calculations
become trickier because the calculations of Γ

[PSD]
k,` (ρ( f )). However, in this survey

we shall use an easier approach to generically lift any g to a different polynomial
f such that ρ( f ) has g as a projection. This trick came up during discussions with
Mrinal Kumar.

Lemma 9. Let ρ be a random restriction that sets each variable to zero indepen-
dently with probability 1 − p. For any polynomial f (y1, . . . yn), define f ◦ Linp

as

f ◦ Linp = f

 t∑
i=1

y1i, · · · ,

t∑
i=1

ynt

 where t =

(
1
p

)
n log n

Then, ρ( f ◦ Linp) has f as a projection with probability 1 − 1/2n.

Proof. For any i = 1, . . . , n

Pr[ρ(yi1) = . . . ρ(yit) = 0] = (1 − p)t

=
1

n · 2n

=⇒ Pr[∃i : ρ(yi1) = . . . ρ(yit) = 0] ≤
1
2n

Hence, with probability at least 1 − 1/2n, for each i there is some j such that
ρ(yi j) , 0. Therefore, with probability at least 1 − 1/2n, the polynomial f is a
projection of ρ( f ◦ Linp). �

In all the applications, as in Lemma 8, we would have p = 1/nO(1). Thus, we
would only incur a polynomial blow-up in the number of variables from f to
f ◦ Linp. Hence, we can focus on proving a lower bound a homogeneous depth
4 circuit of bottom support at most r (which would eventually be something like√

d/100).

Lemma 10 ([19]). Let P be an n-variate degree d polynomial computed by a
homogeneous depth 4 circuit of size s and bottom-support at most r. Then for any
k, ` such that ` + rk ≤ n/2,

ΓPSD
k,` (P) ≤ s ·

(2d
r + k

k

)
·

(
n

` + rk

)
.



The proof of this lemma is exactly along the description in of Intuition - (2): split
the circuit into multiquadratic and non-multiquadratic part, and show that the non-
multiquadratic part contributes no multilinear monomials. But to just put things
in perspective, we shall be dealing with parameters r =

√
d/100, k =

√
d and

` = n
2 (1 − ε) for ε = o(1). The above bound, by Lemma 5, can be seen to reduce

to

ΓPSD
k,` (P) ≤ s ·

(
n
`

)
· (1 + ε)2rs · 2O(

√
d)

Sanity checks

Let us first check if this measure can at least in principle yield a lower bound for
us. The best way to do this is to get some heuristic estimate of what we expect the
measure to be for a random n-variate degree d polynomial R.

Heuristic Estimate. For a random n-variate degree d polynomial R, we expect
the ΓPSD

k,` (R) to be as large as it can be, i.e.

ΓPSD
k,` (R) ≈ min

((
n
k

)
·

(
n
`

)
,

(
n

` + d − k

))
As a first step, one should first check that if we could indeed find a polynomial P
for which the bound is as large as stated above, do we get a useful lower bound
from Lemma 10? Turns out that if we were to choose our parameters carefully,
we do indeed get the lower bound. Just to give a sense of how careful we need to
be, here is some of the parameters that are chosen in [19, 24].

• The number of variables n is at least the cube of the degree d.

• The model we shall be working with is bottom-support r where r =
√

d/1000.

• The order of derivatives k =
√

d.

• The degree of the shift ` shall be chosen as ` = n
2 (1 − ε) where ε =

log d
c
√

d
for

a suitable constant c.

The above choice of parameters might already seem pretty fragile but these are not
the most delicate choices! While proving the lower bound on ΓPSD

k,` for an explicit
polynomial, the number of monomials etc. need to be tailored to perfection to
make the proof work.



5.2 The surrogate rank approach of [19]
The goal is now to find an explicit polynomial P such that PSDk,`(P) has large
rank. One way to prove that a set of polynomials are linearly independent is
to show that they have distinct leading monomials (as used [11] etc.) Another
method is to show that these polynomials are almost orthogonal. An example of
this phenomenon can be seen in the following fact.

Fact 2. Let M be a square matrix such that the absolute value of the diagonal
entry is larger than sum of the absolute values of the non-diagonal entries in that
row or column, i.e. |Mii| ≥

∑
j,i

∣∣∣Mi j

∣∣∣ for all i. Then the matrix M is full rank.

Such matrices are also called diagonally dominant matrices, and captures the no-
tion of almost orthogonal vectors alluded to earlier. For symmetric matrices M,
the following bound of Alon [2].

Lemma 11 ([2]). For any real symmetric matrix M,

rank(M) ≥
(Tr(M))2

Tr(M2)

We’ll see the proof of this shortly but it would shed some more intuition to see
what the above lemma yields for a diagonally dominant matrix. Let M be a matrix
of the form

M =


D d . . . d
d D . . . d
...

...
. . .

...
d d . . . D


r×r

Then, Tr(M) = D · r, and Tr(M2) = (D2 + (r− 1)d2)r = O(D2r + r2d2). If D > (r−
1)d2, then Tr(M2) = O(D2r). Thus, the above lemma gives that rank(M) = Ω(r).

Proof. By the spectral theorem, any real symmetric matrix has a basis of eigen
vectors with eigenvalues λ1, . . . , λn where n is the dimension of the matrix. If
λ1, . . . , λr are the non-zero eigenvalues, then

Tr(M) =

r∑
i=1

λi

≤
√

r ·

 r∑
i=1

λ2
i

 =
√

r · Tr(M2)

=⇒ r ≥
(Tr(M))2

Tr(M2)

�



The bound of [19] for an explicit polynomial P proceeds by considering the ma-
trix B where each row is indexed by a pair of multilinear monomials (m1,m2) of
degree k and ` respectively, and the row is just the coefficients of the monomials
of mult(m2∂m1(P)) in a fixed order. Note that B is not even a square matrix, and
certainly not symmetric. However, the matrix M = BBT is a symmetric square
matrix such that rank(M) ≤ rank(B).

Let us spend some time understand the entries of M. The (i, j)-th entry of M is
precisely the inner-product of row i and row j of B. If P is a polynomial with
just zero-one coefficients, then the i-th diagonal entry is precisely the number of
non-zero entries in row i of B. Thus,

Tr(M) = number of non-zero entries in B
= (# cols of B) · E

i
[# non-zero entries in i-th col of B]

The calculation for Tr(M2) requires a little more care. Let Mi refer to the i-th row
of M and Bi refer to the i-th row of B. Then,

Tr(M2) =
∑

i

〈Mi,Mi〉

=
∑

i

∑
j

〈
Bi, B j

〉2
=

∑
i

∑
j

∑
m

BimB jm

2

=
∑

i

∑
j

∑
m

B2
imB2

jm +
∑

i

∑
j

∑
m,m′

BimBim′B jmB jm′

=
∑

m

∑
i

∑
j

BimB jm

 +
∑

i

∑
j

∑
m,m′

BimBim′B jmB jm′

= T1 + T2

The first term T1 is easy to calculate:

T1 = (# cols of B) · E
i
[(# non-zero entries in i-th col of B)2]

(hopefully)
≈ (# cols of B) · E

i
[(# non-zero entries in i-th col of B)]2

The term T2 roughly corresponds to the number of 2 × 2 submatrices of B that

is
[

1 1
1 1

]
. If we could somehow show that there are not too many such sub-

matrices, then Tr(M2) is essentially dominated by T1. That would then yield that
rank(M) ' (# cols of B).



Obtaining a bound on T2:

T2 =
∑

i

∑
j

∑
m,m′

BimBim′B jmB jm′

Each term BimBim′B jmB jm′ that is non-zero corresponds to a 2 × 2 submatrix of B

(indexed by rows i, j and columns m,m′) that is
[

1 1
1 1

]
.

The columns of B are indexed by multilinear monomials of degree ` + d − k, and
the rows of B are indexed by a derivative and a shift. Let row i correspond to
mult(γ1 · ∂α1(P)) and row j to mult(γ1 · ∂α1(P)). Thus, if the 2 × 2 minor indexed

by rows i, j and columns m,m′ equals
[

1 1
1 1

]
, then there exists β1, β2, β3, β4 ∈ P

such that

m =
β1

α1
· γ1 =

β3

α2
· γ2

m′ =
β2

α1
· γ1 =

β4

α2
· γ2

=⇒
β1

β3
=

β2

β4

Following notation used in [19], we shall call β1, β2, β3, β4 as the label of the 2× 2
minor. Since m , m′, we also have that β1 , β2. What we’d like to say that the
only way β1/β3 = β2/β4 is if β3 = β1 and β2 = β4. This need not be true in general
of course, but this is where the choice of the polynomial comes in.

Claim 12. If P is the NWd,d3,e polynomial for e = d
3 then any 2 × 2 minor of B

(with the order of derivatives k = o(d)) that is
[

1 1
1 1

]
has label β1, β2, β3, β4

where β1 = β3 and β2 = β4, or β1 = β2 and β3 = β4.

Proof. Assume that β1 , β3. Then by Lemma 6 we know that they differ in at
least 2d/3 places. But then, β1/β3 = β2/β4 forces that β1 and β3 must agree at
least 2d/3 places forcing β1 = β2. �

Thus, for the NW-polynomial the number of such boxes is quite small. Using
this, albeit with a reasonable amount of sweat, one can estimate T2 to show that
T2 = O(T1). Thus, [19] obtain the following bound.

Lemma 13 ([19]). For the polynomial NWd,d3,e, for e = d
3 , and k =

√
d and

` = n
2

(
1 − log d

√
d

)
we have the bound

ΓPSD
k,` (NWd,d3,e) ≥

1
poly(n, d)

·min
( n
` + d − k

)
,

(
d
k

)2

· dk · k! ·
(
n
`

)



Note that the first term of the min in the RHS is the number of columns of B, as
we had heuristically estimated. Simplifying the RHS using Lemma 5, we get

ΓPSD
k,` (NWd,d3,e) ≥

1
poly(n, d)

·

(
n
`

)
· exp (c · ε(d − k))

for some constant c > 0. Since ε =
log d
√

d
, we get

ΓPSD
k,` (NWd,d3,e) ≥

1
poly(n, d)

·

(
n
`

)
· exp

(
c ·
√

d · log d
)

With the above bound and Lemma 10, we get the lower bound of [19].

Theorem 14 ([19]). Any depth 4 homogeneous circuit of bottom support r =√
d/1000 computing the polynomial NWd,d3,d/3 over a characteristic zero field

must have top fan-in s = dΩ(
√

d).
In fact, more generally, any homogeneous depth 4 circuit of bottom support bounded
by r computing NWd,m,e for suitably chosen parameters must have top fanin s =

dΩ(d/r).

Coupling with Lemma 9, we obtain (a slight reformulation of) their main theorem.

Theorem 15 ([19]). Any depth 4 homogeneous computing the polynomial NWd,d3,d/3◦

Lin over a characteristic zero field must have size s = dΩ(
√

d).

5.3 The leading monomial approach of [24]

Shortly after [19], a purely combinatorial proof of the result was presented by
[24]. More over, they were able to prove the lower bound of nΩ(

√
d) for the size of

any homogeneous depth 4 circuit computing IMMn,d (for some suitable choices
of n and d). This was a strengthening of [19] in two ways – (1) it worked over
any field, and (2) the lower bound was for a polynomial that we know can be
computed small arithmetic circuit.
The calculations of [24] are much more trickier than [19] but there are quite a few
interesting ideas that would even have application in other areas.

The earlier lower bounds of [11, 25, 9] required a lower bound on the dimension
of shifted partial derivatives of a polynomial P, and this was obtained by finding
a large set of distinct leading monomials. In [24], they take this approach but
require a very careful analysis. The key difference in this setting is the following:



If β is the leading monomial of a polynomial P, then for any mono-
mial γ, we also have that β · γ is the leading monomial of γP.

However, the leading monomial of mult(γP) could be β′ · γ for some
β′ , β (as higher monomials could be made non-multilinear during
the shift by γ).

The multilinear projection makes the task of counting leading monomials much
harder and [24] come up with a clever method to estimate this.

Leading monomials after multilinear projections

Let P the polynomial for which we are trying to lower bound ΓPSD
k,` (P). For every

monomial multilinear monomial α of degree k, and a monomial β ∈ ∂α(P), define
the set A(α, β) as

A(α, β) =

{
γ :

deg(γ) = ` + d − k and there is a γ′ of degree `
such that γ = LM(mult(γ′ · ∂α(P))) = γ′ · β

}
In other words, we want the number of distinct monomials that are contributed by
β, which are also distinct leading monomials obtained from ∂α(P) that are divisible
by β. We then have

ΓPSD
k,` (P) ≥

∣∣∣∣∣∣∣⋃
α,β

A(α, β)

∣∣∣∣∣∣∣ (5)

The standard technique to obtain a lower bound on the union of sets is via the
Inclusion-Exclusion principle.

Lemma 16 (Inclusion-Exclusion Principle). For any collection of sets A1, . . . , Ar,∣∣∣∣∣∣∣⋃i

Ai

∣∣∣∣∣∣∣ ≥
∑

i

|Ai| −
∑
i, j

∣∣∣Ai ∩ A j

∣∣∣
If we were to somehow show that

∑
i, j

∣∣∣Ai ∩ A j

∣∣∣ ≤ 1
2

∑
i |Ai|, then we obtain that

|∪iAi| ≥
1
2 ·

∑
i |Ai|. This is what shall be employed for the sets A(α, β), except that

we quickly run into two immediate problems.

1. How do we even estimate A(α, β)? The set of γ′ such that γ′β = LM(∂α(P))
do not seem to have any nice combinatorial structure.

2. What if it so happens that
∑
|A(α1, β1) ∩ A(α2, β2)| = 100

∑
|A(α, β)|? Inclusion-

Exclusion does not yield anything in that case.



It so turns out that the second point actually is the case. In fact for IMMn,d, the
second term turns out to be greater than the first term by a factor of n

√
d/1000 or so!

In [24], they prove a wonderful strengthened version of the Inclusion-Exclusion
principle which allows them to handle the second hurdle.

Lemma 17 (Stronger Inclusion-Exclusion [24]). Let A1, . . . , Ar be sets such that
there is some λ > 1 such that∑

i, j

∣∣∣Ai ∩ A j

∣∣∣ ≤
∑

i

λ · |Ai|

Then, ∣∣∣∣∣∣∣⋃i

Ai

∣∣∣∣∣∣∣ ≥

(
1

4λ

)
·

∑
i

|Ai|


In other words, as long as the second term of the Inclusion-Exclusion principle is
not too much larger than the first term, we still can get non-trivial bounds on the
union.

Proof. Let p = 1
2λ < 1. Define sets A′1, . . . , A

′
r such that A′i ⊆ Ai obtained by

adding each element of Ai to A′i independently with probability p. Since A′i ⊆ Ai,
we also have that |∪Ai| ≥

∣∣∣∪A′i
∣∣∣. By linearity of expectation,

E

∑
i

∣∣∣A′i ∣∣∣ = p
∑

i

|Ai|

More importantly, by the sampling process,

E
[∣∣∣A′i ∩ A′j

∣∣∣] = p2 ·
∣∣∣Ai ∩ A j

∣∣∣
as any common element must be added to both A′i and A′j, and either of these
events happen independently with probability p each. Since

∑
i, j

∣∣∣A′i ∩ A′j
∣∣∣ drops

by a factor of p2, we are now in a position to apply the Lemma 16 to the A′is.∣∣∣∣⋃ Ai

∣∣∣∣ ≥ E [∣∣∣∣⋃ A′i
∣∣∣∣]

≥ E

∑
i

∣∣∣A′i ∣∣∣ − E
[∣∣∣A′i ∩ A′j

∣∣∣]
= p

∑
i

|Ai|

 − p2

∑
i, j

∣∣∣Ai ∩ A j

∣∣∣
≥ p

∑
i

|Ai|

 − p2λ

∑
i

|Ai|


≥

p
2

∑
i

|Ai|

 =
1

4λ

∑
i

|Ai|





�

We can now proceed to lower bound |
⋃

A(α, β)| via inclusion exclusion.

Estimating |
⋃

A(α, β)| via Inclusion-Exclusion∣∣∣∣∣∣∣⋃
α,β

A(α, β)

∣∣∣∣∣∣∣ ≥
∑
α,β

|A(α, β)| −
∑

(α,β),(α′,β′)

|A(α, β) ∩ A(α′, β′)|

Let us first address the term
∑
|A(α, β)|. As mentioned earlier, it is not an easy

task to get a good handle on the set A(α, β) for polynomial such as NW or IMM,
for any reasonable monomial ordering. However, [24] circumvent this difficult by
using an indirect approach to estimate this term.
For any derivative α and β ∈ ∂α(P), define the set S (α, β) as the following set of
multilinear monomials of degree ` that is disjoint from β.

S (α, β) =

{
γ :

γ is multilinear, has
degree ` and gcd(β, γ) = 1

}
This on the other hand is independent of any monomial ordering, and is also easy
to calculate:

For every α, β |S (α, β)| =

(
n − d + k

`

)
.

Lemma 18 ([24]). For any α,

∑
β

|A(α, β)| ≥

∣∣∣∣∣∣∣⋃
β

S (α, β)

∣∣∣∣∣∣∣
Proof. Consider any γ ∈

⋃
β S (α, β). By definition, there is at least one non-

multilinear monomial in γ · ∂α(P). Thus, in particular LM(mult(γ · ∂α(P)) is non-
zero and equal to some γ · β for some monomial β ∈ ∂α(P). This also implies that
γ′ = γ · β ∈ A(α, β). This yields an injective map φ

φ :
⋃
β

S (α, β) � {(β, γ′) : β ∈ ∂α(P) , γ′ ∈ A(α, β)}

Since the size of the RHS is precisely
∑
β |A(α, β)|, the lemma follows. �



Thus, by another use of Inclusion-Exclusion on the S (α, β)’s, we get∣∣∣∣∣∣∣⋃
α,β

(α, β)

∣∣∣∣∣∣∣ ≥ ∑
α,β

|A(α, β)| −
∑

(α,β),(α′,β′)

|A(α, β) ∩ A(α′, β′)|

≥
∑
α

∑
β

|S (α, β)|

 −
∑
α

∑
β,β′

|S (α, β) ∩ S (α, β′)|


−

∑
(α,β),(α′,β′)

|A(α, β) ∩ A(α′, β′)|

Let us call the three terms in the RHS of the last equation as T1, T2 and T3 respec-
tively. Since we know the size of each S (α, β) exactly, the value of T1 is easily
obtained.

Lemma 19 ([24]).

T1 = (# derivs) · (# mons in a deriv) ·
(
n − d + k

`

)
≈ (# derivs) · (# mons in a deriv) ·

(
n
`

)
·

(
1 + ε

2

)d−k

Let T1(α) =
∑
β |S (α, β)| for any choice of α. So far we have not used any property

of the polynomial P. But this becomes crucial in the calculation of T2 and T3. To
get a sense of how these calculations proceed in [24], we outline the calculation
of T2 for the case of P = NWd,m,e for suitable choices of the parameters m, d, e.

Lemma 20 ([24]). For the polynomial NWd,m,e, if n = md and ` = n
2 (1 − ε) for

ε = o(1)

T2 ≤ (# derivs) · (# mons per deriv)2 ·

(
n
`

)
·

(
1 + ε

2

)2d−2k

Proof. For any fixed derivative α, define

T2(α) =
∑
β,β′

|S (α, β) ∩ S (α, β′)| .

For any pair of multilinear degree (d − k) monomials β , β′ ∈ ∂α(P) such that
deg(gcd(β, β′)) = t, we know that

|S (α, β) ∩ S (α, β′)| =

(
n − 2d + 2k + t

`

)



Thus, if we can count the number of pairs (β, β′) that agree on exactly t places, we
can obtain T2(α). Note that for NWd,m,e, any two β, β′ ∈ ∂α(NWd,m,e) can agree on
at most e−k places. Further, the number of pairs that agree in exactly 0 ≤ t ≤ e−k
places is at most

me−k ·

(
d − k

t

)
· (m − 1)e−t

as there are me−k choices for β, and
(

d−k
t

)
choices for places where they may agree,

and (m − 1)e−t choices for β′ that agree with β on those t places. Thus,

T2(α) ≤
e−k∑
t=0

me−k ·

(
d − k

t

)
· (m − 1)e−t ·

(
n − 2d + 2k + t

`

)

≈

e−k∑
t=0

me−k ·

(
d − k

t

)
· (m − 1)e−t ·

(
n
`

)
1

22d−2k−t · (1 + ε)2d−2k−t

≤ m2e

(
n
`

) (
1 + ε

2

)2d−2k

·

e−k∑
t=0

(
d − k

t

) (
2

(1 + ε)m

)t

≤ m2e

(
n
`

) (
1 + ε

2

)2d−2k

·

(
1 +

2
(1 + ε)m

)d−k

= m2e ·

(
n
`

)
·

(
1 + ε

2

)2d−2k

· O(1) if m = Ω(d)

Thus,

T2 ≤ (# derivs) · (# mons per deriv)2
·

(
n
`

)
·

(
1 + ε

2

)2d−2k

�

Combining this with Lemma 19 and using Lemma 17,∑
α,β

|A(α, β)| ≥ (# derivs) ·
T1(α)

max(2, 4T2(α)
T1(α) )

To maximize this, if we choose the parameters m, d, e such that T1(α) = T2(α), we
obtain the following corollary.

Corollary 21. Consider the polynomial NWd,m,e with n = md and m = Ω(d). If
` = n

2 (1 − ε) for ε = o(1) and e chosen so that

me−k =

(
2

1 + ε

)d−k

· 2Θ(
√

d)



then ∑
α,β

|A(α, β)| ≥ (# derivs) ·
(
n
`

)
· 2Θ(

√
d)

Proof. If T1(α) = T2(α) · 2−Θ(
√

d) then∑
α,β

|A(α, β)| ≥ (# derivs) ·
T1(α)

max(2, 4T2(α)
T1(α) )

= (# derivs) ·
T1(α)2

4T2(α)

= (# derivs) ·
(
n
`

)
· 2Θ(

√
n)

Note that T1(α) = T2(α) · 2−Θ(
√

d) forces

(# mon per deriv) = me−k =

(
2

1 + ε

)d−k

· 2Θ(
√

d)

�

Note that e needs to tailored very precisely to force the above condition! If e is
chosen too large or small, we get nothing from this whole exercise!
In the case of IMM this calculations gets a lot messier. The calculation would
similarly force that the number of monomials must be in a very narrow range.
This is achieved by instead looking at a random subgraph of the generic ABP of
suitable sparsity to ensure the following two properties:

• The number of monomials in any derivative is exactly as demanded.

• ‘Most’ pairs of monomials (β, β′) agree on ‘few’ places.

Upper bounding
∑
|A(α, β) ∩ A(α′, β′)|

We are still left with the task of upper bounding

T3 =
∑

(α,β),(α′,β′)

|A(α, β) ∩ A(α′, β′)|

As mentioned earlier, we really do not have a good handle on the set A(α, β), and
certainly not on the intersection of two such sets. Once again, we shall use a proxy
that is easier to estimate to upper bound T3.



The set A(α, β)∩ A(α′, β′) consists of multilinear monomials γ of degree ` + d − k
such that there exists multilinear monomials γ′, γ′′ of degree ` satisfying

γ = γ′β = γ′′β′,

γ′β = LM(mult(γ′∂α(P)))
and γ′′β′ = LM(mult(γ′′∂α′(P)))

This in particular implies that γ must be divisible by both β and β′.

Observation 22. If deg(gcd(β, β′)) = t, then

|A(α, β) ∩ A(α′, β′)| ≤

(
n − 2d + 2k + t
` − d + k + t

)
Proof. Every monomial γ ∈ A(α, β) ∩ A(α′, β′) must be divisible by β and β′.
Since |β ∪ β′| = 2d − 2k − t, the number of choices of γ is precisely(

n − (2d − 2k − t)
(` + d − k) − (2d − 2k − t)

)
=

(
n − 2d + 2k + t
` − d + k + t

)
�

One needs a similar argument as in the case of T2 to figure out how many pairs
(α, β) , (α′, β′) are there with deg(gcd(β, β′)) = t and sum them up accordingly.
We shall just state the bound of [24] here without proof.

Lemma 23 ([24]). For the polynomial NWd,m,e, and n = md and ` = n
2 (1 − ε) for

ε = o(1),

T3 ≤ (# deriv)2(# mons per deriv)2 ·

(
n
`

)
·

(
1
2

)2d−2k

Recalling that we have chosen our parameters so that

(# mons per deriv) =

(
2

1 + ε

)d−k

· 2Θ(
√

d)

the above equation reduces to

T3 ≤ (# deriv)2
(

1
1 + ε

)2(d−k)

·

(
n
`

)
.

Combining with Corollary 21, we obtain the required bound for |
⋃

A(α, β)|.



Lemma 24. Consider polynomial NWd,m,e where n = md and e chosen so that

me−k =

(
2

1 + ε

)d−k

· 2Θ(
√

d)

If ε =
log d
c
√

d
for a large enough constant c, and k = O(

√
d) and ` = n

2 (1 − ε), then

ΓPSD
k,` (NWd,m,e) ≥

∣∣∣∣∣∣∣⋃
α,β

A(α, β)

∣∣∣∣∣∣∣ ≥

(
n
`

)
· (1 + ε)2d−2k · 2Θ(

√
d)

With Lemma 10, we obtain the lower bound for low-bottom-support homoge-
neous depth 4 circuits.

Theorem 25 ([24]). Any homogeneous depth 4 circuit with bottom support bounded
by r =

√
d/1000 computing, over any field F, the polynomial NWd,m,e with param-

eters as defined above must have top fan-in s = dΩ(
√

d).
In fact, more generally, any homogeneous depth 4 circuit of bottom support bounded
by r computing NWd,m,e for suitably chosen parameters must have top fanin s =

dΩ(d/r).

Again, coupling with Lemma 9, we obtain (a slight reformulation of) their theo-
rem.

Theorem 26 ([19]). Any homogeneous depth 4 circuit computing, over any field
F, the polynomial NWd,m,e ◦ Lin with parameters as defined above must have top
fan-in s = dΩ(

√
d).

A similar lower bound dΩ(
√

d) holds also for the polynomial IMMn,d ◦ Lin for
suitable choices of n and d.

6 Non-homogeneous depth 3 circuits

In a very recent result, [21] show that similar techniques can also be used to prove
lower bounds for subclasses of non-homogeneous depth three circuits, namely
depth three circuits with bounded bottom fan-in. We shall denote the class of
depth three circuits of bottom fan-in bounded by r as ΣΠΣ[r] circuits.
But before we see this lower bound, let us first understand the computational
power of depth three circuits, and the depth reduction of [12].



6.1 Computational power of depth three circuits

A ΣΠΣ circuit computes a polynomial of the form

f =

s∑
i=1

`i1 . . . `iD

If the circuit is non-homogeneous, the degree of the circuit D could potentially be
much larger than deg( f ).

The class of depth three arithmetic circuits can compute polynomials in non-trivial
ways. To illustrate a couple of examples, there is a homogeneous ΣΠΣ circuit for
Permn of size 2O(n) called Ryser’s Formula [31]

Permn =
∑
S⊆[n]

(−1)n−|S |
n∏

i=1

∑
j∈S

xi j

 (6)

On the other hand, no ΣΠΣ circuit for the Detn significantly better than writing
it as a sum of n! monomials was known (until [12]). Further, the elementary
symmetric polynomials Esymk(x1, . . . , xn) of degree k defined as

Esymk(x) =
∑
S⊂x
|S |=k

∏
xi∈S

xi

can be computed by a non-homogeneous depth 3 circuit of size O(n2) over any
characteristic zero field. In stark contrast, [27] showed that any homogeneous
depth 3 circuit computing Esymk requires size nΩ(k). [27] also showed a 2Ω(n)

lower bound for homogeneous depth 3 circuits computing Permn or Detn.
Also, the results of [13, 10] showed a 2Ω(n) lower bound for ΣΠΣ circuits over
finite fields that compute Detn or Permn. All these results seemed to suggest that
there perhaps is an 2Ω(n) lower bound for ΣΠΣ circuits computing Detn over char-
acteristic zero fields as well. If it was true over finite fields, and for homogeneous
ΣΠΣ circuits, how much power can characteristic zero fields and non-homogeneity
add? As it turns out, quite a lot!

Theorem 27 ([12]). Let f be an n-variate degree d polynomial computed by an
arithmetic circuit of size s over any characteristic zero field. Then there is a ΣΠΣ

circuit of size s′ ≤ sO(
√

d) that computes f .

Corollary 28 ([12]). There is a ΣΠΣ circuit over Q, the field of rational numbers,
of size nO(

√
n).



The proof is quite short and comprises of two steps using known reductions, and
going through a bizarre intermediate model of depth 5 powering circuits. Simply
presenting the proof step-by-step would rob the readers of the intuition as to why
one would study depth 5 powering circuits. This result was really a bi-product of
an attempt to prove a stronger lower bound for depth 4 circuits. We believe this
perspective, albeit lengthier, is more insightful than seeing the proof directly.

6.1.1 Towards proving better lower bounds for depth 4 circuits

From Theorem 3, it suffices to prove a better lower bound for explicit polynomials
computed as

f =

s∑
i=1

Qi1 . . .Qir where deg(Qi j) ≤
√

d , r ≤ O(
√

d) (7)

The goal is to show a lower bound of s = nω(
√

d). Perhaps a simpler question to
ask is to prove a lower bound for expressions of the form

f =

s∑
i=1

Q
√

d
i where deg(Qi) ≤

√
d (8)

Fortunately, if the goal is to prove lower bounds of nω(
√

d), then without loss of
generality we can focus on this equation instead!

Lemma 29. Over any characteristic zero field, given an expression of the form

f =

s∑
i=1

Qi1 . . .Qir where deg(Qi j) ≤
√

d , r ≤ O(
√

d)

there is an equivalent equation

f =

s′∑
i=1

Qr
i where deg(Qi) ≤

√
d

with s′ ≤ s · 2O(
√

r).

Proof. Consider Ryser’s formula (6) applied for to the r × r matrix where each
row is [y1, . . . , yr].

Perm


y1 . . . yr
...

. . .
...

y1 . . . yr

 = r! · y1 . . . yr =
∑
S⊆[r]

∑
j∈S

y j


n

This specific identity is often attributed to Fischer [8]. The lemma follows by
applying this identity on each term Qi1 . . .Qir. �



Note that since we need to divide by r!, the above lemma fails over low charac-
teristic fields, in particular finite fields. Thus, proving an nω(

√
d) lower bound for

expressions such as (8) implies an nω(
√

d) lower bound for expressions such as (7).
We shall call expressions such as (8) as Σ∧ΣΠ[

√
d] circuits.

Just as we converted the top Π layer into powering layers using Fischer’s identity,
the same can be done to the lower layer of Π gates as well.

Corollary 30. If a homogeneous n-variate degree d polynomial f can be com-
puted by a ΣΠ[O(

√
d)]ΣΠ[

√
d] of size s = nO(

√
d), then f can also be computed by an

Σ∧[O(
√

d)]Σ∧[
√

d]Σ circuit of size s′ = s · 2O(
√

d).
Conversely, if f requires Σ∧[O(

√
d)]Σ∧[

√
d]Σ circuits of size s′ = nω(

√
d) to compute

it, then f cannot be computed by polynomial sized arithmetic circuits.

We shall take a small detour to see if non-homogeneous depth 3 circuits can be
converted to homogeneous shallow circuits without much blow-up in size.

6.1.2 Non-homogeneous depth 3 to homogeneous depth 5 circuits

Let f be a homogeneous degree d polynomial computed by a possibly non-homogeneous
depth 3 circuit C of the form

f =

s∑
i=1

`i1 . . . `iD

As a first step, let us extract the degree d homogeneous component of each sum-
mand on the RHS. Since f is a homogeneous degree d polynomial, f has to be
sum of the degree d homogeneous components of each summand on the RHS.
Consider a single term of the form

T = (`1 + α1) · · · (`D + αD)

where each `i is a homogeneous linear polynomial, and α are elements from the
field. Assuming that the first r of the αi’s are zero, we can write T in the form
(with some reuse of symbols)

T = α · `1 . . . `r · (`r+1 + 1) . . . (`D + 1)
=⇒ Homd(T ) = `1 . . . `r · Esymd−r(`r+1, . . . , `D)

where Esymk(x), the elementary symmetric polynomial of degree k defined as

Esymk(x) =
∑
S⊂x
|S |=k

∏
xi∈S

xi



Hence, if we can show that Esymd−r(x) has a not-too-large homogeneous depth 4
circuit, then we can immediately infer that f can be computed by a not-too-large
homogeneous depth 5 circuit. The following identities, attributed to Newton (cf.
[26]), is exactly what we need. Define the power symmetric polynomials, denoted
by Powk(x) as

Powk(x) =
∑
xi∈x

xk
i

Lemma 31 (Newton Identities). Let Esymk(x1, . . . , xm) and Powk(x1, . . . , xm) de-
note the elementary symmetric and power symmetric polynomials of degree k
respectively, as defined above. Then,

Esymk =
1
k!
·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pow1 1 0 · · ·

Pow2 Pow1 2 0 · · ·
...

. . .
. . .

Powk−1 Powk−2 · · · Pow1 k − 1
Powk Powk−1 · · · Pow2 Pow1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Expanding the determinant on the RHS, we obtain a homogeneous expression

Esymk(x) =
∑

a :
∑

i iai=k

αa · (Pow1)a1 . . . (Powk)ak (9)

The number of summands bounded by the number of non-negative solutions to∑
iai = k , which is precisely the number of partitions of k. By the estimates

of [14], we know that the number of partitions of k is bounded by 2Θ(
√

k). Thus,
(9) yields a homogeneous depth 4 circuit for Esymk(x1, . . . , xm) of size 2Θ(

√
k) · m.

In fact, the circuit is a homogeneous ΣΠΣ∧ circuit, i.e. a ΣΠΣΠ circuit where
the bottom layer of multiplication in fact just raises a single variable to a higher
power.

Corollary 32. Let T be a product of D linear polynomials over n variables, not
necessarily homogeneous. Then, the degree d homogeneous component of T ,
denoted by Homd(T ) can be computed by a homogeneous ΣΠΣ∧ circuit of size
nD · 2O(

√
d).

Hence, if f is a homogeneous degree d polynomial over n variables that is com-
puted by a non-homogeneous depth 3 circuit C of size s, then f can be computed
by a homogeneous ΣΠΣ∧Σ circuit of size poly(ns) · 2O(

√
d).

To convert the ΣΠΣ∧Σ circuit to a Σ∧Σ∧Σ circuit, we could use Fischer’s identity
again. At first sight, it appears as though this would yield a blow up of 2d as some
of the product gates could have fan-in d. However, notice that the sum is over
ai’s satisfying

∑
i · ai = d. Hence, there can be at most O(

√
d) of the ai’s that are



nω(
√

d) LB
for Σ∧Σ∧Σ circuits

nω(1) LB
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nω(
√
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Figure 1: Power of Σ∧Σ∧Σ ckts.

non-zero. By looking at Fischer’s identity applied on ya1
1 . . . yad

d more carefully, we
see that it uses at most (1 + a1) . . . (1 + ad) ≤ dO(

√
d) distinct linear powers instead

of the naïve bound of 2d. This fact of expressing any degree d monomial over m
variables as a Σ∧Σ circuit of size dO(m) was also observed by Ellison [7].
Thus, if f admits a poly-sized depth three circuit, then f also admits a homoge-
neous Σ∧Σ∧Σ circuit of size dO(

√
d) · poly(n). The following lemma summarizes

this discussion.

Lemma 33. Let f be an n-variate degree d polynomial that is computable by
depth three circuit of size s over Q. Then, f is equivalently computable by a
homogeneous Σ∧Σ∧Σ circuit of size dO(

√
d) · poly(s).

Conversely, if f requires Σ∧Σ∧Σ circuits of size nω(
√

d) over Q to compute it, then
f requires depth three circuits of size nω(

√
d).

6.1.3 Completing the picture

We now have an interesting situation (Figure 1). On one hand, Corollary 30 states
that a lower bound of nω(

√
d) for Σ∧Σ∧Σ circuits would yield a super-polynomial

lower bound for general arithmetic circuits. On the other, Lemma 33 states that
an nω(

√
d) lower bound for Σ∧Σ∧Σ circuits would yield a lower bound of nω(

√
d) for

depth three circuits.
Could this just be a coincidence? Or, is it the case that any poly-sized arithmetic
circuit can be equivalently expressed as a depth three circuit of size nO(

√
d) over Q?

As it turns out, there is indeed a depth reduction to convert any arithmetic circuit
to a not-too-large depth three circuit over Q.

To complete the picture, it suffices to show that a ∧Σ∧ circuit can be expressed as
a ΣΠΣ circuit. This would automatically imply a reduction from Σ∧Σ∧Σ circuits
to ΣΠΣ circuits. The last step of the puzzle is the duality trick of [32].



Lemma 34 (The Duality Trick [32]). There exists univariate polynomials fi j’s of
degree at most b such that

(z1 + · · · + zs)b =

sb+1∑
i=1

fi1(z1) . . . fis(zs).

It is worth noting that the degree of each term on the RHS is sb, whereas the
LHS just has degree b. This is the place where non-homogeneity is introduced.
Applying the above lemma for a ∧Σ∧ circuit such as (ya

1 + · · · + ya
s)

b gives

(ya
1 + · · · + ya

s)
b =

sb+1∑
i=1

s∏
j=1

fi j(ya
j)

=

sb+1∑
i=1

s∏
j=1

f̃i j(y j)

where f̃i j(y) = fi j(ya). Since each f̃i j(y) is a univariate polynomial, it can be
factorized completely over the C, the field of complex numbers. Hence, if fi j(y) =∏

k(y − ζi jk), then we get

(ya
1 + · · · + ya

s)
b =

sb+1∑
i=1

s∏
j=1

f̃i j(y j)

=

sb+1∑
i=1

s∏
j=1

b∏
k=1

(y j − ζi jk)

which is a depth three circuit! Thus, (ya
1 + · · · + ya

s) can be expressed as a depth
three circuit of size poly(s, a, b) over C. With a little more effort, one can construct
a depth three circuit over Q as well. Summarizing this is a lemma, we have the
following.

Lemma 35. Any n-variate degree d polynomial f computed by a homogeneous
Σ∧Σ∧Σ of size s over a characteristic zero field F can also be computed by a depth
three circuit of size poly(s, n, d) over F.

Combining with Corollary 30 and Theorem 3, we obtain the main result of [12].

Theorem 27 (restated). Let f be an n-variate degree d polynomial computed by
an arithmetic circuit of size s over any characteristic zero field. Then there is a
ΣΠΣ circuit of size s′ ≤ sO(

√
d) that computes f .



Remark. Note that if we were to start with a degree d polynomial f and apply
the above depth reduction, all the linear polynomials that we obtain at bottom are
essentially from the application of Fischer’s identity on the bottom Π layer of fanin
√

d of the ΣΠ[O(
√

d)]ΣΠ[
√

d] circuit. Hence, the each of the linear polynomials that
appear in the final ΣΠΣ circuit depend on at most

√
d variables. In other words,

the above Theorem yields a reduction to ΣΠΣ[
√

d] circuits.

6.2 Lower bounds for ΣΠΣ circuits with small bottom fan-in

Now let us focus on ΣΠΣ[r] circuits, where all linear polynomials in the circuit
depend on at most r variables. The following is the key observation of [21] and
can be verified easily.

Observation 36 ([21]). Starting with a ΣΠΣ[r] circuit C of size s computing a
homogeneous n-variate polynomial of degree d, the resulting ΣΠΣ∧Σ circuit C′

obtained from Corollary 32 is in fact a ΣΠΣ∧Σ[r] circuit of size s′ = poly(ns) ·
2O(

√
d).

Thus, by expanding the all powers of linear polynomials computed in the bottom
two layers of the ΣΠΣ∧Σ circuit C′, the circuit C′ can be rewritten as a homoge-
neous depth 4 circuit of bottom support bounded by r and size s′′ = s′ · dr

This observation in combination with Theorem 14 immediately yields the main
theorem of [21].

Theorem 37 ([21]). Over any characteristic zero field F, any ΣΠΣ[r] circuit C
computing the polynomial IMMn,d, for suitably chosen parameters n and d with
n = dO(1), must have size s = nΩ(d/r).

6.3 Extensions to low-bottom-fanin depth 5 circuits

[21] also prove lower bounds for depth 5 circuits where the bottom fan-in is
bounded. The result proceeds by analysing the random restriction process care-
fully to decompose any ΣΠΣΠΣ[τ] circuit into a ΣΠΣΠ[

√
d] circuit and another

circuit C′ such that Γ
[PSD]
k,` (C′) = 0. We just state their theorem here without proof.

Theorem 38. Let F be a field of characteristic zero, and let 0 ≤ µ < 1. If α =
2µ+1
1−µ and τ = O(Nµ), then there is a family of n-variate degree d polynomials
{ fn} in VNP with n ∈ [d2+α, 2d2+α] such that any homogeneous ΣΠΣΠΣ[τ] circuit
computing this polynomial requires size nΩ(

√
d).



7 Speculation about lower bounds for homogeneous
formulas

In this section, we shall look at a possible approach to proving an nΩ(log n) lower
bound for homogeneous formulas. It is conceivable that variants of the dimension
of shifted partial derivatives would be able to give such a lower bound. We will not
be presenting any candidate measures, but would instead present a normal form
that could perhaps be useful.

7.1 A stronger(?) depth reduction for homogeneous formulas

If we were to prove a lower bound for homogeneous formulas via a depth reduc-
tion to ΣΠ[O(

√
d)]ΣΠ[

√
d] circuits, the first step would be to answer the following

question:

Suppose we apply Theorem 3 to a polynomial sized circuit C to ob-
tain a ΣΠ[O(

√
d)]ΣΠ[

√
d] circuit C′, and also apply Theorem 3 to a poly-

nomial sized homogeneous formulas C̃ to obtain a ΣΠ[O(
√

d)]ΣΠ[
√

d]

circuit C̃′, how is C̃′ structurally different from C′?

Unless we are able to find a non-trivial structural difference between C̃′ and C′, it
does not make sense to attempt proving lower bounds for homogeneous formulas
via ΣΠ[O(

√
d)]ΣΠ[

√
d] circuits. The original proof of [35] of Theorem 3 does not

seem to suggest any structural difference between the two. However, the alternate
proof described in Section 3 allows one to understand this difference better.

Recall how the alternate proof proceeded. If g is the polynomial computed by any
gate in the circuit C of size s, then g can be written as

g =

poly(s)∑
i=1

gi1 · gi2 · gi3 · gi4 · gi5

where
∑

j deg(gi j) = deg(g) for all i and deg(gi j) ≤ deg(g)/2. Further gi js are
polynomials computed by the children/grandchildren of g. With an equation as
above, we could recursively keep expanding the larger degree gi j’s to eventually
get all degrees to be less than

√
d.

For homogeneous formulas, we can start with a slightly more structured equation
instead of the one above. This more structured decomposition was first observed
by [15].



Lemma 39 ([15]). Let Φ be a homogeneous formula of size s. If f is a polynomial
computed at an arbitrary gate of f , then f can be written as

f =

s∑
i=1

fi1 · fi2 · · · · · fi` (10)

where

• Each fi j is computable by a homogeneous formula of size at most s

•
∑

j deg( fi j) = deg( f ) for all i

•
(

1
3

)i
deg( f ) ≤ deg( fi j) ≤

(
2
3

)i
deg( f ) for all i, j.

• deg( fi`) = 1 for all i.

Proof. Assume that the Φ is a formula of fan-in 2 at each gate. This would only
increase the depth by a polynomial factor. Starting from the root, walk down the
tree by always picking the child of largest degree until we hit a node v of degree
at most 2 deg( f )

3 for the first time. Since the path always picked the child of largest
degree, we must have that

deg( f )
3

≤ deg(v) ≤
2 deg( f )

3

Let Φv denote the sub-formula rooted at v, and let Φv=0 refer to the formula ob-
tained from Φ by replacing the sub-tree rooted at v by 0. Let s1 and s2 be the size
of Φv and Φv=0 respectively. (We shall abuse notation and also use Φv and Φv=0 to
refer to the polynomial computed by these formulas.) Then,

f = Φv · A + Φv=0

for some polynomial A. Note that homogeneity implies that deg(A) + deg(Φv) =

deg( f ) and hence deg( f )
3 ≤ deg(A) ≤ 2 deg( f )

3 . (A is going to play the role of fi1 for
some of the i’s.)
Observe that the formulas Φv and Φv=0 ‘partition’ the formula Φ and hence s1 +

s2 ≤ s. By induction on these smaller formulas, we can write

Φv =

s1∑
i=1

gi1 · · · gi`

Φv=0 =

s2∑
i=1

hi1 · · · hi`



satisfying the necessary conditions. Since deg( f )
3 ≤ deg(Φv) ≤

2 deg( f )
3 , we have that

f =

s1∑
i=1

A · gi1 · · · gi` +

s2∑
i=1

hi1 · · · hi`

satisfies all the degree conditions with A as claimed. To complete the proof, it
suffices to show that A can be computed by a homogeneous formula of size s.
Indeed, the polynomial A is just the product of all siblings of multiplication gates
encountered in the path from v to the root. Since each of the siblings are disjoint
sub-formulas of Φ, the polynomial A is computable by a homogeneous formula
of size at most s. �

With equation (10) instead, we can repeat the strategy we used to prove Theo-
rem 3.

Start with (10) for the root of the homogeneous formula.

For each summand fi1 . . . fir in the RHS, if the largest degree fi j

has degree more than
√

d, expand that fi j with the its correspond-
ing representation using Lemma 39.

Repeat this process until all fi j’s on the RHS have degree at most
√

d.

Again, in the expansion of f of degree d via Lemma 39, every term on the LHS
has at least two factors of degree more than d/9. The same proof would then yield
a ΣΠΣΠ[

√
d] circuit of top fan-in at most sO(

√
d). Did we gain anything with this?

We certainly did – observe that every expansion via Lemma 39 yields O(log d)
more factors in each term. In the case of Theorem 3, we gained only constantly
many factors at each term. Thus, in the resulting depth 4 circuit has the form

f =

sO(
√

d)∑
i=1

Qi1 . . .Qir , where 1 ≤ deg(Qi j) ≤
√

d

and, most importantly, r = O(
√

d log d) as opposed to O(
√

d) in the case of The-
orem 3. This seems to be a key structural difference between depth 4 circuits ob-
tained from homogeneous formulas as opposed to depth 4 circuits obtained from
general arithmetic circuits! We summarize this below.

Theorem 40. If f is an n-variate degree d polynomial computed by a homoge-
neous formula of size s, then there is a homogeneous ΣΠ[O(

√
d log d)]ΣΠ[

√
d] circuit

computing f with top fanin at most sO(
√

d).



Is this useful?

It is not clear if the above structural difference can be exploited to give a com-
plexity measure. But it is very much possible that the some small modification
of measure of dimension of shifted partials derivatives might be a measure that
works. The reason we believe that is because the results of [11, 25, 23] give ex-
plicit n-variate degree d polynomials that admit a top fan-in lower bound of nΩ(d/t)

for depth 4 circuits with maximum bottom degree bounded by t.

Question. Could that be changed to give an nΩ(d/t) lower bound for depth 4 cir-
cuits with average bottom degree bounded by t?

If this were true, then we obtain an nΩ(log d) lower bound for the size of homoge-
neous formulas computing an explicit n-variate degree d polynomial. Also, we
need to keep in mind that any circuit of polynomial size has an equivalent ho-
mogeneous formula of size nO(log d). Hence, if we are hoping to come up with a
method that might prove a lower bound for homogeneous formulas but not for
general circuits, then method should not be able to yield a lower bound better than
nΩ(log d). This indeed seems to be the case in this approach. Maybe this is the right
depth reduction to work with to prove lower bounds for homogeneous formulas,
maybe not. Either way, we shall probably find out soon enough!

8 Conclusion
Quite a lot seems to be happening lately in arithmetic circuits. The last few re-
sults were on nΩ(

√
d) lower bounds for homogeneous depth 4, non-homogeneous

depth 3 circuits with small bottom fanin, and homogeneous depth 5 with small
bottom fanin. Perhaps in the near future, we would be able to obtain nΩ(

√
d) lower

bounds for non-homogeneous depth 3 or homogeneous depth 5 circuits without
any bottom fanin restrictions. These are all interesting problems to work on, and
should be very much within reach of current techniques. However, it is to be
noted that if we wish to separate VP and VNP, we need to break past nΩ(

√
d). It

appears (at least to us) this task would require very different techniques and seems
unlikely that small variants of shifted partial derivatives might just get us past
nΩ(

√
d). Nevertheless, Open Problem 1 presents a concrete and extremely simple

looking model to work with, for which we need to prove an nω(
√

d) lower bound
to separate VP and VNP. We conclude by stating the problem again to emphasize
the point.



Open Problem. Find an explicit n-variate degree d polynomial f such that
any expression of the form

f = (Q1)
√

d + · · · + (Qs)
√

d , deg(Qi) ≤
√

d for all i

must have s = nω(
√

d).
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