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five years ago, states that there is a deterministic protocol for computing f
whose communication cost is polynomial in the logarithm of the rank of the
associated communication matrix M f .
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Recent advances on the log-rank conjecture
in communication complexity

Shachar Lovett∗

Abstract

The log-rank conjecture is one of the fundamental open problems in
communication complexity. It speculates that the deterministic communica-
tion complexity of any two-party function is equal to the log of the rank of
its associated matrix, up to polynomial factors. Despite much research, we
still know very little about this conjecture. Recently, there has been renewed
interest in this conjecture and its relations to other fundamental problems in
complexity theory. This survey describes some of the recent progress, and
hints at potential directions for future research.

1 Introduction
Communication complexity studies the amount of communication needed in order
to evaluate a function, whose output depends on information distributed amongst
two or more parties. Since its first introduction by Yao [35], communication com-
plexity was extensively studied, to a large extent because of its applications in di-
verse fields, such as circuit complexity, VLSI design, proof complexity, streaming
algorithms, data structures and more. Still, there are many fundamental problems
about the communication complexity of functions which are wide open. We refer
the reader to the book of Kushilevitz and Nisan [8] for more details on communi-
cation complexity and its applications, and to the book of Lee and Shraibman [16]
for an exposition of more recent lower bound techniques in communication com-
plexity.

In this survey, we focus on the communication complexity between two par-
ties. Let f : X × Y → {0, 1} be a boolean function, where one party holds an
inputs x ∈ X, the other party holds an input y ∈ Y , and their goal is to evaluate
f (x, y) while minimizing their communication. For most of this survey, we will
focus on deterministic protocols, which is the simplest communication model.
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The deterministic communication complexity of f is the minimal number of bits
communicated by an optimal deterministic protocol computing f , and is denoted
by CCdet( f ).

There is a simple lower bound on the deterministic communication complexity
of functions, first observed by Mehlhorn and Schmidt [21], based on the rank of
their associated matrix. Let M f be the X × Y matrix with Mx,y = f (x, y). A deter-
ministic protocol computing f in which the players send c bits of communication,
corresponds to a partition of the matrix M f to 2c rectangles (a rectangle is a set
A × B with A ⊂ X, B ⊂ Y) such that the value of M f is constant on each rectangle.
Such rectangles are called monochromatic. As the rank (as a real matrix) of a
monochromatic rectangle is at most one, we get that rank(M f ) ≤ 2c. Equivalently,
if we shorthand rank( f ) = rank(M f ) then

CCdet( f ) ≥ log rank( f ).

The log-rank conjecture proposed by Lovász and Saks [15] speculates that this
simple bound is tight for all boolean functions, up to polynomial factors.

Conjecture 1.1 (The log-rank conjecture [15]). There exists a universal constant
C > 0 such that for any boolean function f ,

CCdet( f ) ≤ C(log rank( f ))C.

Validity of the log-rank conjecture is one of the fundamental open problems
in communication complexity. It is true in all known examples, but still very little
progress has been made towards resolving it. In the special case where M f is the
adjacency matrix of a graph G, an essentially equivalent conjecture given by van
Nuffelen [34] and Fajtlowicz [4] replaces the communication complexity by the
(weaker notion) of log of the chromatic number of the graph; equivalently, that
χ(G) ≤ exp(logO(1) rank(G)).

A simple upper bound is that CCdet( f ) ≤ rank( f ), which is exponentially
worse than what is conjectured by the log-rank conjecture. It follows from the
simple observation that if rank( f ) = r, then there could be at most 2r distinct rows
in M f . Hence, one can assume without loss of generality that |X| ≤ 2r, and con-
sider a protocol in which the first player simply sends its input x. In the special
case of graphs, Kotlov and Lovász [7] proved that if a graph has rank r, then its
chromatic number is at most 2r/2. This was later improved to (4/3)r by Kotlov [9].

In terms of lower bounds, a sequence of works [1,23,25,28] culminating in an
example due to Kushilevitz (unpublished, cf. [23]) shows that there exist functions
for which CCdet( f ) ≥ (log rank( f ))

log3 6
. Hence,the constant C in Conjecture 1.1, if

it exists, must satisfy C ≥ log3 6 ≈ 1.63.
Recently, there was renewed interest in the log-rank conjecture and its rela-

tions to several other problems in complexity theory. Ben-Sasson, Ron-Zewi and



the author [2] studied the relation of the log-rank conjecture to the approximate
duality conjecture of [3], and showed that if one assumes a number-theoretic con-
jecture (the polynomial Freiman-Ruzsa conjecture) then the trivial upper bound
can be reduced by a logarithmic factor.

Theorem 1.2 ( [2]). Assuming the polynomial Freiman-Ruzsa conjecture over Fn
2,

for any boolean function f ,

CCdet( f ) ≤ O(rank( f )/ log rank( f )).

Gavinsky and the author [5] studied the relation between deterministic and
randomized protocols for low rank matrices, and showed that in order to prove the
log-rank conjecture, it suffices to prove that any low rank matrix has an efficient
randomized protocol. In fact, they show that even weaker notions of protocols
are sufficient, like low information cost protocols or efficient zero-communication
protocols. We will show here the following result.

Theorem 1.3 ( [5]). If a boolean function f has a randomized protocol of
complexity c, then it also has a deterministic protocol of complexity O(c ·
log2(rank( f ))).

Finally, the author [14] proved a new (unconditional) upper bound, based on
discrepancy of low rank matrices, which improves the previous upper bound by
nearly a quadratic factor.

Theorem 1.4 ( [14]). For any boolean function f ,

CCdet( f ) ≤ O
( √

rank( f ) · log rank( f )
)
.

The goal of this survey is to explain these recent works, discuss their relations
to other fundamental problems in complexity theory, and speculate on what direc-
tions seem the most likely to yield further advances for the log-rank conjecture.
This is by no means a comprehensive survey. In particular, a related line of re-
search which will not be discussed here is the study of the log-rank conjecture
restricted to special families of functions. For example, the case of XOR func-
tions (functions of the form f (x, y) = F(x ⊕ y)) and related problems has received
considerable attention recently [10, 18–20, 30, 31, 36–38].

Paper organization. In Section 2 we present a result of Nisan and Wigderson
which allows to reduce the problem of constructing deterministic protocols to the
simpler problem of exhibiting a large monochromatic rectangle. As this result is
used repeatedly, we include its proof for completeness. In Section 3 we discuss
the approximate duality conjecture in additive combinatorics, its relations to the



log-rank conjecture and to constructions of two-source extractors. In Section 4
we show that low-rank functions with efficient randomized protocols also have
efficient deterministic protocols. In Section 5 we apply bounds on the discrepancy
of low-rank functions to deduce better upper bounds on deterministic protocols.
In Section 6 we discuss several directions for further research, including relations
to the problem of matrix rigidity.

2 From monochromatic rectangles to protocols
The log-rank conjecture speculates that if M f has a low rank, then it can be
partitioned into a small number of monochromatic rectangles. In particular, it
must have a large monochromatic rectangle. A beautiful reduction of Nisan and
Wigderson [23] shows that if one can prove that any low rank boolean matrix
has a large monochromatic rectangle, then it can be bootstrapped to design a
protocol with nearly the same efficiency. As this reduction would be useful for
us, we review it below. We recall that a monochromatic rectangle is a subset
R = A × B ⊂ X × Y such that f (x, y) is constant for all (x, y) ∈ R.

Theorem 2.1 ( [23]). Assume that for any function f : X × Y → {0, 1} with
rank( f ) = r, there exists a monochromatic rectangle of size |R| ≥ 2−c(r)|X × Y |.
Then, any boolean function of rank r is computable by a deterministic protocol of
complexity O(log2 r +

∑log r
i=0 c(r/2i)).

Before giving the proof, we note that if c(r) = poly log(r) then Theorem 2.1
implies a protocol with deterministic communication complexity poly log(r),
hence proving the log-rank conjecture. On the other end of the spectrum, if
c(r) = rα for some α < 1 then Theorem 2.1 implies a protocol with determin-
istic communication complexity O(rα).

Proof. Let f be a function with rank(M f ) = r, and let R be the assumed
monochromatic rectangle of size 2−c(r) · |X × Y |. Consider the partition of the
matrix M f as

M f =

(
R S
P Q

)
As R is monochromatic, rank(R) ≤ 1. Hence, rank(S ) + rank(P) ≤ r + 1. Assume,
without loss of generality, that rank(S ) ≤ r/2 + 1 (otherwise, exchange the roles
of the rows player and columns player). The row player sends one bit, indicating
whether the input x is in the top part or in the bottom part of the matrix. If it is in
the top part then the rank decreases to rank(R S ) ≤ rank(R) + rank(S ) ≤ r/2 + 2.
If it is in the bottom part, the rank might not decrease, but the size of the matrix
reduces to at most (1− 2−c(r))|X × Y |. Iterating this process defines a protocol tree.



We next bound the number of leaves of the protocol. By standard techniques, any
protocol tree can be balanced so that the communication complexity is logarithmic
in the number of leaves (cf. [8, Chapter 2, Lemma 2.8]).

Consider the protocol which stops once the rank drops to approximately r/2.
The protocol tree in this case has at most O(2c(r) · log(|XY |)) leaves, and hence
can be simulated by a protocol sending only O(c(r) + log log(|XY |)) bits. Note
that since we can assume f has no repeated rows or columns, |XY | ≤ 22r and
hence log log(|XY |) ≤ log(r) + 1. Next, consider the phase where the protocol
continues until the rank drops to r/4. Again, this protocol can be simulated by
O(c(r/2)+ log(r)) bits of communication. Summing over r/2i for i = 0, . . . , log(r)
gives the bound. �

3 Approximate duality and the log-rank conjecture
Nisan and Wigderson [23] proved another interesting fact: any low rank boolean
matrix contains a large rectangle which is slightly biased. The bias of f over a
rectangle R is defined as

bias( f |R) =
∣∣∣∣E(x,y)∈R

[
(−1) f (x,y)

]∣∣∣∣ =

∣∣∣∣∣ Pr
(x,y)∈R

[ f (x, y) = 0] − Pr
(x,y)∈R

[ f (x, y) = 1]
∣∣∣∣∣ .

We also define bias( f ) to be the bias of f over the full space X × Y . We will later
see a generalization of this fact, called discrepancy, which is measured against the
worst case distribution of inputs.

Theorem 3.1 ( [23]). Let f : X × Y → {0, 1} with rank( f ) = r. Then there exists a
rectangle R of size |R| ≥ |X × Y |/O(r3/2) such that bias( f |R) ≥ 1/O(r3/2).

Let us restrict f to the rectangle R so that we may assume for simplicity
bias( f ) ≥ ε = 1/O(r3/2). Thus, we may ask whether it is easier to study the struc-
ture of low rank matrices, if we further assume that they are somewhat biased.
Recall that Theorem 2.1 requires us to find a large monochromatic rectangle. This
raises the following problem.

Problem 3.2. Let f be a boolean function such that rank( f ) = r and bias( f ) ≥ ε.
What is the largest monochromatic rectangle that M f must contain?

The previous discussion shows that this problem is essentially equivalent to
the log-rank conjecture, as long as the bias is inverse polynomially related to the
rank. The main idea of Ben-Sasson et al. [2] is to consider a related problem,
where instead of considering the matrices over the reals, we consider them over
the binary finite field F2. In the following, we denote by rankF2(M f ) the rank of a
matrix over F2; note that the rank over F2 is always at most the rank over the reals,
e.g. rankF2(M f ) ≤ rank(M f ).



Approximate duality. We now introduce a seemingly unrelated problem. Let
A, B ⊂ Fr

2 be subsets. The approximate duality measure of A, B is

ε =
∣∣∣Ea∈A,b∈B[(−1)〈a,b〉]

∣∣∣ =

∣∣∣∣∣ Pr
a∈A,b∈B

[〈a, b〉 = 0] − Pr
a∈A,b∈B

[〈a, b〉 = 1]
∣∣∣∣∣ .

We say the sets are ε-approximate dual if their approximate duality measure is
at least ε. Note that ε = 1 corresponds to sets which are orthogonal (possibly
after applying an affine shift to one of the sets). The approximate duality con-
jecture of Ben-Sasson and Ron-Zewi [3] speculates that any large sets which are
approximate dual, must contain large subsets which are dual.

Conjecture 3.3 (Approximate duality conjecture [3]). Let A, B ⊂ Fr
2 be sets which

are ε-approximate dual. Then there exist subsets A′ ⊂ A, B′ ⊂ B and a value
c ∈ F2 such that

〈a, b〉 = c ∀a ∈ A′, b ∈ B′,

where
|A|
|A′|

,
|B|
|B′|
≤ 2O

(√
r log(1/ε)

)
.

The bound in Conjecture 3.3, if true, is the best possible, as the following
example shows. Let A = B be the set of all vectors in Fr

2 of hamming weight
√

r/10. Then the probability that a uniformly chosen a ∈ A, b ∈ B intersect is at
most 1/100, and hence A, B are ε-approximate dual for ε ≥ 0.98. On the other
hand, the largest subsets A′ ⊂ A, B′ ⊂ B which are orthogonal come from choosing
A′ = A ∩ ({0, 1}r/2 × 0r/2) to be the set of vectors supported on the first half of the
coordinates, and B′ = B ∩ (0r/2 × {0, 1}r/2) to be the vectors supported on the last
half of the coordinates. One can then verify that |A|/|A′| = |B|/|B′| = exp(Ω(

√
r)).

The bound for general ε > 0 can be similarly obtained, by considering A = B to
be the vectors in Fr

2 of hamming weight O(
√

r log(1/ε)).

Approximate duality and the log-rank conjecture. Let us now relate the ap-
proximate duality conjecture with the log-rank conjecture. By Theorem 3.1, if
rank(M f ) = r (where the rank is over the reals) we may assume (by poten-
tially restricting f to a large rectangle) that bias( f ) ≥ ε = 1/O(r3/2). Moreover,
rankF2( f ) ≤ rank( f ) = r. Equivalently put, there are vectors ax, by ∈ F

r
2 such that〈

ax, by

〉
= f (x, y).

Let us define A = {ax : x ∈ X}, B = {by : y ∈ Y}. Then by definition, since
bias( f ) ≥ ε, the sets A, B are ε-approximate dual. Then, by the approximate du-
ality conjecture, there are large subsets A′ ⊂ A, B′ ⊂ B such that 〈a, b〉 is constant



for all a ∈ A′, b ∈ B′. That is, the rectangle A′ × B′ is monochromatic! Working
out the parameters, the approximate duality conjecture implies that M f contains a
monochromatic rectangle R of size |R| ≥ exp(−O(

√
r log(r)))|X×Y |. As this holds

for any matrix of rank r, Theorem 2.1 implies that f has a deterministic protocol
of complexity at most O(

√
r log(r)). Thus, we obtain the following corollary.

Corollary 3.4. If Conjecture 3.3 is true, then any boolean function f with
rank( f ) = r has a deterministic protocol of complexity O(

√
r log(r)).

Of course, we do not know if Conjecture 3.3 is true or not. Ben-Sasson and
Ron-Zewi proved the following weak version of it, which has no direct implication
for the log-rank conjecture.

Theorem 3.5 ( [3]). For any α > 0 there exist ε > 0 such that the following holds.
Let A, B ⊂ Fr

2 be sets which are (1− ε)-approximate dual. Then there exist subsets
A′ ⊂ A, B′ ⊂ B and a value c ∈ F2 such that

〈a, b〉 = c ∀a ∈ A′, b ∈ B′,

where
|A|
|A′|

,
|B|
|B′|
≤ 2αr.

Ben-Sasson, Ron-Zewi and the author [2] proved a slightly stronger version,
assuming a number-theoretic conjecture known as the polynomial Freiman-Ruzsa
conjecture. This conjecture can be defined over arbitrary Abelian groups, but we
only need it for the additive group Fn

2.

Conjecture 3.6 (The polynomial Freiman-Ruzsa conjecture over Fn
2). Let A ⊂ Fn

2
be a set, and let A + A = {a1 + a2 : a1, a2 ∈ A} be its sumset. If |A + A| ≤ K|A| then
there exists an affine subspace V ⊂ Fn

2 of size |V | ≤ |A| such that

|A ∩ V | ≥ K−O(1)|A|.

The polynomial Freiman-Ruzsa conjecture is one of the fundamental open
problems in additive combinatorics, see e.g. [6] for a discussion of the conjecture.
A quasi-polynomial analog of it was proved by Sanders [29], see also [13] for an
exposition. If one assumes Conjecture 3.6 to hold, Ben-Sasson et al [2] proved an
improved bound on the approximate duality conjecture.

Theorem 3.7 ( [2]). Assume that the polynomial Freiman-Ruzsa conjecture over
Fn

2 (Conjecture 3.6) is true. Let A, B ⊂ Fr
2 be sets which are ε-approximate dual

for ε ≥ 2−
√

r. Then there exist subsets A′ ⊂ A, B′ ⊂ B and a value c ∈ F2 such that

〈a, b〉 = c ∀a ∈ A′, b ∈ B′,



where
|A|
|A′|

,
|B|
|B′|
≤ 2O(r/ log(r)).

Theorem 1.2 follows as an immediate corollary from the combination of The-
orem 3.7 with Theorem 2.1. We restate it below for the convenience of the reader.

Theorem 1.2 (restated) Assuming the polynomial Freiman-Ruzsa conjecture
over Fn

2, for any boolean function f ,

CCdet( f ) ≤ O(rank( f )/ log rank( f )).

Approximate duality and two-source extractors. The original application
of [3] for the approximate duality conjecture was for the construction of pseudo-
random graphs, specifically construction of two-source extractors from certain
constructions of two-source dispersers. In the following, we focus for simplicity
on the case of dispersers and extractors which output a single bit, and we some-
what abuse the standard notations in this field. Let G = (U,V, E) be a bi-partite
graph. The graph G is a k-Ramsey graph (also called a disperser), if it contains
no bi-partite clique or independent set of size k × k. Equivalently, for any subsets
A ⊂ U, B ⊂ V of size |A| = |B| = k, if we denote by E(A, B) the set of induced
edges between A and B, then

1 ≤ |E(A, B)| ≤ |A||B| − 1.

The graph is called a (k, ε) two-source extractor if in fact the number of edges
between A, B is close to what might be expected in a random graph, that is

(1/2 − ε)|A||B| ≤ |E(A, B)| ≤ (1/2 + ε)|A||B|.

Ben-Sasson and Ron-Zewi [3] showed that certain constructions of Ramsey
graphs are inherently also two-source extractors for weaker parameters. Consider
the following construction of a bi-partite graph G = (U,V, E): U,V ⊂ Fn

2, and
for u ∈ U, v ∈ V we have (u, v) ∈ E if 〈u, v〉 = 1. Assume that G is not a (k, ε)
two-source extractor. That is, there are subsets A ⊂ U, B ⊂ V of size |A| = |B| = k
such that (say) |E(A, B)| ≥ (1/2+ε)|A||B|. This means that the approximate duality
measure between A, B is at least 2ε, which by the approximate duality conjecture
(Conjecture 3.3) implies that we can find large subsets A′ ⊂ A, B′ ⊂ B such that
(say) |E(A′, B′)| = 0. Then, we conclude that the graph G is not a k′-Ramsey
graph for k′ = min(|A′|, |B′|). Otherwise put, any bi-partite graph, constructed in
this way, which is k′-Ramsey, must also be a (k, ε) two-source extractor, where k
is somewhat larger than k′. For further details we refer the reader to the original
paper [3].



4 From randomized to deterministic protocols
The log-rank conjecture speculates that low rank boolean functions have efficient
deterministic protocols. We already saw in Theorem 2.1 that a sufficient condition
is that any low rank boolean matrix contains a large monochromatic rectangle.
Here, we describe another reduction, due to Gavinsky and the author [5]. We will
show that it is also sufficient to construct a randomized protocol computing the
function.

A randomized protocol computing a function f (x, y) is a protocol, in which
both parties are allowed to use randomized strategies, such that for every input
x, y, the protocol computes the correct value f (x, y) with probability at least 2/3.
Note that a randomized protocol is a distribution over deterministic protocols. The
complexity of a randomized protocol is the maximal number of bits that may be
sent by the protocol. We recall Theorem 1.3 for the convenience of the reader.

Theorem 1.3 (restated) If a boolean function has a randomized protocol of
complexity c, then it also has a deterministic protocol of complexity O(c ·
log2(rank( f ))).

Proof. Let p(x, y) denote the probability that the protocol computes f correctly
on inputs x, y, where by assumption p(x, y) ≥ 2/3. We can increase the success
probability by repeating the protocol a few times, and computing the majority of
the values obtained. Specifically, if we repeat the protocol O(log 1/ε) times, we
obtain a randomized protocol which uses c′ = O(c log(1/ε)) bits and computes
f (x, y) correctly with probability 1 − ε. A randomized protocol is a distribution
over deterministic protocols; hence, if we consider the uniform distribution over
inputs, we get by an averaging argument that there exists a deterministic protocol
π(x, y) of complexity c′ such that∣∣∣{(x, y) ∈ X × Y : π(x, y) = f (x, y)}

∣∣∣ ≥ (1 − ε) |X × Y |.

A deterministic protocol of complexity c′ corresponds to a partition to N = 2c′

many rectangles. We next argue that there exists a large rectangle on which f is
nearly fixed. Let R1, . . . ,RN denote the rectangles corresponding to the protocol
π. Denote by µ(R) = |R|/|X × Y | the fractional size of a rectangle, and by α(R) =

|{(x, y) ∈ R : π(x, y) , f (x, y)}|/|R| the fraction of elements in R on which the
protocol π makes a mistake. By assumption, we have

N∑
i=1

µ(Ri) = 1;
N∑

i=1

µ(Ri)α(Ri) ≤ ε.

One can verify that these imply that there must be a rectangle R = Ri such that

µ(R) ≥ 1/2N; α(R) ≤ 2ε.



As π is fixed on R, we can assume without loss of generality that

|{(x, y) ∈ R : f (x, y) = 1}| ≥ (1 − 2ε)|R|.

Let r = rank( f ). We next show that by setting ε = 1/8r, there exists a large
sub-rectangle R′ ⊂ R on which f is monochromatic.

Claim 4.1. Let f be a boolean function of rank r, and assume there exists a rect-
angle R on which f (x, y) = 1 for at least 1 − 1/4r of the elements in R. Then,
there exists a sub-rectangle R′ ⊂ R of size |R′| ≥ |R|/8 such that f (x, y) = 1 for all
(x, y) ∈ R′.

Proof. Let R = A × B. Let A′ ⊂ A be the set of rows for which at most 1/2r
fraction of the elements are −1,

A′ =
{
x ∈ A : |{y ∈ B : f (x, y) = −1}| ≤ |B|/2r

}
.

By Markov inequality, |A′| ≥ |A|/2. Let x1, . . . , xr ∈ A′ be indices so that their
rows span f restricted to A′ × B. Let

B′ = {y ∈ B : f (x1, y) = . . . = f (xr, y) = 1}.

Since each of the rows x1, . . . , xr contain at most 1/2r fraction of elements which
are −1 we have |B′| ≥ |B|/2. Now, this implies that all rows in A′ × B′ are either
the all 1 or all −1. Choosing the largest half gives the required rectangle. This
gives a monochromatic rectangle R′ ⊂ R of size |R′| ≥ |R|/8. �

To conclude, we would like to apply Theorem 2.1 in order to show the exis-
tence of a deterministic protocol. The reader can verify, that although the condi-
tions of Theorem 2.1 require one to show that any low rank function has a large
monochromatic rectangle, in fact for the proof to go through, it suffices to assume
that this holds only for functions which are restrictions of f to rectangles. The
same argument as above shows that for any rectangle R ⊂ X × Y , there exists a
sub-rectangle R′ ⊂ R of size |R′| ≥ 2−O(c log(r))|R| on which f is monochromatic.
Note that, as the bound c does not improve as the rank decreases, we incur an addi-
tional multiplicative factor of log(r) in the communication complexity. We deduce
that there exists a deterministic protocol computing f of complexity O(c log2(r)),
as claimed. �

5 Discrepancy of matrices and the log-rank conjec-
ture

Let f : X × Y → {−1, 1} be a boolean function. For a distribution µ on X × Y ,
the discrepancy of f with respect to µ is the maximal correlation that f has with



rectangles,

disc( f ; µ) = max
R

∣∣∣∣∣∣∣ ∑(x,y)∈R

f (x, y)µ(x, y)

∣∣∣∣∣∣∣
where R ranges over all rectangles. The discrepancy of f is its discrepancy for the
worse case distribution,

disc( f ) = min
µ

disc( f ; µ).

Discrepancy is a well-studied property in the context of communication complex-
ity lower bounds, see e.g. the survey [12] for details. On the other hand, it is
known that low-rank boolean matrices have noticeable discrepancy [11, 17]: if f
has rank r then

disc( f ) ≥
1

8
√

r
. (1)

A result of the author [14] shows that discrepancy can be used to prove upper
bounds as well. We restate Theorem 1.4 for the convenience of the reader.

Theorem 1.4 (restated) For any boolean function f ,

CCdet( f ) ≤ O
( √

rank( f ) · log rank( f )
)
.

The following lemma is the main technical tool. It shows that a function with
high discrepancy contains a large rectangle which is almost monochromatic. In
fact, this is true with respect to any distribution over the inputs. We make the fol-
lowing definitions: given a distribution µ over X ×Y , let µ(R) =

∑
(x,y)∈R µ(x, y) de-

note the probability of an input landing in R, and Eµ[ f ] =
∑

(x,y)∈X×Y µ(x, y) f (x, y)
the average of f with respect to µ. For a rectangle R such that µ(R) > 0, let µ|R the
distribution µ conditioned on being in R, that is, (µ|R)(x, y) = 1(x,y)∈R ·µ(x, y)/µ(R).

Lemma 5.1. Let f : X×Y → {−1, 1} be a function with disc( f ) = δ. Then for any
ε > 0 and any distribution µ over X × Y, there exists a rectangle R with

µ(R) ≥ 2−O(δ−1·log(1/ε))

such that
∣∣∣Eµ|R[ f ]

∣∣∣ ≥ 1 − ε.

Proof of Theorem 1.4, assuming Lemma 5.1. Let f be any boolean function of
rank r. Apply Lemma 5.1 with µ the uniform distribution over X × Y , δ ≥ 1/8

√
r

and ε = 1/4r, to deduce the existence of a rectangle R ⊂ X × Y of size
|R| ≥ 2−O(

√
r log(r))|X × Y | such that f (x, y) = v for 1 − 1/4r fraction of elements

in R. Apply Claim 4.1 to deduce that there exists a sub-rectangle R′ ⊂ R of size
|R′| ≥ |R|/8 on which f is monochromatic. By Theorem 2.1, this implies that any
function of rank r has a deterministic protocol of complexity O(

√
r log(r)). �



We now turn to prove Lemma 5.1. The proof of Lemma 5.1 which we give
below is a simplification of the original proof of [14], which was presented to us
by Salil Vadhan [32].

Proof of Lemma 5.1. Let us assume without loss of generality that Eµ[ f ] ≥ 0,
otherwise apply the lemma to − f . Let σ be any distribution over X × Y such that
Eσ[ f ] = 0. By assumption, there exists a rectangle R1 such that∣∣∣∣∣∣∣ ∑

(x,y)∈R1

σ(x, y) f (x, y)

∣∣∣∣∣∣∣ ≥ δ.
Let R1 = A × B and define A′ = X \ A, B′ = Y \ B. Consider the four rectangles

R1 = A × B,R2 = A′ × B,R3 = A × B′,R4 = A′ × B′.

As
∑

(x,y)∈X×Y σ(x, y) f (x, y) = Eσ[ f ] = 0, there must exist a rectangle R ∈

{R1,R2,R3,R4} such that ∑
(x,y)∈R

σ(x, y) f (x, y) ≥ δ/3.

This holds for any distribution σ for which Eσ[ f ] = 0. Hence, we can apply von
Neumann’s Minimax Theorem [22] and deduce that there exists a distribution ρ
over rectangles, such that for any distribution σ for which Eσ[ f ] = 0, we have

ER∼ρ

 ∑
(x,y)∈R

σ(x, y) f (x, y)

 ≥ δ/3.
Equivalently, ∑

(x,y)∈X×Y

Pr
R∼ρ

[(x, y) ∈ R] · σ(x, y) f (x, y) ≥ δ/3.

Fix (x1, y1) ∈ f −1(1) and (x2, y2) ∈ f −1(−1). Let σ be the distribution given by
σ(x1, y1) = σ(x2, y2) = 1/2. As Eσ[ f ] = 0 we have

Pr
R∼ρ

[(x1, y1) ∈ R] − Pr
R∼ρ

[(x2, y2) ∈ R] ≥ (2/3)δ.

Let p be the minimal probability that (x1, y1) ∈ R over all (x1, y1) ∈ f −1(1), where
R is sampled according to ρ; and let q be the maximal probability that (x2, y2) ∈ R
over all (x2, y2) ∈ f −1(−1). We established that

p − q ≥ (2/3)δ.



Fix t ≥ 1 and let R1, . . . ,Rt ∼ ρ be chosen independently, and let R∗ = R1 ∩

. . . ∩ Rt be their intersection. We will show that for an appropriate choice of t, the
rectangle R∗ satisfies the requirements of the lemma with positive probability (and
hence such a rectangle exists). We will use the fact that for any x ∈ X, y ∈ Y ,

Pr[(x, y) ∈ R∗] = Pr
R∼ρ

[(x, y) ∈ R]t.

Consider the random variable

T = µ(R∗) − (1/ε) · µ(R∗ ∩ f −1(−1)).

By linearity of expectation, we have

E[T ] =
∑

(x,y)∈ f −1(1)

µ(x, y) Pr[(x, y) ∈ R∗] −
∑

(x,y)∈ f −1(−1)

µ(x, y)((1/ε) − 1) Pr[(x, y) ∈ R∗]

≥ µ( f −1(1)) · pt − µ( f −1(−1)) · qt/ε

≥ 1/2 · (pt − qt/ε),

where we used our initial assumption that Eµ[ f ] = µ( f −1(1)) − µ( f −1(−1)) ≥ 0.
Setting t = O(p/δ · log(1/ε)) gives

qt/pt ≤ (1 − (2/3)δ/p)t ≤ ε/2.

For this choice of t, we have

E[T ] ≥ pt/4 = 2−O(δ−1·log(1/ε)).

Let R∗ be a rectangle which achieves this average, that is

µ(R∗) − (1/ε) · µ(R∗ ∩ f −1(−1)) ≥ 2−O(δ−1·log(1/ε)).

In particular, we learn that both µ(R∗) ≥ 2−O(δ−1·log(1/ε)) (which satisfies the first
requirement) and furthermore that µ(R∗ ∩ f −1(−1)) ≤ ε · µ(R∗), which implies that
Eµ|R∗[ f ] ≥ 1 − ε (which satisfies the second requirement). �

6 Further research

There are several directions for further research. We describe a few concrete ones
below.



6.1 Randomized protocols vs approximate rank

The approximate rank of a boolean function f (x, y) is the minimal rank of an X×Y
real matrix M such that

2/3 ≤ M(x, y) f (x, y) ≤ 1.

Similar to the log rank lower bound for the deterministic communication com-
plexity, the log of the approximate rank is a lower bound on the randomized com-
munication complexity of a function. The log-rank conjecture for randomized
protocols speculates that it is also an upper bound, up to polynomial factors. As
a first step, one can attempt to generalize Theorem 1.4 to approximate rank and
randomized protocols.

Problem 6.1. Let f be a boolean function with approximate rank r. Show that f
has a randomized protocol of complexity

√
r · poly log(r).

6.2 Quantum protocols for low-rank matrices

The work of [5] shows that if low-rank functions have certain types of effi-
cient protocols (randomized protocols, low information cost protocols, or zero-
communication protocols), then up to a poly-logarithmic factor in the rank, they
also have efficient deterministic protocols. One type of protocol which they were
not able to analyze is quantum protocols. This is interesting on its own right,
but also because to the best of our current knowledge, it may be that quantum
protocols are only polynomially better than randomized protocols, for any com-
plete boolean function (exponential separations are known for partial functions,
see e.g. [26, 27]). Thus, understanding quantum protocols, even just for low-rank
functions, seems like an important step towards a better understanding of quantum
protocols in general.

Problem 6.2. Let f be a boolean function which can be computed by a quantum
protocol of complexity c. Show that f can also be computed by a deterministic
protocol of complexity c · poly log(rank( f )).

6.3 The structure of low-rank sparse matrices, and matrix
rigidity

The proof of Theorem 1.4 applies to boolean matrices. We conjecture in [14] that
it can be generalized to show that any low rank sparse matrix contains a large zero
rectangle.



Conjecture 6.3. Let M be an n × n real matrix with rank(M) = r and such that
Mi, j , 0 for at most εn2 entries. Then, there exist A, B ⊂ [n] such that

Ma,b = 0 ∀a ∈ A, b ∈ B

such that |A|, |B| ≥ n · exp(−O(
√
εr)).

The reader can observe the similarities of Conjecture 6.3 to the approximate
duality conjecture (Conjecture 3.3) which we discussed. Note that here we con-
sider the case where nearly all the elements are zero, while in the approximate
duality conjecture we only assumed a small bias. Nevertheless, the same con-
struction shows that the bounds in Conjecture 6.3, if true, are the best possible.

A matrix M is called (r, s)-rigid, if its rank cannot be made smaller than r
by changing at most s entries in M. The problem of explicitly constructing
rigid matrices was introduced by Valiant [33] in the context of arithmetic cir-
cuits lower bounds, and was also studied by Razborov [24] in the context of sep-
aration of the analogs of PH and PSPACE in communication complexity. De-
spite much research, the best results to date are achieved by the so-called "un-
touched minor" argument, which gives explicit matrices which are (r, s)-rigid with
s = Ω

(
n2

r log
(

n
r

))
. See e.g. the survey of Lokam [12] for details. We will prove

the following corollary of Conjecture 6.3, which improves previous bounds by a
logarithmic factor.

Corollary 6.4. Assuming Conjecture 6.3, there exists an explicit n× n real matrix
which is (r, s)-rigid for s = Ω

(
n2

r log2
(

n
r

))
.

Proof. Let M be an n × n matrix of rank r, such that all r × r minors of M have
full rank. For example, such a matrix may be constructed as M = NN t where N is
an n × r matrix such that any r rows of N are linearly independent. Assume that
M is not (r, s)-rigid. Then, we can decompose

M = L + S , rank(L) < r, S is s-sparse.

Let s = εn2. The matrix S is both s-sparse and low rank, as rank(S ) ≤ rank(M) +

rank(L) < 2r. Hence, by Conjecture 6.3, there exist A, B ⊂ [n] of size |A|, |B| ≥
n · exp(−O(

√
εr)) such that S a,b = 0 for all a ∈ A, b ∈ B. Hence, Ma,b = La,b. If

|A|, |B| ≥ r, we must have that rank(L) ≥ rank(M) = r. So, n · exp(−O(
√
εr)) < r

and the corollary follows by rearranging the terms. �
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