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A fundamental technique in the design of parameterized algorithms is kernel-
ization: Given a problem instance I with parameter k, the basic idea is to
try and preprocess the instance I of length n by applying efficient “reduction
rules” in order to simplify it and reduce it to a kernel instance of the same
problem that is of size a polynomial in k. A brute-force/exponential-time al-
gorithm can then be used to solve the kernel instance. Smaller kernels often
lead to faster algorithms. How small, as a function of k, can kernels be made?
There is a nice hardness theory, based on the complexity theoretic assumption
coNP * NP/poly, which can be used to prove lower bounds for kernel size.

Kernelization is a flourishing area of parameterized complexity with many
recent results (both upper and lower bounds). Stefan Kratsch shares with
us some of the latest developments in the field. His very readable survey
article, with illustrative examples, invites the non-expert to this exciting area of
complexity theory.
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Abstract

Kernelization is a formalization of efficient preprocessing, aimed mainly
at combinatorially hard problems. Empirically, preprocessing is highly suc-
cessful in practice, e.g., in state-of-the-art SAT and ILP solvers. The notion
of kernelization from parameterized complexity makes it possible to rigor-
ously prove upper and lower bounds on, e.g., the maximum output size of
a preprocessing in terms of one or more problem-specific parameters. This
avoids the often-raised issue that we should not expect an efficient algorithm
that provably shrinks every instance of any NP-hard problem.

In this survey, we give a general introduction to the area of kernelization
and then discuss some recent developments. After the introductory material
we attempt a reasonably self-contained update and introduction on the fol-
lowing topics: (1) Lower bounds for kernelization, taking into account the
recent progress on the and-conjecture. (2) The use of matroids and repre-
sentative sets for kernelization. (3) Turing kernelization, i.e., understanding
preprocessing that adaptively or non-adaptively creates a large number of
small outputs.

1 Introduction
Kernelization is a theoretical formalization of efficient preprocessing for (NP-)
hard problems. By efficient preprocessing we mean any polynomial-time algo-
rithm that given a problem instance outputs an equivalent instance that is, if pos-
sible, simpler than the initial one. Mainly, we are interested in data reduction
where the obtained instance is as small as possible (but we will avoid the term
data reduction for its name clash with reductions). Empirically, preprocessing is
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very successful in practice, e.g., within the well-known ILP solver CPLEX, which
motivates a mathematically rigorous study.

Before giving formal definitions and further background, let us begin with a
simple and well-known example. Consider the Vertex Cover problem where we
are given as input a graph G = (V, E) and a value k ∈ N and we need to deter-
mine whether there exists a set S of at most k vertices such that every edge is
incident with at least one vertex in S . Due to the NP-hardness of the problem
we do not expect that every instance can be efficiently reduced in size. Indeed,
any polynomial-time algorithm that guarantees a size reduction of at least one bit
for all instances of Vertex Cover could be iterated to also solve Vertex Cover
in polynomial time, implying P = NP. Despite this obstacle to efficient prepro-
cessing there are simple reduction rules that can be seen to yield a provable size
bound; how does that fit together?

Rule 1. Delete any isolated vertex v of G, i.e., return (G − v, k). Correctness: We
never need v in any solution since it covers no edges.

Rule 2. If a vertex v has degree greater than k in G then we (are forced to) select
the vertex for the solution, which is expressed by returning (G− v, k−1). Correct-
ness: Not selecting v would require selecting the neighborhood N(v) of v which is
of size greater than our budget k.

Rule 3. If Rule 2 does not apply and the graph G has more than k2 edges then
answer no. Correctness: Covering more than k2 edges with at most k vertices
would require at least one vertex of degree greater than k.

It is not hard to see that all three rules can be applied in polynomial time and
that when no rule is applicable we have an equivalent instance with a graph that
has at most k2 edges and 2k2 vertices; this instance can be encoded in O(k2 log k)
bits. (By more sophisticated arguments this can be improved to at most 2k vertices
and O(k2) total size [15].)

We see that by relating the output guarantee of our preprocessing to the value
k, we avoided the issue of not being able to shrink every instance. Intuitively,
the solution size k in a vertex cover instance is a good measure of its complexity,
since it is not hard to find, e.g., a O(2knm) time branching algorithm for it; if
k is constant or at least k ∈ O(log n) then this runtime is even polynomial in the
input size. Similarly, our simple preprocessing has showed us that a comparatively
small value of k implies that the size of our instance can be reduced. If, otherwise,
k is large (compared to n) then the bound of n ≤ 2k2 does not guarantee any
simplification, which is consistent with the observed obstacle to general efficient
size reductions.

Generally, the field of parameterized complexity studies the influence of so-
called parameters, like k for Vertex Cover, on problem complexity. We will



adopt the naming convention of including the parameter choice into the problem
name, e.g., Vertex Cover(k) stands for Vertex Cover with parameter k and Ver-
tex Cover(∆) stands for parameterization by maximum degree. A kernelization
for a parameterized problem can then be simply formalized as any efficient algo-
rithm that gives an equivalent instance of size (and parameter value) bounded by
a function in the input parameter (see Section 3 for formal definitions). It should
come as no surprise that the achievable output guarantees depend greatly on the
choice of parameter.

2 A brief history and overview of kernelization

The use of reduction rules to simplify problems is often traced back to the work
of Quine [66] from 1952 on simplifying truth functions, e.g., by unit-clause prop-
agation and elimination of pure literals. It was recognized early that efficient
reduction rules are not only empirically useful but could also be used to improve
theoretical performance guarantees of exhaustive search algorithms by ensuring
structural restrictions (like degree-bounds); see, e.g., [68]. The study of provable
performance guarantees for preprocessing by reduction rules (or any other means)
regarding the achievable output size, rather than achievable structure, took much
longer to develop.

Kernelization originated as one of many techniques in the toolbox of param-
eterized complexity (see [24, 25]) and is a successful theoretical formalization of
efficient preprocessing with provable performance guarantees. In its early stages
kernelization was mostly about coming up with clever reduction rules and com-
bining them with combinatorial arguments to prove that exhaustively reduced in-
stances (to which no more rule could be applied) have size bounded by some func-
tion in the initial parameter value. A 2007 survey of Guo and Niedermeier [40]
nowadays provides a nice overview on these “early days of kernelization”1 and in
particular asked to develop techniques for kernelization lower bounds. Two other
influential works from that time are the linear kernel for Planar Dominating Set
by Alber et al. [3] and a programmatic paper of Estivill-Castro et al. [29] that
amongst others was perhaps the first to explicitly ask for Turing kernelizations.

The field of kernelization matured, in a sense, when in 2008 Bodlaender et
al. [9] came up with a framework for ruling out polynomial sized kernels for
many parameterized problems, and, shortly afterwards, this was followed by the
first paper on meta kernelization by Bodlaender et al. [10] that gave general ker-
nelization results for a wealth of problems on planar and bounded genus graphs
(see also the 2009 survey of Bodlaender [7]). Since then, the field of kernelization

1The field of kernelization is still in its twenties.



has been growing rapidly and many new techniques for upper and lower bounds
were invented in short succession, apart, of course, from a wealth of results for
concrete problems. The survey of Lokshtanov et al. [58] on the occasion of Mike
Fellows’ 60th birthday in 2012 (see also [8]) gives an excellent account of these
developments.

In the present survey we want to focus mainly on recent developments that
have taken place since 2012, but also provide a fair introduction for readers new
to the field. To this end, the core part of the survey singles out three topics and at-
tempts a (as far as possible) self-contained and detailed presentation. Concretely,
we will discuss the use of matroids and representative sets for kernelization (based
on [56, 57]), and review the current knowledge about Turing kernelization (moti-
vated by recent progress [69, 49]). Furthermore, since the lower bound framework
initiated by Bodlaender et al. [9] holds a central place in kernelization, we explain
one complete set of tools for proving such lower bounds. This is, of course, also
motivated by the breakthrough work of Drucker [26] that (among other results)
settled the so-called and-distillation conjecture.2 But, first things first, let us begin
by giving an overview of all the interesting things that could not be fitted into this
survey for the sake of length and focus.3

Overview. The “bread and butter”, so to speak, in the kernelization business
lies in studying a given parameterized problem, deriving efficient reduction rules
for it, and analyzing the obtained rules, that is, analyzing the structure and size
of reduced instances. Unfortunately, such rules are of course problem dependent
and there does not appear to be the single general recipe for them. That said, two
frequently used approaches are the following: (1) Begin with an approximation of
the desired object or a dual structure. If this is sufficiently large then the instance
is trivially yes or trivially no. If not then there must be large parts that do not
contribute to the solution (or do not incur any cost), or that are obstructed by a
small set of objects/vertices/etc. Often, a careful analysis can devise “high-degree
rules” (as for the simple example of Vertex Cover(k)) that resolve or simplify
these cases. (2) Another frequently used tool is the Sunflower Lemma of Erdős
and Rado [28], particularly for covering or packing objects or sets of bounded
size. Effectively, the Sunflower Lemma states that a sufficiently large family of
bounded size objects either involves a large packing (giving trivial yes for packing
and trivial no for covering) or it contains a so-called sunflower formed by objects
that are pairwise obstructing in the same way; often, we can safely delete on of
these obstructing objects (and repeat).

2Very recently, Dell [20] announced a simpler proof for the and-distillation conjecture.
3Conveniently, and not entirely by chance, these topics are covered in detail by Lokshtanov et

al. [58].



To get a more detailed understanding of reduction rule based kernelization
results it is probably best to read some of them in detail; see, e.g., [50, 11, 52].

Above-guarantee parameterization. Many maximization problems have the
property that, perhaps after some simple reduction rules, the optimum value OPT
for an instance x is at least 1

c · |x|. This entails that, if |x| ≥ ck then the question
whether OPT ≥ k is trivially yes, and otherwise we have |x| < ck; this is a (trivial)
kernelization for the problem. As an example, consider the Max Cut(k) problem
where given a graph G = (V, E) and k ∈ N we ask whether there is a bipartition
of the vertex set such that at least k edges have endpoints on both sides. It is well
known that OPT equals at least half the number m of the edges. Thus, m ≥ 2k
gives an immediate yes and m < 2k gives a linear kernelization (after discarding
isolated vertices). More generally, if we know that OPT ∈ Ω(|x|−c) then we get a
trivial kernelization to size O(kc).

Motivated by these trivial kernelizations and the fact that the parameter needs
to be large to have a nontrivial instance, Mahajan and Raman [61] initiated the
study of problems parameterized above lower bounds. For example, they con-
sidered the Max Cut(k − m

2 ) problem asking whether there is a cut with at least
k = m

2 + k′ edges, parameterized by k′ = k − m
2 , and showed that this problem

remains fixed-parameter tractable. Gutin et al. [43] (and follow-up work of Alon
et al. [4]) made an important contribution to this direction by introducing the use
of the probabilistic method. At high level, they prove that a random solution will
exceed the lower bound by at least k with nonzero probability, provided that the
instance is sufficiently large compared to k; again (though no longer trivial) this
yields either a direct yes or the instance is sufficiently small. Among the further
results in this direction let us point out Crowston et al. [17, 16] who obtain further
kernelization results.

Meta kernelization. The term meta kernelization refers to a series of (pos-
itive) kernelization results that apply to a large variety of graph problems when
the input graphs are restricted to (in most cases) sparse graph classes such as pla-
nar, bounded genus, or H-minor-free graphs [10, 32, 36, 37, 51, 38]. “Meta”
here means that the results apply assuming that the problem in question fulfills an
appropriate set of technical but rather general properties, obviating the need for
any problem-specific reduction rules. A key necessity (but far from sufficient) is,
thus, that the problem in question can be formalized in some general language,
e.g., monadic second order logic. The first result of this type was obtained by
Bodlaender et al. [10], namely linear and polynomial kernelizations for a wealth
of problems when restricted to planar or bounded genus graphs. Important pre-
decessors of this work are the linear kernelization for Dominating Set in planar
graphs by Alber et al. [3] and a more general planar kernelization result, still us-
ing problem-specific rules, by Guo and Niedermeier [41].

Most meta kernelization results are based on the following intuition: The cen-



tral notion is that of a protrusion, which refers to a subgraph (of the input graph)
that is structurally simple and has a limited interaction with the rest of the graph.
More concretely, a protrusion has a constant size boundary of vertices that are ad-
jacent to the rest of the graph. Furthermore, it has bounded treewidth, which, for
the considered problems, implies that we have an efficient dynamic programming
routine to solve the problem on the protrusion subgraph (or any other graph of
bounded treewidth). The outcome of this dynamic programming is a set of par-
tial solutions relative to the boundary vertices alone. Intuitively, if the problem in
question has a bounded number of partial solutions relative to any constant-size
boundary, then many protrusions must give rise to the same partial solutions; this
is, roughly, captured by the notion of the problem being finite integer index. Thus,
if we can manage to compute a smaller protrusion with the same partial solutions
then this can replace the original protrusion, shrinking the overall instance size.
Thus, modulo a significant amount of technical heavy lifting (which we omit),
this yields a protrusion replacement rule that can be used to replace large pro-
trusions by smaller ones. Apart from this well-behaved interaction with dynamic
programming it is required that yes- or no-instances of the problem in question
admit a small set of vertices whose deletion leaves a graph of bounded treewidth.
(This holds trivially, for example, for VertexCover(k) or for the FeedbackVertex
Set(k) problem of deleting at most k vertices to obtain a forest.) This can be com-
bined with the topological properties of the input graph class under consideration
to prove that the graph can be decomposed into a small number of protrusions, the
so-called protrusion decomposition.

Let us conclude this part by highlighting recent papers on meta kernelization:
Kim et al. [51] recently extended the range of applicable sparse graph classes to
classes excluding any fixed graph H as a topological minor. Gajarský et al. [36]
extended this even further to the larger classes of graphs of bounded expansion,
locally bounded expansion, and nowhere dense graphs. This, however, comes
at the price that the kernelization bounds are no longer (implicitly) in terms of
vertex-deletion distance to bounded treewidth, but instead by distance to bounded
treedepth (which cannot be avoided [36]). Note also, that, unlike previous work
where a low vertex-deletion distance to bounded treewidth is a consequence of
other problem properties, Gajarský et al. [36] directly consider the deletion dis-
tance to bounded treedepth as the parameter. Independently, Ganian et al. [37]
also initiated a study of meta kernelization with respect to structural parameters.
Their results apply to problems on general graphs and do not require finite in-
teger index. Very recently, Garnero et al. [38] revisited the meta kernelization
framework and initiated research into making the obtained kernelization results
more explicit. At high level, this is achieved by working more closely on the
intuitive connection between meta kernelization and dynamic programming. For
an overview on earlier meta kernelization results and a more detailed explanation



thereof we refer to the survey of Lokshtanov et al. [58].
Further new results. Last year, Wahlström [70] came up with an intriguing

polynomial compression for the Steiner Cycle(k) problem of finding a cycle (of
unbounded length) through a given set of k terminals in a graph. Crucially, the
result makes use of the Tutte matrix (and randomization) and, while it obtains an
equivalent instance of bounded size, it is not known whether this can be turned
into a polynomial kernelization because the output language is not known to be
in NP (the connection between compressions and kernelizations will be discussed
later).

Fomin et al. [34] proved that Dominating Set(k) and Connected Dominating
Set(k) admit linear kernels when restricted to input graphs excluding any fixed
graph H as a topological minor. This continues a sequence of results [44, 65,
59, 63, 33, 34] on kernels for (Connected) Dominating Set(k) in restricted graph
classes. Note that both problems are W[2]-hard on general graphs and thus do not
even admit exponential kernels unless FPT = W[2].

A recent work of Kratsch et al. [54] settled the question of whether the so-
called Point Line Cover(k) problem of covering a point set in the plane by at
most k lines admits an efficient reduction to significantly less than O(k2) points.
(The reader is invited to rediscover a simple reduction to k2 points that is in the
spirit of the Vertex Cover(k) example.) Crucially, the result that no reduction
to O(k2−ε) points is possible unless the polynomial hierarchy collapses used the
full generality of Dell and van Melkebeek’s [22] lower bound framework that
applies also to oracle communication protocols. While we will discuss at length
the existing lower bound techniques (see Section 4), a discussion of the latter is
beyond the scope of this survey.

3 Formal definitions

Formally, a parameterized problem is any language Q ⊆ Σ∗ × N, where Σ is any
finite alphabet and N denotes the non-negative integers. The second component
k of any instance (x, k) ∈ Σ∗ × N is called the parameter. The problem Q is
fixed-parameter tractable (FPT) if there is an algorithm A, a computable function
f : N → N, and a constant c such that A correctly decides (x, k) ∈ Q for all
(x, k) ∈ Σ∗ × N in time f (k) · |x|c. We omit in this survey a detailed discussion of
fixed-parameter intractability, e.g., regarding fpt-reductions and the W-hierarchy.
It suffices to know that intractability is typically established by proving W[1]-
or W[2]-hardness;4 note that FPT ⊆ W[1] ⊆ W[2] and it is believed that the
inclusions are strict.

4E.g., Clique(k) is W[1]-complete and Hitting Set(k) is W[2]-complete.



A kernelization for a parameterized problem Q is a polynomial-time algorithm
K that given any instance (x, k) ∈ Σ∗ × N returns an instance (x′, k′) such that
(x, k) ∈ Q if and only if (x′, k′) ∈ Q and with |x′|, k′ ≤ f (k) for some computable
function f : N → N. The function f is called the size of the kernelization K
and K is a polynomial (linear) kernelization if f (k) is polynomially (linearly)
bounded in k. For simplicity, we allow a kernelization to outright answer yes or
no, understanding that it could instead return any hard-wired yes- or no-instance of
Q (of constant size). It is known that a parameterized problem is fixed-parameter
tractable if and only if it is decidable and admits a kernelization (see Theorem 1
below).

In the literature there exist two relaxed variants of kernelization: A generalized
kernelization (or bikernel) returns an output instance (x′, k′) that is with respect to
a, possibly different, parameterized problemQ′. More general, a compression may
return an instance with respect to any (also unparameterized) language L ⊆ Σ∗. All
kernelization lower bound tools in this survey, and almost all lower bounds in the
literature, imply also the same lower bounds for compressions. We will see later
(in Section 4) that lower bounds for compressions are slightly preferable, due to
greater ease of transferring them by appropriate reductions.

Theorem 1. A parameterized problem Q is fixed-parameter tractable if and only
if it is decidable and has a kernelization.

Proof. Assume that we have a kernelization for Q that reduces any instance (x, k)
to an equivalent instance (x′, k′) of size at most f (k). We can then apply an ar-
bitrary algorithm for Q (guaranteed by decidability) to solve (x′, k′) and thereby
also (x, k). If g : N → N bounds the runtime of the assumed algorithm then the
total time investment is |x|O(1) for the kernelization plus g( f (k)) for the algorithm.
This is bounded by f ′(k)|x|O(1) where f ′(k) := g( f (k)), implying fixed-parameter
tractability.

For the converse, assume that we have an algorithm that solves all instances
(x, k) of Q in time f (k)|x|c. Now run this assumed algorithm for |x|c+1 steps. If it
finishes then we have the correct yes or no answer. Otherwise, it did not finish
cause f (k)|x|c > |x|c+1. This, however, implies |x| < f (k). Thus, either way, in
polynomial time O(|x|c+1) we get an equivalent instance of size at most f (k). �

Note that the kernelizations implied by this theorem are not very useful cause
the size bound f (k) is the same f (k) as in the FPT runtime, which is usually
exponential in k. Nevertheless, the existence of exponential kernelizations for
many problems further motivates the question which of them also have polynomial
kernelizations. Conversely, if a problem is W[1]-hard and thus not FPT unless
FPT = W[1] then we also expect no kernelization.



4 Lower bounds for kernelization
The goal of this section is to explain the basic intuition underlying known tech-
niques for lower bounds for kernelization and to give one complete set of tools for
proving them. To this end, we will formally define so-called cross-compositions
and polynomial parameter transformations as these appear very convenient to use.
Cross-composition is a unifying front end to various insightful tools, and complex-
ity theorists might prefer to directly employ these underlying results of, e.g., Dell
and van Melkebeek [22] and Drucker [26].

At high level, there are two prevalent forms of kernelization lower bounds
known so far: First, and dominantly, for a wealth of problems it has been shown
that they admit no polynomial kernelization unless NP ⊆ coNP/poly. Second,
for a smaller list of problems that do have polynomial kernels, it is known that
no kernels of size O(kc−ε) are possible, where k is the parameter and c is some
constant, unless NP ⊆ coNP/poly. The assumption that NP * coNP/poly (or,
equivalently, coNP * NP/poly) is clearly stronger than P , NP and NP * coNP
but, since its failure would imply a collapse of the polynomial hierarchy [71, 14],
it is still widely believed.

Intuition for ruling out polynomial kernels. Let us consider the NP-hard
Path(k) problem where we are given a graph G = (V, E) and k ∈ N with the
question of whether G contains a simple path on at least k vertices. If we com-
bine t instances (G1, k), . . . , (Gt, k) into a single one (G′, k) by letting G′ be the
disjoint union of the graphs Gi then, clearly, (G′, k) is yes if and only if at least
one (Gi, k) is yes. Intuitively, for t large but polynomial in k, a kernelization ap-
plied to (G′, k) would have to determine some graphs Gi that are less likely to be
yes and remove the corresponding components from G′. More concretely, if we
assume a kernelization to size kc and take t = kc+1 then the output of the kernel-
ization applied to G′ has less than one bit per instance (Gi, k). On the other hand,
the total input size is polynomial in the largest instance (Gi, k) and, hence, we do
not expect that (in general) the time would suffice to solve any of the instances.

More generally, we do not expect an efficient algorithm that for s ∈ N takes
t instances of any NP-hard problem, each of size at most s, and returns a single
instance of size polynomial in s that is yes if at least one of the inputs is yes.
Such an algorithm is called an or-distillation in the breakthrough lower bound
framework of Bodlaender et al. [9]; and they conjectured that no NP-hard problem
admits an or-distillation. The conjecture was proved shortly after by Fortnow and
Santhanam [35] modulo the assumption that NP * coNP/poly. The analogous
conjecture for the natural variant called and-distillation was made as well, but
it remained an open problem for five years until it was settled by an impressive
work of Drucker [26]; amongst a wide range of results on both deterministic and



probabilistic compression (in fact also for quantum compression) Drucker proved
that the and-distillation conjecture holds under NP * coNP/poly as well.

The framework of Bodlaender et al. [9] introduced so-called or- and and-
composition algorithms that, essentially, generalize the above example for Path(k)
to any efficient mapping (not just disjoint union and not just for graph problems)
that encodes the or or and of t instances with parameter value k into a single in-
stance of the same problem with parameter value k′ polynomially bounded in k.
I.e., given t instances the obtained instance is yes if and only if at least one respec-
tively all given instances are yes. Similarly to the example, such a composition
together with a polynomial kernelization gives an or- or and-distillation. Since
proving existence of a particular algorithm (the composition) is typically easier
than ruling out an algorithm (the polynomial kernelization) proving compositions
became a very successful way of ruling out polynomial kernels. Curiously, even
before Drucker’s result [26], most lower bounds used or-compositions and only
very few proofs had to rely on the then unproven and-distillation conjecture.

Cross-composition. We will now review an extension to the composition-based
framework that was introduced by Bodlaender at al. [12]. In a so-called or- resp.
and-cross-composition the input consists of instances of any NP-hard problem,
while the output is an instance of the target parameterized problem for which
we desire a lower bound. Essentially, the parameter of the output instance must
be polynomially bounded in the largest size among input instances, which often
makes the proofs easier. In addition, there is the straightforward notion of a so-
called polynomial equivalence relation that simplifies arguments for why inputs
to a (cross-)composition may be assumed to be fairly similar (e.g., you may have
wondered why we tacitly assumed that all Path(k) inputs have the same parame-
ter).

Despite these extensions to the composition-based framework [9, 35, 26] the
underlying ideas go through in the same way. Nevertheless, several fairly ad-hoc
tricks needed for compositions are no longer required for cross-compositions and
this front end has seen wide adoption.

Definition 1 (polynomial equivalence relation [12]). An equivalence relation R
on Σ∗ is called a polynomial equivalence relation if the following two conditions
hold:

1. There is an algorithm that given two strings x, y ∈ Σ∗ takes time polynomial
in |x|+ |y| and decides whether x and y belong to the same equivalence class.

2. For any finite set S ⊆ Σ∗ the equivalence relation R partitions the elements
of S into a number of classes that is polynomially bounded in the size of the
largest element of S .



A simple example usage of a polynomial equivalence relation for Path(k)
instances (Gi, ki) would be to declare instances (Gi, ki) and (G j, k j) equivalent
if ki = k j. (As a technical remark, if k is given in binary then this would formally
allow an exponential number of equivalence classes. Thus, one usually resorts
to a dummy class containing “ill-posed” or otherwise infeasible inputs. E.g., for
Path(k) we can make one class for all instances where k exceeds the number of
vertices since these are trivially no.)

Definition 2 (and/or-cross-composition [12]). Let L ⊆ Σ∗ be a language, let R be
a polynomial equivalence relation on Σ∗, and let Q ⊆ Σ∗ × N be a parameterized
problem. An or-cross-composition of L into Q (with respect to R) is an algorithm
that, given t instances x1, x2, . . . , xt ∈ Σ∗ of L belonging to the same equivalence
class of R, takes time polynomial in

∑t
i=1 |xi| and outputs an instance (y, k) ∈ Σ∗×N

such that:

“PB”: The parameter value k is polynomially bounded in maxi |xi| + log t.

“OR”: The instance (y, k) is yes for Q if and only if at least one instance xi is yes
for L.

An and-cross-composition of L into Q (with respect to R) is an algorithm that,
instead, fulfills Properties “PB” and “AND”.

“AND”: The instance (y, k) is yes for Q if and only if all instances xi are yes
for L.

We say that L or-cross-composes, respectively and-cross-composes, into Q if a
cross-composition algorithm of the relevant type exists for a suitable relation R.

Note that the use of a polynomial equivalence relation in the definition is,
effectively, optional since R = Σ∗ × Σ∗ is a valid choice and simply makes all
inputs equivalent. The intended use of polynomial equivalence relations, however,
is to group inputs for a cross-composition such that it need only be applied to
groups of instances that are somewhat similar, thereby simplifying the necessary
constructions and gadgets.

Similar to compositions, any and- or or-cross-composition combined with a
polynomial kernelization creates an and- or or-distillation. Thus, using the results
of Fortnow and Santhanam [35] and Drucker [26] we can use them to rule out
polynomial kernelizations.

Theorem 2 ([12]). If an NP-hard language L and/or-cross-composes into the
parameterized problem Q, then Q does not admit a polynomial kernelization or
polynomial compression unless NP ⊆ coNP/poly and the polynomial hierarchy
collapses.



Note that the theorem also rules out polynomial compressions, which relax
polynomial kernelizations by allowing the output to be an instance (a string) with
respect to any language; in the same way this holds also for lower bounds via and-
and or-compositions. This simplifies transferring lower bounds via appropriate
reductions (as we will see later).

An example for AND-cross-composition. We will now sketch an and-cross-
composition for the Edge Clique Cover(k) problem. The question about existence
of a polynomial kernelization for Edge Clique Cover(k) was a frequently posed
open problem (see, e.g., Guo and Niedermeier [40]) until being settled negatively
by Cygan et al. [19].

Edge Clique Cover(k)
Input: A graph G = (V, E) and k ∈ N.
Parameter: k.
Question: Is there a collection of at most k cliques in G such that
each edge is contained in at least one of them?

We give an and-cross-composition from Edge Clique Cover to Edge Clique
Cover(k) following in spirit the construction of Cygan et al. [19]. (Note that Edge
CliqueCover has the same problem definition as EdgeCliqueCover(k), including
the value k ∈ N, except for not specifying k as the parameter.) We begin by
choosing a polynomial equivalence relation. We make one equivalence class for
all instances that are trivially yes because k exceeds the number of edges. Among
the rest, let any two instances (Gi, ki) and (G j, k j) be equivalent if Gi and G j have
the same number of vertices and furthermore ki = k j. Finally, since we are careful
theoreticians, we devote one class to all inputs that are not valid encodings of a
graph and integer k (and which are thus no instances). Of course, in the following
it suffices to discuss the interesting case of inputs that are not trivially yes or no.

Let t instances from the same (nontrivial) equivalence class be given, e.g.,
(G1, k), . . . , (Gt, k). Let n be the number of vertices in each graph and, for con-
venience, assume that the vertices of each graph Gi are numbered arbitrarily,
say Vi = {vi,1, . . . , vi,n}.

The basic idea is to start with a disjoint union of the graphs and add all edges
between different graphs (i.e., we take the join of the graphs). Then, if all instances
are yes, we may combine the t times k cliques used for the graphs into k cliques
that cover all edges in graphs Gi. Concretely, say that for i ∈ {1, . . . , t} the edges
of Gi can be covered by cliques Ci,1, . . . ,Ci,k. Then for j ∈ {1, . . . , k} each set
Ĉ j :=

⋃
i Ci, j induces a clique (using join edges), and together these k cliques

cover all edges inside each graph Gi.
The caveat, however, is that the combination of the cliques does not neces-

sarily cover all join edges that we introduced between different graphs Gi. We



handle this situation by increasing the budget and forcing inclusion of additional
O(n log t) cliques that cover all join edges but do not contain any edge in any
graph Gi. If we can ensure this, then the remaining budget of k will allow only
k further cliques, like, e.g., Ĉ1, . . . , Ĉk, that must induce a k-clique cover in each
graph Gi.

The idea is to add auxiliary vertices that will each be adjacent to exactly one
vertex vi,` per graph Gi. To ensure that we cover all edges between any graphs Gi

and G j the exact choice for each auxiliary vertex depends on the binary expansion
of i and j (using that different numbers differ in at least one position, but avoiding
the use of O(t), or worse, many extra vertices/cliques).

We introduce auxiliary vertices wa,b,p for all a, b ∈ {1, . . . , n} and
p ∈ {1, . . . , log t}. We connect a vertex wa,b,p to vertex vi,a of graph Gi if the
pth bit in the binary expansion of i is even, and to vi,b otherwise (if the bit is odd).
We call the obtained graph (of Gi’s and auxiliary vertices) G′ and let the budget be
k′ := k + n2 · log t. Since we already excluded instances with k exceeding the num-
ber of edges, which is less than n2, the value k′ is indeed polynomially bounded
in the largest input instance plus log t.

Let us briefly check that the obtained instance behaves as intended. Crucially,
the auxiliary vertices form an independent set and none of them is isolated. Thus,
we need to include at least one separate clique for each of them. Clearly, the
closed neighborhood of any wa,b,p is a clique since all neighbors are adjacent by
join edges. Thus, a single clique per wa,b,p is necessary and sufficient. For any
join edge from, say, vi,a to v j,b, we find that both vertices are contained in the
neighborhood of wa,b,p or wb,a,p for all positions p where the binary expansions of
i and j differ (the choice of wa,b,p or wb,a,p depends on the respective parities in
position p). At this point, all join edges are covered and all edges inside graphs
Gi still need to be covered by the remaining k cliques (which can be combined
over all t graphs). Thus, the instance (G′, k′) correctly encodes the and and by
Theorem 2 this rules out polynomial kernels and compressions for Edge Clique
Cover(k).

Polynomial parameter transformations. Before the framework of Bodlaender
et al. [9] the question for lower bounds for kernelization was frequently posed as
an open problem. It is surprising, in hindsight, that this never led to a reduction-
based study of polynomial kernels akin to the collective evidence created by NP-
complete problems. In contrast, shortly after the framework was published, it was
recognized that compositions are by no means always as easy as for Path(k) and
may sometimes be outright impossible.5

5This problem was mainly with the original notion of compositions, where source and target
problem needed to be the same.



It was soon recognized that having a Karp reduction from one parameterized
problem to another with the additional restriction that the output parameter is
polynomially bounded in the input parameter essentially preserves kernelization
properties (we will formalize this in a moment). This was first, implicitly, used by
Binkele-Raible [6], first made formal by Bodlaender et al. [13], and first heavily
used by Dom et al. [23]. We introduce these reductions under the widely adopted
name of polynomial parameter transformations.

Definition 3 (polynomial parameter transformation). Let Q,Q′ ⊆ Σ∗ × N be pa-
rameterized problems. A polynomial parameter transformation (PPT) from Q to
Q′ is a polynomial-time computable mapping π : Σ∗×N→ Σ∗×N : (x, k) 7→ (x′, k′)
such that (x, k) ∈ Q if and only if (x′, k′) ∈ Q′ and k′ ≤ p(k) for all (x, k) ∈ Σ∗ ×N,
where p : N→ N is some fixed polynomial. If there is such a reduction from Q to
Q′ then we write Q ≤ppt Q

′.

If Q ≤ppt Q
′ and Q′ has a polynomial kernelization (or compression) then we

can take any instance (x, k) for Q, compute an equivalent instance (x′, k′) of Q′

with k′ polynomially bounded in k, and then apply the kernelization/compression
of Q′. The obtained instance, say (x′′, k′′) of Q′ is yes if and only if (x, k) is yes
for Q and its size is polynomially bounded in k. Thus, the combined algorithm
of PPT plus polynomial kernelization/compression constitutes a polynomial com-
pression for Q. This yields the following simple but useful lemma for proving
lower bounds.

Lemma 1. If Q ≤ppt Q
′ and Q admits no polynomial compression (possibly mod-

ulo some complexity assumption) then Q′ admits no polynomial kernel or com-
pression (under the same assumption).

Note that to combine a PPT from Q to Q′ and a polynomial kernelization for
Q′ into a polynomial kernelization for Q we still need to convert the output, which
is a poly(k)-sized instance for Q′, into an instance for Q without blowing up size
and parameter more than polynomially. If Q is NP-hard and Q′ ∈ NP then we
can use the implied Karp reduction from Q′ to Q; a technicality, however, is that
we need NP-hardness of Q for polynomially bounded value of its parameter (or,
equivalently, with parameter value encoded in unary) to ensure that there is a Karp
reduction that also implies a polynomial bound for the parameter (see Bodlaender
et al. [13]).

We will make further use of PPTs in Section 6. Let us anyway copy a nice
example from [58]: In the 2-Path(k) problem, given (G, k) we need to find two
vertex-disjoint simple paths of length k each. The disjoint union composition
fails, since we might have two input graphs with only one k-path each. There
is, however, a simple PPT from Path(k) to 2-Path(k): Given a Path(k) instance



(G, k), simply return (G′, k) where G′ is obtained from the disjoint union of G and
a k-path. Clearly, G has a k-path if and only if G′ contains two vertex-disjoint
k-paths.

Let us add to the example that there is also a simple or-cross-composition
from Path(k) to 2-Path(k), either by disjoint union with two copies of each input
graph or by similarly adding one additional disjoint k-path.

Polynomial lower bounds for kernelization. So far we have discussed how to
rule out polynomial kernels for certain parameterized problems. An insightful
work of Dell and van Melkebeek [22] was the first to open up the possibility of
proving polynomial lower bounds for problems that do admit some polynomial
kernelization. E.g., they showed that d-Hitting Set(k) admits no kernelization to
size O(kd−ε) for any fixed ε > 0 unless NP ⊆ coNP/poly. In fact, their bounds are
more general and apply also to compressions and, interestingly, to a form of oracle
communication protocol. For reasons of space (and focus) we restrict ourselves to
the goal of discussing polynomial lower bounds, but strongly suggest a follow-up
reading of [22].

The key step for getting to polynomial lower bounds was a closer inspec-
tion of Fortnow and Santhanam’s [35] proof of the or-distillation conjecture [22].
This revealed that, roughly speaking, an efficient algorithm that encodes the or of
any t instances for L into an equivalent instance of L′ of length O(t log t) implies
L ∈ coNP/poly. More concretely, we need such an algorithm that works when
given t := t(n) instances of size at most n each for any value of n, where t is any
polynomially bounded function. A similar statement follows for encoding the and
of t instances of L (see Theorem 4) as one of many consequences of Drucker’s
work [26].

To sketch how this gives polynomial lower bounds let us first see how it works
for ruling out all polynomial kernels. If we have an or-cross-composition of some
L into a parameterized problem that yields parameter k ∈ O(nc) then applying any
polynomial kernelization yields a total size of O(kd) ⊆ O(ncd). If we apply the
combined algorithm to t = ncd instances then this makes the total size O(ncd) ⊆
O(t). Hence, for any assumed polynomial kernelization we can choose t : N → N
such that we get “or of t instances into O(t) bits”, implying L ∈ coNP/poly.

Now, assume instead that we can encode the or of t instances of L of size n
each into one instance with parameter k ∈ O(t1/2nc). Using any kernelization with
size guarantee O(k2−ε) would now give total size O(t1−ε′nc′). This again, for an
appropriate function t : N → N, suffices to get “or of t instances into O(t) bits”
and, hence, L ∈ coNP/poly.

We will next define an extension of and/or-cross-composition that allows for
such larger contributions of the number t of instances in the parameter obtained



by the compositions. Again, this is a front end to very insightful works [22, 26],
and, hopefully, motivates more applications of their results.

Definition 4 (and/or-cross-composition of bounded cost [12]). An and/ or-cross-
composition of L intoQ (with respect toR) of cost f (t) for t instances is an and/or-
cross-composition algorithm as described in Definition 2 that satisfies “CB” in-
stead of “PB”.

“CB”: The parameter k is bounded by O( f (t) · (maxi |xi|)c), where c is some con-
stant independent of t.

The following theorem formalizes the intuition of how the dependence on t in
an and/or-cross-composition relates to polynomial lower bounds.

Theorem 3 ([12]). Let L ⊆ Σ∗ be a language, let Q ⊆ Σ∗ × N be a parameter-
ized problem, and let d, ε be positive reals. If L has an and/or-cross-composition
intoQwith cost f (t) = t1/d+o(1), where t denotes the number of instances, andQ has
a polynomial compression into an arbitrary language L′ with size bound O(kd−ε),
then L ∈ coNP/poly. If, additionally, L is NP-hard, then NP ⊆ coNP/poly.

The statement for or-cross-composition was proved in [12] building on [22].
The analogous proof for and-cross-compositions is given here for the first time.
Modulo swapping of and and or and avoiding the use of the oracle communication
protocol this proof is fully analogous to the or-cross-composition case. Crucially,
however, the proof depends on having a proven consequence of encoding the and
of t instances of any L into O(t log t) bits, which follows as a consequence of a
more powerful result of Drucker [26, 27].6

Theorem 4 (Consequence of [27, Theorem 7.1]). Let L, L′ be any languages, let
d > 0, and let t : N → N be polynomially bounded. Suppose that there exists a
polynomial-time mapping that on input of t := t(n) instances x1, . . . , xt for L each
of size n computes a single instance x of size at most d · t log t such that x ∈ L′ if
and only if xi ∈ L for all i. Then L ∈ coNP/poly.

Proof. This follows as an application of the more general [27, Theorem 7.1].
First, we need to swap the role of and and or by complementation to match [27,
Theorem 7.1]: Assume a mapping that given x1, . . . , xt returns x with x ∈ L′ if
and only if xi ∈ L for all i. If we consider L and L′ instead then we get x ∈ L′ if
and only xi ∈ L for at least one i. Once we have chosen all other parameters we
can thus apply our mapping as an or for L in [27, Theorem 7.1] which implies
L ∈ NP/poly and L ∈ coNP/poly.

6The author is indebted to Andrew Drucker for clarifying how this follows from his work.



We use the following choices for t1(n), t2(n), δ̂, and ξ(n): We have an error-
free mapping and, thus, use error bound ξ(n) = 0. We set t1(n) := t(n) and
t2(n) := d · t(n) log t(n). Using the definition of δ̂ in [27, Theorem 7.1], this yields
δ̂ ≤ 1 − 1

8 (t(n))−d. Since t is polynomially bounded, there are constants a, b such
that t(n) ≤ a · nb for sufficiently large n. Our parameters fulfill the requirement of
1 − 2ξ(n) − δ̂ ≥ 1

nc in [27, Theorem 7.1] for c = bd + 1:

1 − 2ξ(n) − δ̂ ≥
1

8 · (t(n))d ≥
1

8 · a · nbd ≥
1
nc ,

for sufficiently large n. �

Now we can explain the proof of Theorem 3. It follows the basic intuition
given earlier and is analogous to the or case in Bodlaender et al. [12].

Proof of Theorem 3 for and-cross-compositions. LetR denote a polynomial equiv-
alence relation on Σ∗ which partitions any set of strings of length at most s into at
most O(sb) equivalence classes. Let f (t) = t1/d+o(1) for some constant d. Let C be
an and-cross-composition from L into Q, which maps t instances of size at most s
and from the same R-equivalence class to an output instance with parameter value
bounded byO( f (t)sc). Finally, let K be a polynomial compression forQ into some
language L′ that given an instance with parameter k outputs an equivalent string
(with respect to L′) of size bounded by h(k) = O(kd−ε).

We define a polynomially bounded function t by t(s) := s(b+cd)· dε . By Theo-
rem 4 it suffices to provide an appropriate encoding of the and of t instances of L.
As the target language we will use and(L′) := {(x1, . . . , xr) | r ∈ N ∧ x1, . . . , xr ∈

L′}. Fixing s and t := t(s), let t instances x1, . . . , xt of L each of length at most s
be given.

As a first step, we partition the strings xi according to equivalence under R,
obtaining r ≤ O(sb) groups. Then we apply the and-cross-composition C to
each group, obtaining r instances (y1, k1), . . . , (yr, kr). The parameter values ki are
bounded by O( f (t)sc). Now we apply the assumed polynomial compression K to
each instance (yi, ki), obtaining instances z1, . . . , zr of the language L′. We return
the instance (z1, . . . , zr).

Each compressed instance zi has size at most

h(ki) = O((ki)d−ε) = O(( f (t)sc)d−ε).

Thus we can bound the output size, i.e., the size of (z1, . . . , zr), as follows:

O
(
r ( f (t)sc)d−ε

)
= O

(
sb

(
t

1
d +o(1)sc

)d−ε
)

= O
(
sb+c(d−ε)t1− εd +o(1)

)
= O(t),



using that r ≤ O(sb) and the following bound for sb+c(d−ε):

sb+c(d−ε) = sb+cd · s−cε = t
ε
d · s−cε = t

ε
d−δ,

where δ = cε2

(b+cd)d > 0. (Note that t1−δ+o(1) = O(t), for any δ > 0.)
Correctness. It remains to show that the returned instance (z1, . . . , zr) is in-

deed an encoding of the and of the instances x1, . . . , xt. Assume first that at least
one input instance xi is a no-instance (requiring the output to be no for and(L′)).
It follows that the corresponding instance (y j, k j) that is created by C from all
instances R-equivalent to xi must be no for Q. Accordingly, the polynomial com-
pression K transforms (y j, k j) to a no-instance z j for the language L′. Hence, the
output instance (z1, . . . , zr) is no for and(L′).

In the remaining case all input instances x1, . . . , xt are yes for L. The and-
cross-composition C will therefore create r yes-instances (yi, ki) for Q. These are
converted to r yes-instances zi for L′. Hence, the returned instance (z1, . . . , zr) is
yes for and(L′). Thus, we get a polynomial-time mapping fulfilling the require-
ment of Theorem 4. It follows that L ∈ coNP/poly, as claimed. If L is NP-hard
then NP ⊆ coNP/poly. �

To conclude the section on lower bounds for kernelization, let us illustrate a
successful “design-paradigm” for proving polynomial lower bounds that has been
identified through results of Dell and van Melkebeek [22] and Dell and Marx [21].
The idea is to use a source problem that is d-partite in a sense. More strongly,
similar to, for example, problems on bipartite graphs, all the relevant information
needs to be encoded in the adjacency (or other structure) between the partite sets;
the partite sets themselves should be isomorphic over all input instances (here
polynomial equivalence relations can be of help). Thus, one can tightly encode t
instances of a bipartite problem by using only

√
t copies each of both partite sets

and choosing a different pair for each instance. Let us perhaps make this more
concrete in the following example.

Example of a polynomial lower bound. As an illustration let us sketch an
O(nd−ε) lower bound for the d-Hitting Set(n) problem for any fixed d ≥ 3. We
give an or-cross-composition from Hitting Set restricted to d-partite d-uniform
hypergraphs, which is NP-hard for d ≥ 3 (cf. [42]). In that problem we have a
given partition of the ground set U into d color classes, say U = C1∪ . . .∪Cd with
each hyperedge containing exactly one vertex from each set Ci, and the task is to
find k elements of U that intersect all edges (if possible).

Let t instances (Ui,Fi, k) of Hitting Set on d-partite d-uniform hypergraphs be
given. For simplicity, skipping over padding arguments and choice of polynomial
equivalence relation, assume that the ground set Ui of each instance is partitioned



into d color classes, each containing exactly n vertices. As a first step, rename the
instances from i ∈ {1, . . . , t} to i ∈ {(i1, . . . , id) | i j ∈ {1, . . . , t1/d}; a simple counting
argument shows that this allows an injective renaming.

Now, rather than taking simply the disjoint union of the instances we carefully
identify the color classes of different instances. Concretely, for p ∈ {1, . . . , d} and
q ∈ {1, . . . , t1/d} identify, vertex by vertex, the pth color class of all instances with
number i = (i1, . . . , id) with ip = q. In this way, for each color p ∈ {1, . . . , d}
we end up with t1/d color classes (each with n vertices) that are shared by several
instances. Let Cp,q for p ∈ {1, . . . , d} and q ∈ {1, . . . , t1/d} denote the obtained
color classes.

Now, for all colors p and any two vertices u and v in different color classes
Cp,q (i.e., with different values of q) we add a new edge {u, v}. Thus, any hitting
set for the instance has to completely contain all but one color class Cp,q for each
color p. Let us see what happens if, taking this into account, we ask for a hitting
set of total size at most k′ = d(t1/d−1)n+k for the combined instance of d-Hitting
Set(n).

As just observed any k′-hitting set, say S , must contain all but one color class
Cp,q for each color p. Let q1, . . . , qd ∈ {1, . . . , t1/d} such that Cp,qp * S for all
p, i.e., each qi corresponds to the color class that is not fully contained in S .
Since |S | ≤ k′ we find that the intersection of S with C1,q1 ∪ . . . ∪ Cd,qd is of
size at most k; let S ′ denote the intersection. It follows that S ′ is a k-hitting set
for all edges that are fully contained in C1,q1 ∪ . . . ∪ Cd,qd . Note that, during our
identification process, all color classes of instance i with i = (q1, . . . , qd) have been
identified with C1,q1 , . . . ,Cd,qd and all its hyperedges are, therefore, contained in
C1,q1 ∪ . . . ∪ Cd,qd . Thus, S ′ is a k-hitting set for instance i, proving that at least
one input is yes.

For the converse, if some instance (Ui,Fi, k) is yes then begin by letting S ′

a k-hitting set for that instance. Let i = (i1, . . . , id) be the assigned renaming
of i. Now, let S contain S ′ as well as all color classes Cp,q with q , ip, i.e.,
all color classes not used for instance i. Clearly, this covers all additional edges
between color classes Cp,q and Cp,q′ with q , q′. Furthermore, for every instance
i′ = (i′1, . . . , i

′
r) , (i1, . . . , ir) = i at least one position must differ, e.g., i′p , ip. But

then S already includes all vertices of Cp,i′p covering all hyperedges of instance i′.
Thus, the constructed instance is yes.

To wrap up, note that the combined instance has exactly n′ = d · t1/d ·n vertices,
which is bounded by t1/d times a polynomial in the largest instance size. Thus, we
have an or-cross-composition with cost t1/d implying that d-Hitting Set(n) has no
kernelization with size O(nd−ε) for any ε > 0 unless NP ⊆ coNP/poly. As in [22]
the analogous bound for d-Hitting Set(k) follows immediately by noting that all
nontrivial instances have k ≤ n.



Further reading. We point out some more results regarding polynomial lower
bounds for concrete problems since, unlike ruling out polynomial kernels alto-
gether, this is not yet in common use. Independently from Dell and Marx [21],
Hermelin and Wu [47] formalized a form of composition algorithms with larger
dependence on the number t of composed instances, which they called weak com-
positions. Both papers prove polynomial lower bounds for several standard prob-
lems when restricted to families of sets of bounded size or graphs of bounded de-
gree, respectively. A recent work of Cygan et al. [18] obtains kernelization lower
bounds for several problems when restricted to graphs of bounded degeneracy that
almost exactly match known upper bounds. Jansen [48] used the polynomial lower
bound framework to rule out sparsification for computing the treewidth of a graph
by proving that the problem admits no polynomial compression to size O(n2−ε),
which would, for example, be implied by any nontrivial reduction to the number
of edges. Generally, also the initial results of Dell and van Melkebeek [22] had
sparsification lower bounds as one of their goals.

5 Representative sets and matroids
In this section we give an introduction to using representative sets and matroids
for kernelization. As a warm-up, we will begin by introducing representative sets
for set families and using them to reproduce two “classic” kernelization results,
namely polynomial kernels for d-Hitting Set(k) and d-Set Packing(k). (See be-
low for problem definitions.) It is known that kernels for these two problems
can also be obtained via the Sunflower Lemma of Erdős and Rado [28]; see,
e.g., [30, 21]. The best known kernelizations for both problems are due to Abu-
Khzam [2, 1], with a slightly smaller ground set of O(kd−1) but same asymptotic
total size of O(kd log k). It is known, by work of Dell and van Melkebeek [22]
and Dell and Marx [21], that neither result can be improved to size O(kd−ε) unless
NP ⊆ coNP/poly.

In the second part we move on to using representative sets on families of in-
dependent sets of a given matroid. A 1977 result of Lovász [60] states that such
sets, of modest size, exist for every linear matroid, i.e., for every matroid that
can be represented as the column matroid of a matrix. Marx [62] observed that
Lovász’ proof in fact also gives rise to an efficient algorithm. Since then, repre-
sentative sets, both for set families (or, equivalently, uniform matroids) but also
for gammoids and graphic matroids, have found various applications in parame-
terized complexity for kernelization [57] and faster algorithms [31]. In particular,
Fomin et al. [31] also gave faster algorithms for finding representative sets for
both linear matroids and the special case of uniform matroids. To illustrate the
use for kernelization, we will give a fairly detailed description of the polynomial



kernelization for Deletable TerminalMultiway Cut(k) obtained in [57].

Representative sets for set families. Let us jump right in and give a definition
of q-representativeness for the case of set families.

Definition 5 (q-representative set family). LetA be a family sets and let q ∈ N. A
subset A′ ⊆ A is q-representative for A if for every set B of size at most q there
is a set A ∈ A with A∩ B = ∅ if and only if there is a set A′ ∈ A′ with A′ ∩ B = ∅.

We will later give a similar definition for representative independent sets in a
specified matroid (see Definition 6) that additionally requires A ∪ B and A′ ∪ B
to be independent sets of the matroid. The present definition can then be seen
as a special case by using so-called uniform matroids where all sets up to some
prescribed size are independent, but this is not at all required for understanding.
Nevertheless, the general efficient algorithm of Lovász [60] and Marx [62] (see
also Theorem 5 below) implies the following lemma.

Lemma 2. Let A be a family of sets of size p each and let q ∈ N. In time
polynomial in

(
p+q

p

)
+ |A| one can compute a q-representative subset A′ ⊆ A of

size at most
(

p+q
p

)
.

While the guaranteed size bound of
(

p+q
p

)
might seem somewhat arbitrary at

first, it is in fact tight: Consider the family A containing all
(

p+q
p

)
subsets of size

p of the set {1, . . . , p + q}. Then, going over all sets B that are size q subsets of
{1, . . . , p + q}, we always find a unique set A ∈ A that is disjoint from B, namely
A = {1, . . . , p+q} \B. Thus, all sets inAmust be included and the lemma is tight.
We will later make more use of the implicit observation that sets A that are unique
“partners” for some set B must be included in any q-representative subset.

Let us now see that even this simple form of using representative sets, i.e.,
without the full power of specialized matroids, already suffices to reproduce “clas-
sic” kernelization results. We begin with the d-Hitting Set(k) problem, defined as
follows.

d-Hitting Set(k)
Input: A universe U, a family A of subsets of U each of size at
most d, and k ∈ N.
Parameter: k.
Question: Is there a set of at most k elements of U that intersects all
sets inA?

We sketch a kernelization; let an instance (U,A, k) be given. Using Lemma 2
with p = d and q = k compute a k-representative subset A′ ⊆ A of size at



most
(

k+d
d

)
∈ O(kd). If (U,A, k) is yes then also (U,A′, k) must be yes since A′ ⊆

A. If, however, (U,A, k) is no then, in particular, no set B ⊆ U of size at most k
can be a solution for (U,A, k). In other words, for each such set B there is at
least one set A ∈ A that avoids B, i.e., A ∩ B = ∅. Since A′ is k-representative
for A, for each choice of B we also find a set A′ ∈ A′ with A′ ∩ B = ∅, implying
that (U,A′, k) is no, too.

We remark that the reduction to |A′| ∈ O(kd) allows an encoding in O(kd log d)
bits, which is essentially optimal due to the mentioned result of Dell and van
Melkebeek [22] that rules out efficient reduction to bit size O(kd−ε) unless
NP ⊆ coNP/poly. It is possible, however, to improve the size of the ground set
to O(kd−1), rather than the implicit O(d · kd) = O(kd), using the kernelization of
Abu-Khzam [2]. (It is an interesting problem to close the wide gap between this
result and the trivial lower bound of Ω(k) for the ground set size.)

Let us now consider d-Set Packing(k) where the argument is slightly more
involved, though certainly comparable to the less obvious application of the Sun-
flower Lemma as compared to d-Hitting Set(k) (cf. [21]).

d-Set Packing(k)
Input: A universe U, a family A of subsets of U each of size at
most d, and k ∈ N.
Parameter: k.
Question: Is there a selection of k sets inA that are pairwise disjoint?

Again, representative sets can be used to obtain a polynomial kernelization
whose size is essentially optimal. This time, given an instance (U,A, k) of d-
Set Packing(k) we compute a d(k − 1)-representative subset A′ of A. Let us see
that this works correctly. Clearly, if (U,A, k) was no in the first place then the
obtained instance (U,A′, k) will be no too. Assume now that (U,A, k) is yes.
Let A1, . . . , Ak ∈ A be a selection of k pairwise disjoint sets such that as many
sets Ai as possible are also contained in A′. If A1, . . . , Ak ∈ A

′ then we are
done, so assume w.l.o.g. that A1 < A

′. Then, letting B := A2 ∪ . . . ∪ Ak we
note that A1 ∩ B = ∅ and that |B| ≤ d(k − 1). It follows, since A′ is d(k − 1)-
representative for A, that there exists A′1 ∈ A

′ with A′1 ∩ B = ∅. Then, however,
we immediately see that A′1 ∈ A and A′1, A2, . . . , Ak is also a selection of k pairwise
disjoint sets but with more sets also contained in A′; a contradiction. Thus, we
must have A1, . . . , Ak ∈ A

′, and, therefore, the obtained instance (U,A′, k) is
indeed equivalent to (U,A, k).

Representative sets for matroids. We will now introduce representative sets
for families of independent sets of a given matroid. Since all further known kernel-
izations via representative sets [57] make use of a particular type of matroid called



gammoid we will mainly focus on those. Let us recall that a matroid M = (U,I)
consists of a finite set U and a family I of subsets of U, called independent sets,
fulfilling the following properties:

1. ∅ ∈ I.

2. If X ⊆ Y and Y ∈ I then also X ∈ I.

3. If X,Y ∈ I with |X| < |Y | then there exists y ∈ Y \ X such that X ∪ {y} ∈ I.

We can now give the full definition of q-representative sets for families of
independent sets in a matroid. For ease of writing, let us say that an independent
set A extends an independent set B if A∩B = ∅ and A∪B is independent. Note that
independence of A ∪ B requires independence of both A and B due to the second
matroid property.

Definition 6 (q-representativeness for families of independent sets). Let M =

(U,I) be a matroid. Let A ⊆ I be a collection of independent sets of M and let
q ∈ N. We call a set A′ ⊆ A q-representative for A if for every independent set
B of size at most q there is an A ∈ A that extends B if and only if there is also an
A′ ∈ A′ that extends B.

It should not come as a surprise that with the addition of matroid independence
this opens up a much bigger world of applications. The, so far, most interesting
matroids regarding kernelization applications are the gammoids (defined below).
Their independence notion is strongly related to Menger’s Theorem, and the proof
that they are indeed matroids is due to Perfect [64].

Let G = (V, E) be a graph that may have both directed and undirected edges,
and let S ⊆ V . Say that a set T ⊆ V is linked to S if there exist |T | vertex-disjoint
paths from S to T , i.e., each vertex in T is endpoint of a different path from S .
Then the set system M = (V,I) where I contains all sets T that are linked to
S is a matroid. We say that M is the gammoid on G with sources S . (We note
that often the roles of S and T are switched, which makes no difference regarding
what matroids are gammoids. Furthermore, restricting I to any subset V ′ ⊆ V
still yields a gammoid, and the case of V ′ = V is also called a strict gammoid.)

It is known that every gammoid can be represented as the (linear) indepen-
dence of column vectors of a matrix, making them linear matroids (cf. [62]). The
construction of the matrix over an appropriately large field can be made construc-
tive by an efficient, randomized algorithm but it is a big open problem whether
a deterministic construction exists. For simplicity, we hide these details in the
following theorem, noting that the general version [60, 62] holds for any linear
matroid when given the matrix representation (and without further use of random-
ization).



Theorem 5 (simplified version of result by Lovász [60] and Marx [62]). Let M
be a gammoid and let A = {A1, . . . , Am} be a collection of independent sets, each
of size p. We can find in randomized polynomial time a set A′ ⊆ A of size at
most

(
p+q

p

)
that is q-representative forA.

A highly useful property of representative sets is that they can be employed
for actually finding particular objects (e.g., vertices) rather than just “blindly” dis-
carding sets (or other objects) as we did for d-Hitting Set(k) and d-Set Packing(k).
For A′ to be q-representative for A it is required that every set B that can be ex-
tended by some A ∈ A can also be extended by some A′ ∈ A′. This entails,
however, that if a given A ∈ A is unique in extending some given B then this en-
forces that A ∈ A′; else, no set in A′ could extend B. We will return to this trick
soon.

Example application. Let us now discuss an application of Theorem 5, namely
a polynomial kernelization for the following variant of Multiway Cut(k), called
Deletable TerminalMultiway Cut(k):

Deletable TerminalMultiway Cut(k)
Input: A graph G = (V, E), a set of terminals S ⊆ V , and k ∈ N.
Parameter: k.
Question: Is there a set X of at most k vertices such that in G − X no
two terminals t1, t2 ∈ S \ X are in the same connected component?

The problem can be easily seen to be NP-hard, since using terminal set S = V
requires finding a vertex cover of size at most k. Note also, that all instances with
|S | ≤ k + 1 are trivial since this would allow deletion of all but one terminal.
Finally, unlike Multiway Cut, which is hard already for three terminals, for any
fixed size of S we have a trivial solution if k ≥ |S | − 1 or else can enumerate and
test all O(|V |k) ⊆ O(|V ||S |−1) solution candidates in polynomial time.

The kernelization proceeds as follows: (1) We show that if an instance is yes
then there is always a solution X that allows a certain path packing from S to X.
(2) We set up a gammoid based on a graph G′ derived from G, and with sources S .
(3) We use Theorem 5 to find a superset of X of size O(k3), using the path packing
to distinguish vertices in V . (4) We briefly explain how to use this superset to
shrink the input graph G to O(k3) vertices.

Analyzing solutions. Let an instance (G, S , k) of Deletable Terminal Mul-
tiway Cut(k) be given. Assume that the instance is yes and, for analysis, let X
denote a solution for (G, S , k) that contains the maximum number of terminals
from S (among solutions of size at most k). Clearly, vertices in X ∩ S correspond
to outright deletions of terminals, whereas X0 := X \ S separates the remaining



terminals S 0 := S \ X from one another. We want to establish that X0 is linked to
S 0 in a strong sense, by using Hall’s theorem.

Note that each connected component of G − X contains at most one terminal
from S ; for brevity, we will call C containing a terminal from S 0 = S \X a terminal
component. Let us say that a vertex x ∈ X0 sees a terminal component C if in G
the vertex x is adjacent to a vertex of C. We extend this to sets Y ⊆ X0 by saying
that Y sees a terminal component C if at least one x ∈ Y sees C. Intuitively, if a
vertex of X0 sees some terminal components, then “putting that vertex back” into
G − X reconnects those components and terminals; ditto for Y ⊆ X0.

We set up for using Hall’s Theorem: Assume that any nonempty set Y ⊆ X0

sees at most |Y | + 1 terminal components. It follows that in G − (X \ Y) the set Y
together with these terminal components (and possibly terminal-free components)
forms a larger component with up to |Y | + 1 terminals. All other terminal compo-
nents not seen by Y are unaffected. Observe that this allows an alternative solution
by deleting any |Y | of the |Y |+1 terminals, say a set Y ′ ⊆ S 0. This, however, contra-
dicts our choice of X since (X \Y)∪Y ′ would be a solution with larger intersection
with S . Thus, every Y ⊆ X0 sees at least |Y | + 2 terminal components C.

Using Hall’s Theorem it can now be checked that we can find a matching of
|X0| + 2 terminal components to vertices in X0 such that:

• Each component is matched to a vertex x ∈ X0 that sees it.

• For any fixed vertex x ∈ X0 we get three components matched to x.

Now, we “trade” matched components for disjoint paths from S 0 to X0: Notice
that in each component with a terminal t that is seen by some x ∈ X0 we can freely
choose a path from t to x with all vertices but x contained in the component. Thus,
for all |X0|+2 components we can find disjoint paths to the matched vertices in X0.
Hence, we get a path packing with |X0| + 2 paths from S 0 to X0 with three paths
ending in any chosen vertex x ∈ X0.

Setting up the gammoid. For the gammoid M we use a graph G′ that is ob-
tained from G = (V, E) by adding two so-called sink-only copies v′, v′′ for each
vertex v ∈ V . A sink-only copy v′ (or v′′) for v shares all in-neighbors with v
but has no out-neighbors (i.e., if {u, v} is an edge then we only add a directed
edge (u, v′)). Thus, adding such vertices does not affect, e.g., the existence of
paths between any terminals, since they can only act as endpoints (sinks) of paths.
Using the sink-only copies, we can formalize the informal statement of three paths
ending in any x ∈ X0 to three paths ending in {x, x′, x′′}. Let us also point out that
the gammoid setting allows trivial paths consisting of just one vertex, e.g., we have
such paths from S ∩X to S ∩X. Overall, together with the above path packing we
get that in G′ there must exist a path packing of |X|+2 paths from S to X∪{x′, x′′}
for every choice of x ∈ X0.



Applying representative sets. Now we will apply the idea that representative
sets can be used to identify particular objects. We will use Theorem 5 to compute
a k − 1 representative subset T ′ of T where T := {{v, v′, v′′} | v ∈ V}. Our goal is
to show that for all x ∈ X0 we must have {x, x′, x′′} ∈ T ′. Note that the theorem
guarantees |T ′| ∈ O(k3).

Our argument now depends crucially on the trick that we outlined previously:
If there exists an independent set I of M of size/rank at most k − 1 such that
{x, x′, x′′} uniquely extends I then this directly implies that {x, x′, x′′} is contained
in every k − 1-representative subset T ′ of T . Recall that we already know that
X∪{x′, x′′} is linked to S in G′ and thus it is independent, for all x ∈ X0. It follows
directly that {x, x′, x′′} extends the independent set X − x for all x ∈ X0. It remains
to prove that no other set {v, v′, v′′} ∈ T extends X − x.

Consider first any v ∈ X− x. In this case we have {v, v′, v′′}∩ (X− x) = {v} , ∅,
implying that the set {v, v′, v′′} does not extend X − x. The more interesting case is
for {v, v′, v′′} with v ∈ V \ X. First, note that for {v, v′, v′′} to extend X − x requires
for (X − x) ∪ {v, v′, v′′} to be linked to S in G′. A (weaker) requirement is that
{v, v′, v′′} is linked to S in G′ − (X − x), since any paths from S to X − x definitely
block at least X − x from being used in paths from S to {v, v′, v′′}.

Let us see that there cannot be three disjoint paths from S to {v, v′, v′′} in
G′ − (X − x): Recall that paths cannot have sink-only copies as interior vertices,
so apart from v′ and v′′ we can use that X is a solution in graph G. At most one
of the paths can come from a terminal in the terminal component of v, and one
more path can include the vertex x. No third path is possible. Thus, we find that
no other set {v, v′, v′′} can extend X − x.

Since for each x ∈ X0 the set {x, x′, x′′} uniquely extends X − x we get that for
all vertices x ∈ X0 we must have {x, x′, x′′} ∈ T ′. Hence, letting V(T ′) stand for
{v | {v, v′, v′′} ∈ T ′}, it is guaranteed that X0 ⊆ V(T ′). In extension this implies
X = X0 ∪ (X ∩ S ) ⊆ V(T ′) ∪ S . There is a reduction rule that ensures |S | = O(k)
(see [39]), but let us omit this detail and directly assume that we have a set of
O(k3) vertices containing all terminals S as well as at least one solution X (if one
exists).

Shrinking the input graph to O(k3) vertices. We can now complete the ker-
nelization. Let W denote the established set of O(k3) vertices that is guaranteed
to completely contain at least one solution (as well as all terminals). Using this
guarantee, there is no harm in making all vertices of V \W undeletable: For any
vertex v ∈ V \W simply make the neighbors of v a clique and remove v from the
graph; this captures the intention that deleting v does not remove any connectivity
while also shrinking the graph. (Note that doing this for all vertices of V \ W at
once corresponds to the so-called torso operation applied to W.) We obtain an
equivalent instance (Ĝ, S , k) where Ĝ is a graph on vertex set W of size at most
O(k3).



Further results kernelization results based on matroids. Prior to the applica-
tion of representative sets for kernelization [57], the fact that gammoids admit an
efficient representation as column matroids of matrices over (sufficiently large) fi-
nite fields (cf. [62]) was used to find a (randomized) polynomial kernelization for
Odd Cycle Transversal(k) [56], settling a well-known problem in kernelization.
At high level, a represented gammoid is used to fairly succinctly encode a fam-
ily of two-way cut queries that are sufficient to determine the status of the input
instance. In the follow-up work [57] representative set tools were used, amongst
others, to obtain somewhat more combinatorial7 kernel results based on irrelevant
vertex arguments.

Theorem 6 ([57]). The following kernelizations are possible: Almost 2-SAT(k),
with O(k6) variables; s-Multiway Cut(k), with O(ks+1) vertices; s-Multicut(k),
with O(kd

√
2se+1) vertices; Group Feedback Vertex Set(k), for a group of s ele-

ments, with O(k2s+2) vertices. All results are randomized, with failure probability
exponentially small in n.

Note that, Almost 2-SAT(k), i.e., the task of making a 2-CNF formula satisfi-
able by deleting at most k variables, is a pivotal problem since several other prob-
lems have PPTs to it, e.g., e.g., Vertex Cover Above Matching, Vertex Cover
Above LP, and RHorn-Backdoor Deletion Set. It also directly generalizes Odd
Cycle Transversal(k). All these problems have polynomial kernelizations due to
this connection.

Furthermore, the techniques were also used to obtain results called cut cov-
ering sets, which guarantee to include an optimal cut for each one of a (possibly
exponentially large) set of cut queries. We recall the statement for the two-way cut
setting and direct the reader to [57] for an s-multiway cut variant of the theorem.

Theorem 7 ([57]). Let G = (V, E) be a digraph and let S ,T ⊆ V. Let r denote the
size of a minimum (S ,T )-vertex cut (which may intersect S and T). There exists
a set Z ⊆ V, |Z| = O(|S | · |T | · r), such that for any A ⊆ S and B ⊆ T, it holds
that Z contains a minimum (A, B)-vertex cut. We can find such a set in randomized
polynomial time with failure probability O(2−n).

Further reading. The already mentioned recent paper of Fomin et al. [31] is
a recommended follow-up read. Fomin et al. obtain faster algorithms for finding
representative sets for linear matroids and for the special case of uniform matroids;
in particular the second does not require a matrix representation. Furthermore,
they explain several algorithmic applications and obtain, amongst others, the so
far fastest deterministic algorithm for Path(k), running in time O(2.851km log2 n).

7The underlying result of Lovász [60] is proved via exterior algebra, and derived algo-
rithms [62, 31] still use linear algebra tools.



6 Turing kernelization
Already before the kernelization lower bound framework [9] several authors had
suggested the possibility of preprocessing into many independent small instances
rather than just one [29, 40]. After the framework appeared, it was noted that the
obtained lower bounds do not apply to this relaxed form of kernelization, which
makes it a possible option for avoiding lower bounds.

A Turing kernel for Leaf Out-Tree(k). A first example was soon discovered
by Binkele-Raible et al. [6]: Say that an out-tree is any directed tree with a
unique vertex of in-degree zero, called the root, and with vertices of out-degree
zero called the leaves. The Leaf Out-Tree(k) problem asks whether a given di-
graph D = (V, A) contains an out-tree with at least k leaves. Binkele-Raible
et al. [6] showed that this problem admits no polynomial kernelization unless
NP ⊆ coNP/poly (using the then new framework of Bodlaender et al. [9]). In
contrast, they proved that a variant called Rooted Leaf Out-Tree(k), where in ad-
dition to D = (V, A) and k we are given a fixed vertex v ∈ V to use as the root of
the out-tree, does admit a kernelization to O(k3) vertices (and, hence, polynomial
total size). They concluded that, since a given instance (D = (V, A), k) of Leaf
Out-Tree(k) has only |V | choices for a root v, one may preprocess the instance by
returning |V | instances (D, v, k) of Rooted Leaf Out-Tree(k), one for each choice
of v ∈ V . Since the latter admits a polynomial kernelization, this yields |V | in-
stances on O(k3) vertices each. Furthermore, (D, k) is yes for Leaf Out-Tree(k)
if and only if at least one instance (D, v, k) is yes for Rooted Leaf Out-Tree(k).
Altogether, the reduction of one instance of Leaf Out-Tree(k) to |V | instances of
Rooted Leaf Out-Tree(k) combined with a polynomial kernelization for the latter
gave the first example8 of what is now called a (polynomial) Turing kernelization.
More specifically, it is a polynomial disjunctive kernelization since the status of
the input instance is equivalent to the disjunction (or) of the outcomes of the |V |
reduced instances.

Turing kernelization and other variants. Given the success of the lower bound
framework and the wealth of obtained results, a notion of preprocessing that
avoids these lower bounds is of course highly interesting. Note that, from a prac-
tical perspective, a sequence of small, independent instances might also be easier
to handle (e.g., by parallelization) than a single large instance. This aspect applies
of course only to the case that the reduced instances are created in parallel, rather
than adaptively. Theoretically, also an adaptive creation of inputs is interesting;

8Binkele-Raible et al. [6] also proved analogous results for Rooted Leaf Out-Branching(k)
and Leaf Out-Branching(k) where the out-tree is required to span the input graph D.



in particular, lower bounds against adaptive (i.e., Turing) kernelization would be
very powerful. Note that this necessitates a slightly more involved definition, since
the “kernelization” needs to know the answers to already created instances before
outputting the next one. It is thus natural to formalize a Turing kernelization for
Q ⊆ Σ∗ × N as an efficient algorithm that given (x, k) ∈ Σ∗ × N correctly decides
whether (x, k) ∈ Q provided that it gets the answers to all (adaptively) created
small instances. The traditional way in computer science to formalize this is by
means of an oracle; we recall the definition given by Binkele-Raible et al. [6].

Definition 7 ([6]). A t-oracle for a parameterized problem Q is an oracle that
takes as input (x, k) with |x|, k ≤ t and decides whether (x, k) ∈ Q in constant time.

Definition 8 ([6]). A parameterized problem Q is said to have a g(k)-sized Turing
kernelization if there is an algorithm which given an input (x, k) together with a
g(k)-oracle for Q decides whether (x, k) ∈ Q in time polynomial in |x| + k.

Naturally, by letting the oracle queries be to any other parameterized problem
Q′ or to any (classical) language L we could define variants such as generalized
Turing kernelization or Turing compression. Note, however, that using Karp re-
ductions we can easily translate oracle questions, which probably makes the dis-
tinction meaningless. In the following we will not insist on a concrete definition
and simply allow the most relaxed variant of t-sized queries to any language L.

Let us informally state also the following restricted variants of Turing kernel-
ization:

Disjunctive kernels: Like the example for Leaf Out-Tree(k), given an input
(x, k), create |x|O(1) instances of size bounded in k such that (x, k) is yes
if and only if at least one output instance is yes.

Conjunctive kernels: Given an input (x, k), create |x|O(1) instances of size
bounded in k such that (x, k) is yes if and only if all output instances are
yes. Surprisingly perhaps, we are already able to rule out polynomial con-
junctive kernels for most problems with lower bounds against polynomial
kernelization. We will recall this briefly later in this section.

Truth-table kernels: Generalizing conjunctive and disjunctive kernels one may
simply define any Boolean function (or a family thereof, one for each ar-
ity) and demand that the input is yes if and only if the function applied to
the outcomes for all output instances (treating yes as true and no as false)
evaluates to true.

Initially, only few examples of polynomial Turing kernels were found for
problems without polynomial kernels and all of them are in fact disjunctive ker-
nels [6, 5, 67]. A few more simple examples have been observed throughout the



community. As an example, the reader is invited to consider the Clique(∆) prob-
lem where we seek a k-clique in a given graph G, parameterized by the maximum
degree of G. It is not hard to give both an or-(cross-)composition and a disjunctive
polynomial kernelization.

Recently discovered Turing kernels. Last year, Thomassé et al. [69] found a
polynomial Turing kernelization for Independent Set on bull-free graphs9, where
the oracle questions are used in a dynamic programming fashion on a decomposi-
tion of the bull-free input graphs. In this case, the full power of Turing kerneliza-
tions as opposed to truth-table kernelization (or others) seems required. A similar
form of Turing kernelization was independently found by Jansen [49] more re-
cently for the Path(k) problem restricted to planar graphs (and related cases). We
describe a simplified version of the approach taken by Jansen [49], since this re-
quires less preliminaries.

1. We are given a planar graph G = (V, E) and an integer k, and want to find out
whether G contains a simple path on at least k vertices. We will efficiently
solve the instance by making a polynomial in |V | number of oracle queries
of size polynomial in k each.

2. We apply a tree-like decomposition of the graph into its three-connected
components (attributed to Tutte). Any two incident components overlap in
at most two vertices. Roughly, this can be obtained by recursing on vertex-
separators of size at most two, until reaching a three-connected component.

3. Any three-connected component of a planar graph on at least Ω(kc) vertices
must contain a path of length at least k, for some known constant c (cf. [49]).
Thus, if the graph has a three-connected component that has size Ω(kc), then
we can safely answer yes. Otherwise, and henceforth, all three-connected
components have size O(kc).

4. If we take a leaf component then this is of size O(kc) and we can afford an
oracle question for the longest path therein. If this returns a path of length at
least k then we can answer yes and stop. Else, we ask for the longest paths
ending in the component or passing through it. Concretely, if, e.g., the
component has vertices p and q shared with its parent component, then we
also perform oracle questions for (1) the longest p,q-path; (2) the maximum
total length of two disjoint paths starting in p and q; (3) the longest path

9The so-called bull graph is obtained from a triangle by attaching a leaf each to two of its
vertices. Bull-free graphs are exactly those graphs that contain no induced subgraph (on five
vertices) that is isomorphic to the bull.



starting in p; (4) the longest path starting in p and avoiding q; (5) the longest
path starting in q; (6) the longest path starting in q and avoiding p.

5. If the computation on a component does not lead to an immediate yes an-
swer, then we encode the gained information from questions (1-6) using
annotations in the parent component, delete the present component, and
continue. Note that, in this simplified version, we tacitly used oracle ques-
tions for finding longest paths in some form of annotated graph. With a bit
more work (cf. [49]), we can avoid annotations and employ self-reduction
to find longest paths.

Jansen [49] also proved a polynomial Turing kernelization for Cycle(k) on
planar graphs, and generalized his ideas to work also on bounded degree graphs,
claw-free graphs, and K3,t minor graphs (for both problems). Note also that all
mentioned cases of Path(k) and Cycle(k) remain NP-hard and have trivial or-
(cross-)compositions by disjoint union that rule out polynomial kernels (cf. [49]).
While the Tutte decomposition works on general graphs, it is crucial that the con-
sidered graph class has an inverse polynomial lower bound on the length of sim-
ple paths inside three-connected components (i.e., a component of size ` must be
known to contain a path of length at least `−c).

Ruling out polynomial conjunctive kernels. Consider a polynomial conjunc-
tive kernelization for a problem Q. On input (x, k) it will create |x|O(1) instances of
size polynomial in k such that the input is yes if and only if all output instances
are yes. (Note that, again, this will work just fine independently of whether the
outputs are for Q, another problem Q′, or any classical language L.) Let us mod-
ify the kernelization to arbitrarily (i.e., nondeterministically) output only one of its
created instances. Clearly, if the input is yes then all outputs are yes and it returns
any one of them. If the input is no then at least one created output is no. Thus, by
nondeterministically selecting one output, it may falsely return a yes instance but
at least one possible computation leads to the output of a no instance. Generally,
such kernelizations have been called co-nondeterministic kernelizations [53] for
their similarity to Turing machines for coNP. (Note that those are in general more
powerful because they are not restricted to “just” |x|O(1) instances but may in fact
have 2|x|

O(1)
computation paths, each with different output.)

It has been observed10 that the proof of Fortnow and Santhanam [35] for the
or-distillation conjecture applies also if the or-distillation behaves, similarly to
above, in a co-nondeterministic fashion. In the work of Dell and van Melke-
beek [22] the so-called “complementary witness lemma” holds explicitly also for
the co-nondeterministic setting. Long story short, both or-(cross-)compositions

10This is attributed to Chen and Müller by Harnik and Naor [45].



and polynomial kernelizations/compressions may behave co-nondeterministically
without any harm to the lower bound implications. Thus, any (possibly
co-nondeterministic) or-(cross-)composition rules out co-nondeterministic poly-
nomial kernelizations and compressions; in particular, this rules out the more re-
stricted case of polynomial conjunctive kernels for the problem in question [53].
(For more applications of co-nondeterminism we refer to [53, 55].)

Lower bounds for Turing kernels. Unlike for normal (many-one) kerneliza-
tion, there is yet no technique for ruling out polynomial Turing kernels for any
FPT problem (modulo any reasonable complexity hypothesis). The observation
applied for polynomial conjunctive kernelizations should not be expected to gen-
eralize, in particular not to the seemingly powerful adaptive setting of Turing
kernels. (Note that having any Turing kernelization again also implies fixed-
parameter tractability, and thus W[1]-hardness rules out such kernels, assuming
FPT , W[1].)

Motivated by this state of the art, Hermelin et al. [46] initiated a completeness
program centered around a newly introduced WK/MK-hierarchy of parameterized
problems.11 The starting point is the fact that results for polynomial kernelizations
transfer, modulo technical details, by polynomial parameter transformations (see
Bodlaender et al. [13]). If we relax to using generalized kernelizations or com-
pressions then results transfer directly (see, e.g., Lemma 1). In the same way, this
applies to the existence and non-existence of polynomial disjunctive, conjunctive,
truth-table, and Turing kernelizations.

Arguably the most important class in [46] is WK[1]; it is the lowest hardness
class in the hierarchy. Since a variety of problems were shown to be complete for
WK[1] we will simply list some complete problems for WK[1], MK[2], and WK[2]
below rather than giving formal definitions (and will not discuss further classes).
At high level, all WK[i] and MK[i] classes are defined as closures of certain pa-
rameterized satisfiability-related problems under PPTs. These defining problems
are reparameterizations of problems used to define the W[i] and M[i] classes from
the parameterized hierarchy of intractability (see, e.g., [30]). Motivated by the va-
riety of problems that could be classified as WK[1]-complete, Hermelin et al. [46]
conjectured that no WK[1]-hard problem admits a polynomial Turing kerneliza-
tion. Similarly to an efficient algorithm for any NP-hard problem (but maybe
not as surprising) a polynomial Turing kernelization for any WK[1]-hard problem
would be a breakthrough since none of the known hard problems (see below) seem

11The hierarchy is, in a sense, a reparameterization of the W[i]- and M[i]-hierarchies in param-
eterized intractability. It subsumes a strongly related hierarchy of Harnik and Naor [45] aimed at
classical problems in relation to their witness size. A detailed discussion of the relation is given in
Hermelin et al. [46].



particularly amenable to this (see also the discussion in [46]).
The Hitting Set problem (note the unrestricted set size) nicely showcases sev-

eral levels of the hierarchy when taken under different parameterizations.

Hitting Set
Input: A universe U, a set family F ⊆ 2U , and k ∈ N.
Question: Is there a set of at most k elements of U that intersects
every set in F ?

Under its standard parameter k the problem is complete for W[2] under parame-
terized reductions and, thus, not even FPT unless FPT = W[2]. Using, however,
parameters n := |U |, m := |F |, or k log n it can be easily seen to be FPT. Neverthe-
less, for all three parameters it is possible to rule out polynomial kernelizations;
for the first two results this follows from work of Dom et al. [23]. Curiously, all
three parameterizations give problems that are complete for different levels of the
WK- and MK-hierarchies.

• Hitting Set(m) is complete for WK[1] and equivalent (also under PPTs) to
problems such as Capacitated Vertex Cover(k), Connected Vertex
Cover(k), Steiner Tree(k + t), Min Ones d-SAT(k), Clique(k log n), Set
Cover(n), Multicolored Path(k), and Binary NDTM Halting(k). The latter
problem asks whether a given nondeterministic Turing machine with binary
alphabet stops within k steps.

Disjoint Paths(k) and Disjoint Cycles(k) are WK[1]-hard.

• Hitting Set(n) is complete for MK[2] and equivalent to problems such as
Set Cover(m) and CNF-SAT(n).

Among hard problems for MK[2] there are, e.g., several structural parame-
terizations of Dominating Set(k).

• Hitting Set(k log n) is complete for WK[2] and equivalent to Set
Cover(k log m), and Dominating Set(k log n).

We refer to Hermelin et al. [46] for a more extensive list of hard and complete
problems, in particular also for MK[2] and WK[2]. The most interesting feature,
perhaps, is the richness of complete problems for WK[1]. The fact that all these
fairly different problems are equivalent for existence of polynomial Turing kernel-
izations supports the conjecture that no WK[1]-hard problem has such a kerneliza-
tion. We also refer to Hermelin et al. [46] for a discussion of why these problems
seem hard to Turing-kernelize.

A particular problem that has so far resisted a classification is Path(k), for
which neither a polynomial Turing kernelization nor WK[1]-hardness are known.



If we make the problem slightly richer by taking the input graph to be k-colored
and asking for a k-path containing all k colors then it becomes WK[1]-complete
[46]; Jansen [49] extended this to the special case of planar inputs, motivated
by his Turing kernelization for the un-colored version. Apart from this it would,
obviously, be of high interest to have any complexity-theoretic evidence for the
correctness of the conjecture that WK[1]-hard problems have no polynomial Tur-
ing kernels.

7 Open problems
In this section we conclude the survey with some open problems. One of the cen-
tral problems in kernelization research is certainly the understanding of possibili-
ties and limitations of Turing kernelization. Furthermore, the Turing kernelization
status of the Path(k) problem is of particular interest since it is not known to be
hard for WK[1].

Open problem 1. Devise general upper and lower bound tools for Turing kernel-
ization.

Open problem 2. Prove or disprove the conjecture that no WK[1]-hard problem
admits a polynomial Turing kernelization.

Open problem 3. Prove or disprove the existence of a polynomial Turing kernel-
ization for Path(k).

The randomized polynomial kernelizations for, e.g., Deletable TerminalMul-
tiway Cut(k) and Odd Cycle Transversal(k) [57], bring up the question of
whether there are also deterministic polynomial kernels for these problems. This
could be either by a derandomization of the existing approach or by completely
new methods. Note that the exponentially small error in the kernelizations makes
a lower bound against deterministic kernelizations unlikely (at least within the
current framework).

Open problem 4. Are there deterministic polynomial kernelizations for the prob-
lems covered by the matroid-based kernelization results in [57]?

Finally, we mention (and recall) two concrete parameterized problems that
have so far resisted classification into admitting or not admitting (e.g., modulo
NP * coNP/poly) a polynomial kernelization.

Open problem 5. In the Multiway Cut(k) problem we are given an undirected
graph G = (V, E), a set of terminal vertices T , and k ∈ N with the task of deleting
at most k non-terminal vertices to disconnect all terminals. Does this problem
have a polynomial kernelization?



Recall that the restricted variant with only a fixed number s of terminals has a
kernelization to an equivalent instance with O(ks+1) vertices [57]. It is interesting
whether the occurrence of s in the exponent is necessary and, if so, whether it is
asymptotically optimal.

Open problem 6. In the Directed Feedback Vertex Set(k) problem we are given
a directed graph G = (V, A) and k ∈ N with the task to delete at most k vertices
to make the graph acyclic (if possible). Does this problem have a polynomial
kernelization?

This problem has survived, so far, the development of various upper and lower
bound techniques, and is probably the longest-standing open problem in kerneliza-
tion (and holding a solid place among established open problems in parameterized
complexity overall).
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