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Abstract

We suggest to use stochastic indexed grammars to predict RNA structure

which includes pseudoknots.

A stochastic context-free grammar is a context-free grammar G = (V,Σ, P, S ),

augmented with an assignment of probability values to each production rule,

p : P→ [0, 1]

Let p[A → α] denote the probability assigned to the context-free production rule

A → α. These probabilities have to satisfy for each non-terminal (or variable)

A ∈ V the condition ∑

(A→α) ∈ P

p[A→ α] = 1

Let D = (S ⇒ w1 ⇒ · · · ⇒ wn),wn = x, be a left-derivation of terminal string

x ∈ L(G) ⊆ Σ∗, i.e. in each derivation step, the leftmost variable has been replaced

according to some grammar rule. Let p1, p2, . . . , pn be the sequence of probability

values associated with these rules. Then
∏n

i=1 pi is the probability associated with

this particular derivation D, denoted by p[D].

Finally, the probability of a string x ∈ Σ∗ is defined as

p[x] =
∑

D is a left-derivation of x

p[D]

Obviously, p[x] = 0 if x < L(G).
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It is possible to design a dynamic programming style algorithm of complexity

O(n3) like the Cocke-Younger-Kasami algorithm, which, given x ∈ Σ∗, |x| = n,

decides whether x ∈ L(G), and furthermore finds the derivation of x which has

the highest associated probability (a "Viterbi-like" algorithm). Such an algorithm

can be used to predict the most likely RNA secondary folding structure. In this

application, x ∈ {a, u, g, c}∗ is a given RNA sequence where a, u, g, c stand for

the 4 nucleotids, adenine, uracil, guanine, and cytosine. We sketch a possible

context-free grammar which is able to derive RNA strings, together with a sug-

gested folding structure [7, 8, 9].

S → L | S S | cS g | gS c | aS u | uS a

L → S L | a | u | c | g | aL | uL | cL | gL

This is somewhat oversimplified, but the idea is that an RNA string can be formed,

either by a stem (S ) which means that matching Watson-Crick pairs a-u, u-a, c-g,

g-c are aligned, or a sequence of several stems (S S ). A stem can end in a loop

(L) of arbitrary length where no particular order or alignment of the nucleotids is

necessary, and within a loop, a new stem can start. Such a grammar can be easily

augmented with additional features, for example, allowing also "wobble pairs" (g-

u, u-g). Further, it is possible to distinguish between loops, hairpins, bulges, and

multi-loops, by introducing new variables, and enforce that stems and hairpins

should have a certain minimum length.

Such a context-free grammar can only model the secondary RNA structure,

it is not possible to model "pseudoknots" which are non-contextfree. This is the

reason why the cloverleaf structure of t-RNA is usually not predicted by RNA

folding algorithms which are based on such context-free modeling concepts only.

The t-RNA structure comes about because of the 3-dimensional winding of the

RNA string against itself, and additional bindings of nucleotids which do not obey

the context-freeness property.

There have been several suggestions in the literature how to augment context-

free grammars by non-contextfree concepts to be able to predict pseudoknots,

too (cf. [2]). Here, it seems reasonable to restrict oneself to some subset of

pseudoknots, not allowing arbitrary nestings, because otherwise the pseudoknot

recognition (and prediction) problem becomes NP-complete [6]. We use indexed

grammars, originally introduced by Aho [1], cf. [10], by complexity reasons re-

stricted to be linear (cf. [4]), and augmented with rule probabilities, i.e. stochastic

linear indexed grammars.

An indexed grammar (originally defined in [1], but simplified here for our

purposes) is given by pairwise disjoint alphabets V (variables), T (terminals), and

F (indices or flags), and grammar rules which have one of the following forms:

A→ α A→ B f A f → α
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where A, B ∈ V are variables; f ∈ F is a flag, and α ∈ (V ∪ T )∗. The flags

are always associated with a variable and denoted as a superscript of the variable.

During a derivation the set of flags associated with a variable can increase or

decrease like a stack. The productions are applied as follows. A rule of the form

A → α substitutes the variable A by α and all flags associated with A (if any) are

copied to the variables occuring in α. A rule of the form A → B f adds a flag to

variable A while replacing A with B. A rule of the form A f → α deletes a flag

from A and then proceeds as in the first type of rule.

As an example, an indexed grammar can derive the language consisting of

words of the form ww which is non-contextfree. Here for w ∈ {g, c, a, u}∗ the

string w denotes the string of complementary bases (i.e. g = c, c = g, a = u,

u = a), in the same order as in w:

S → bS b | A Ab → Ab A→ ε

More complicated pseudoknot structures are of the form u w u
R

w or u w u
R

w
R

where R indicates the reverse order. Both can be easily described by indexed

grammars. For example, the latter one can be derived by (correcting a mistake in

[10], formula (64)):

S → bS b | A A→ bAb | Bb B→ bB B→ ε

Now several things can be observed. First the above examples which can

model all "naturally occurring" pseudoknots are actually linear indexed grammars

(there is only one variable on the right-hand side of rules), and for linear indexed

grammars the parsing problem can be solved in polynomial time [5]. (Notice, for

arbitrary index languages parsing needs exponential time [6].)

Additionally, since index grammars "look like" context-free grammars, stochas-

ticity can be added as described in the beginning. Therefore, we can implement

a Viterby-like dynamic programming algorithm which parses a given RNA se-

quence and selects the derivation with the highest probability. This derivation

should (at least up to same realistic scale) reflect the most likely folding structure

of the RNA including pseudoknots.
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