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Abstract

In the first part of the paper, we develop a general method for converting
derivability problems, from a broad range of deductive systems, into deriv-
ability problems in a quite specific system, namely the Datalog fragment of
universal Horn logic. In this generality, the derivability problems may not
be recursively solvable, let alone feasible; in particular, we may get Data-
log “programs” with infinitely many rules. We then discuss what would be
needed to obtain computationally useful results from this method. In the
second part of the paper, we analyze a particular deductive system, primal
infon logic with variables, which arose in the development of the authoriza-
tion language DKAL. A consequence of our analysis of primal infon logic
with variables is that its derivability problems can be translated into Datalog
with only a linear increase of size.
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1 Introduction
This paper grew out of the analysis of the infon logic introduced by the second
author and Neeman [5] as a constituent of the Distributed Knowledge Autho-
rization Language (DKAL) [1]. There are two versions of infon logic, full and
primal (whose definitions we shall recall below). Among the main results of [5]
are theorems delineating the computational complexity of the derivability prob-
lem (Given a set of hypotheses and a proposed conclusion, does the conclusion
follow from the hypotheses?) for full and primal infon logics in the propositional
case. The derivability problem is PSpace complete for full propositional infon
logic and linear time for primal propositional infon logic, as long as quotation
depths are bounded. The latter result is particularly promising because primal in-
fon logic (even with bounded quotation depth) is as good as full infon logic for
many DKAL scenarios.

The restriction to propositional infon logic, on the other hand, is inappropriate
in many applications. One often needs a version of infon logic that allows free
variables, interpreted as universally quantified.

The question thus arises whether primal infon logic with variables also admits
an efficient algorithm for the derivability problem. In the present paper, we take
the first steps toward an affirmative answer to this question.

Our approach is to transform the problem into Datalog, where efficient algo-
rithms have already been developed. From the viewpoint of mathematical logic,
Datalog can be described as universal Horn logic with two simplifications: First,
there are no function symbols except for 0-ary ones (constants). That is, the vo-
cabulary is relational. Second, although hypotheses are universal Horn formulas,
the conclusions to be inferred from them are simply atomic formulas.

Convention 1. Throughout this paper, except where the contrary is explicitly
stated, when we refer to Horn logic as a deductive system, we mean the limited
version where only atomic formulas are to be deduced from Horn clauses.

To avoid possible ambiguity and to establish notation, we adopt the following
convention concerning Horn clauses.

Convention 2. A Horn clause is a formula of the form
(∧

X
)
→ α, where X is a

finite set of atomic formulas,
∧

X is the conjunction of all the formulas in X, and α
is an atomic formula. Here X can be empty, in which case

∧
X is to be understood

as the always true formula >; instead of > → α, we usually write simply α, as
they are semantically equivalent.

We begin by showing that a very broad class of deductive systems can be
translated into Horn logic, in fact into its propositional fragment. For a slightly
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more restricted but still quite broad class of systems, there is a more useful trans-
lation into universal Horn logic and in fact into Datalog. In this generality, how-
ever, the translations suffer from a fatal (for computational purposes) defect: The
translation of a (finite) derivability problem will generally involve infinitely many
premises. That defect is, in general, unavoidable, but we shall show that, in the
case of primal infon logic, the number of hypotheses in the Datalog translation of
a given instance of the derivability problem can be reduced to a finite number and
indeed to a number bounded by a linear function of the size of the given instance.

We thus show that any instance of the derivability problem for primal infon
logic with variables can be converted into an equivalent Datalog problem, with
only a linear increase in size.1

Although our translations do not satisfy the standard safety requirement that
Datalog uses to limit the search for values to substitute for variables, we provide
another effective way to limit that search.

The remaining difficulty, which we do not attempt to solve in this paper, is
related to the following aspect of our translation: The arities of relations in the
resulting Datalog instance may be substantially higher than the arities of relations
in the given primal formula. The right way to deal with the derivability problem
for primal logic with variables may be to deal with it directly rather than reduce
it to the Datalog derivability problem. The direct approach may use some ideas
of the best Datalog algorithms. That is future research. By the way, the current
DKAL implementation [2] uses a direct method. Let us mention also that, in
order to to make this exposition simpler, we avoided various optimization tricks
that could have been applied easily to our translation.

2 Abstract Hilbertian Systems
In this section, we introduce the broad class of deductive systems for which there
is a simple, natural translation into Horn logic.

Definition 3. An abstract Hilbertian deductive system is given by

• a set F of (well-formed) formulas,

• a subset Ax ⊆ F called the set of axioms, and

• a set Ru of pairs 〈P, α〉 where P is a finite subset of F and α ∈ F; the
elements of Ru are called rules of inference.

1We measure the size of an instance of a derivability problem by the total number of logical
symbols in the proposed hypotheses and conclusion. If we measured it by bits instead, a logarith-
mic factor would be introduced.
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In the context of an abstract Hilbertian deductive system, a formula γ is said to be
deducible from a set H of formulas if γ belongs to every set D of formulas that

• includes H,

• includes Ax, and

• is closed under Ru in the sense that, if 〈P, α〉 ∈ Ru and P ⊆ D then α ∈ D.

Quisani: You use the terminology of logic — “formula”, “axiom”,
“rule of inference” — but nothing in this definition requires the ter-
minology to have anything like its usual logical meaning. You could
let the “formulas” be real numbers, let the only “axiom” be just the
number 0, and let the only “rule of inference” be 〈{x}, x + 1〉. Then a
formula deducible from the empty set would be just a natural number.
Authors: The overall drift of your comment is correct; abstract
Hilbertian deductive systems are very general. But there’s an error
in your example, because what you call one rule of inference is actu-
ally a whole family of rules, one for each value of x.
Q: I see. So, returning to logic, you would call modus ponens a family
of rules of inference, not a single rule.
A: That’s right. Abstract Hilbertian systems as defined here make no
provision for variables ranging over formulas, or, for that matter, any
other variables. (We will, however, introduce “substitutional Hilber-
tian systems” in Section 3, and these will allow individual variables.)

One might reasonably call modus ponens a rule scheme, by anal-
ogy with axiom schemes. A rule scheme encodes a whole family of
rules, obtained by inserting particular formulas into the scheme.
Q: It seems to me that all the usual deductive systems studied in var-
ious branches of logic would fall under under your definition of “ab-
stract Hilbertian”.
A: Not quite. So-called natural deduction systems are not abstract
Hilbertian. In such a system, to deduce a formula γ from a set H of
hypotheses, you can temporarily introduce additional hypotheses and
later cancel or “discharge” them. For example, to deduce an implica-
tion α → β from H, you could temporarily assume α, deduce β from
H ∪ {α}, and then infer α→ β, discharging the assumption α.
Q: I see. Abstract Hilbertian systems don’t allow discharging of hy-
potheses. But it seems that a natural deduction system could be con-
verted into an abstract Hilbertian one rather easily. You could re-
define “formula” to mean a formula in the original sense together
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with a set of temporary hypotheses. Then, what used to be called dis-
charging becomes merely a change in the formula in the new sense.
In your example, there would be a rule of inference allowing you to
go from the formula “β with temporary hypotheses {α}” to “α → β
with temporary hypotheses ∅.”

A: That’s essentially correct. You’d actually need to go from “β with
temporary hypotheses {α}∪X” to “α→ β with temporary hypotheses
X,” for arbitrary finite sets X of formulas, because the inference in
question might occur while some other temporary hypotheses are also
in effect.

The “formulas in the new sense” that you propose are usually
called sequents and written in the form Γ ` α (or Γ =⇒ α), where
α is the relevant formula in the original sense and Γ is the set of tem-
porary hypotheses. Sequent calculi are intensively studied in proof
theory; see for example [7] or [8]. They are abstract Hilbertian de-
ductive systems, subject, as always, to the convention that what is
usually called a rule of inference is, for us, a whole family of rules of
inference.

We shall show next that an abstract Hilbertian deductive system is essentially
a theory in propositional Horn logic.

Q: Wait a minute! You’ve agreed with me that just about any of the
usual systems of logic is abstract Hilbertian, or at least becomes so
when you convert natural deduction to sequents. That includes very
complicated, undecidable systems. Propositional Horn logic, though,
is decidable — in fact in linear time [6, 4, 9] 2. How can things with
such vastly different complexities be essentially the same?

A: What, exactly, is the problem that you said is decidable in linear
time?

Q: An instance consists of a set X of Horn clauses and an atomic for-
mula γ; the question is whether γ is a logical consequence of X, or
equivalently, whether γ is deducible from X in a standard axiomatiza-
tion of propositional Horn logic.

A: Presumably, in this problem, X is finite; otherwise “linear time”
would be forever.

Q: Sure; instances of problems should be finite.

2More information on the complexity of propositional logic programming is found in [3].
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Oh! Now I get it. You’re going to translate arbitrary, possibly
very complicated, abstract Hilbertian systems into propositional Horn
logic, but with possibly an infinite number of hypotheses.
A: Exactly.

The translation works as follows. Given a Hilbertian system S = 〈F,Ax,Ru〉,
introduce for each of its formulas α a propositional symbol [α is obtainable]. The
Horn version Ŝ of S uses these propositional variables and has the following Horn
clauses:

• for each α ∈ Ax, the clause [α is obtainable], and

• for each 〈P, α〉 ∈ Ru the induced clause(∧
π∈P

[π is obtainable]
)
→ [α is obtainable].

Theorem 4. A formula γ is deducible from a set H of hypotheses in an ab-
stract Hilbertian system S if and only if [γ is obtainable] is deducible from
{[ξ is obtainable] : ξ ∈ H} in the Horn version Ŝ .

Proof. Suppose first that γ is deducible in S = 〈F,Ax,Ru〉 from H. Let D be
the set of those formulas δ ∈ F such that [δ is obtainable] is deducible from
{[ξ is obtainable] : ξ ∈ H} in Ŝ . Clearly, each δ ∈ H belongs to D. So does
each axiom α ∈ Ax, since Ŝ contains the Horn clause [α is obtainable]. Further-
more, D is closed under Ru, because of the clauses of Ŝ induced by the rules in
Ru. Therefore, by the definition of “deducible from H in S ”, we have γ ∈ D. This
completes the proof of the “only if” half of the theorem.

For the converse, note that all the Horn clauses in Ŝ and all elements of
{[ξ is obtainable] : ξ ∈ H} are true when we interpret each propositional vari-
able [ξ is obtainable] as the assertion that ξ is deducible from H in S . De-
duction in Horn logic preserves truth, so if [γ is obtainable] is deducible from
{[ξ is obtainable] : ξ ∈ H} in Ŝ then [γ is obtainable] is true under this interpreta-
tion. �

Q: I have two objections to your notation [ξ is obtainable]. On the
one hand, it’s too long; on the other hand it’s too short.
A: That sounds as if we got it pretty close to right. But seriously, what
exactly are your objections?
Q: First, the “is obtainable” in your propositional variables seems
superfluous. Why not just use the formulas of S as the propositional
variables of Ŝ ?
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A: We could indeed delete “is obtainable” but we would need to keep
the brackets, at least if ∧ or→ occurred in formulas of S . That is, we
need to maintain the distinction between a propositional variable of
the form [α → β is obtainable] (even if abbreviated as [α → β]) and
the Horn clause [α is obtainable] → [β is obtainable] (even if abbre-
viated [α] → [β]), especially if the deductive system S treated→ in
some non-classical way (for example as relevant implication).

Q: OK, so you can’t literally use formulas of S as formulas of Ŝ ; I
concede that brackets are needed. But why “is obtainable”?

A: Those two words are not technically needed, but they are intended
as an aid to intuition. In many cases, the formulas ξ ∈ F are state-
ments of some sort, and there is a notion of ξ being true3. The mean-
ing of [ξ is obtainable], on the other hand is intended to be that ξ is
deducible in the formal system S , and that may be quite different from
being true.

Q: I thought you might have something like that in mind. It brings
me to my other objection: The words “is obtainable” are not specific
enough, because they don’t say what hypotheses are involved. “Ob-
tainable” from what?

A: Well, as long as we’re talking about a particular S , the axioms and
rules of S are certainly available, so your problem seems to be with
the additional hypotheses H.

Q: Right; to really make the intended meaning evident, your proposi-
tional variables should be [ξ is obtainable from H].

A: But then we’d have a different deductive system Ŝ for each set H.
The point of our set-up is that we have one Ŝ that captures deducibility
in S from any set H of hypotheses.

Remark 5. The notion of deducibility in a Hilbertian system admits an alternative
characterization. A deduction of γ from H in S is a finite sequence of formulas,
ending with γ, in which each formula either is an element of H ∪Ax or is inferred
from previous formulas in the sequence via Ru. (“Inferred” means that the formula
in question is the second component of a rule of inference whose first component
consists of formulas that occur earlier in the sequence.) From this point of view,
the proof of the “only if” direction in Theorem 4 can be recast as follows. Take
a deduction ∆ of γ from H in S . Replace each item ξ in ∆ with [ξ is obtainable].
Finally, wherever a formula ξ was justified in ∆ by applying a rule of inference,

3Or, in the infon logic that motivated the present work, a notion of ξ being known by some
agent.
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insert into the new, Horn deduction a few lines to justify [ξ is obtainable] using
the Horn clause of Ŝ induced by the rule that justified ξ in ∆.

Remark 6. Another format for deductions will be useful later. A tree deduction of
γ from H in S is a finite labeled tree, in which

• the labels are formulas of the Hilbertian system,

• the root is labeled γ,

• if a non-leaf node is labeled α and the set of labels of its children is P, then
〈P, α〉 is a rule of inference, and

• the labels of leaves are in H ∪ Ax.

We visualize these trees as growing upward, so the conclusion (root) γ is at the
bottom and the hypotheses H at the top — the usual format for exhibiting proofs.
Note that a hypothesis (or indeed any formula) that is among the premises in
several inferences must, because of the tree structure, be repeated several times.
Thus, a tree deduction may well be considerably larger than a (plain) deduction
of the same conclusion from the same hypotheses, because in plain deductions a
formula can be re-used without being repeated.

Remark 7. The notion of abstract Hilbertian system can be simplified by viewing
any axiom α as a rule of inference 〈∅, α〉 with no premises. Under the usual con-
vention that the empty conjunction is >, everything we do in this paper continues
to work under this alternative point of view.

3 Substitutional Hilbertian Systems
In this section, we modify the preceding discussion by incorporating the use of
free variables, interpreted as universally quantified, and rules of substitution for
these variables.

Definition 8. A substitutional Hilbertian system4 is an abstract Hilbertian system
with the following additional properties:

1. Formulas are certain finite strings of symbols from a specified alphabet.

2. The alphabet includes a countably infinite set of symbols called variables.

3. A set (possibly empty) of non-variable symbols is designated as the set of
constants.

4A more accurate but more awkward name would be “Hilbertian system with free variables,
understood as universally quantified”.
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4. If α is a formula and if β is obtained from α by uniformly replacing all
occurrences of one variable x by some variable or constant u, then β is also
a formula, and 〈{α}, β〉 is a rule of inference. In this situation, we denote β
by α(u/x) and call it a simple substitution instance of α. Rules of the form
〈{α}, α(u/x)〉 are called substitution rules.

5. If 〈{α1, . . . , αn}, β〉 is a rule of inference that is not a substitu-
tion rule, then, for any variable x and any variable or constant u,
〈{α1(u/x), . . . , αn(u/x)}, β(u/x)〉 is also a rule of inference.

Remark 9. In applications, variables and constants usually have types, and substi-
tution is required to preserve types. For simplicity of exposition, we omit types in
this paper, but it is straightforward to incorporate them into all our results.

Remark 10. The requirement that there are no function symbols except 0-ary ones
(constants) comes from Datalog and from our goal of translating our deductive
systems into Datalog. If there were other function symbols, then our goal should
be modified accordingly, and the preceding definition should provide for substi-
tuting compound terms for variables.

The key clauses (4) and (5) in the definition of “substitutional Hilbertian sys-
tem” specify the role of variables in the system. Clause (4) says that variables
behave as if they are universally quantified, in that they can be replaced by other
terms. Clause (5) prevents other sorts of variable-manipulation in the system. Ex-
cept for substitution, anything that can be done with variables can also be done
with constants instead.

Notice in this connection that what clause (5) requires of non-substitution rules
cannot reasonably be required of substitution rules. That would require rules that
substitute variables for constants, thereby essentially making the constants func-
tionally indistinguishable from variables. For example, the presence of a substi-
tution rule 〈{Ax}, Ay〉 would, if clause (5) applied to it, require the presence of a
rule 〈{Ac}, Ay〉, where c is a constant. Worse, it would, in many systems, allow
non-uniform substitutions. For example, if x, y are variables, if a, b are constants,
and if Axy is a formula, then there is a substitution rule with premise Axy and
conclusion Aab. If clause (5) applied to this substitution rule, it would provide a
rule with premise Axx and conclusion Aab, which is certainly unwanted in almost
any system.

Remark 11. If we were to adopt the convention that axioms are rules of inference
with the empty set of premises (see Remark 7), then clause (5) of the definition
of substitutional Hilbertian system would require that every simple substitution
instance α(u/x) of an axiom α is again an axiom. Without that convention, α(u/x)
need not be an axiom, but it will be deducible in one step by applying a substitu-
tion rule to α.
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Definition 12. A substitution instance of a formula α is any formula obtained
from α by a finite number (possibly 0) of substitutions of variables or constants
for variables.

Note that every substitution instance of a formula is deducible from that for-
mula by a finite sequence of applications of substitution rules.

Q: You said you were going to modify the treatment of abstract
Hilbertian systems to apply to these substitutional Hilbertian systems.
But the latter are, by definition, a special case of the former. So why
do you need a modification; why not just apply the treatment of ab-
stract Hilbertian systems directly to the substitutional case?

A: It is true that what we said about abstract Hilbertian systems in
general applies in particular to substitutional ones. It produces a
translation into propositional Horn logic. But that is not the trans-
lation we want in the substitutional case. Substitutional Hilbertian
systems admit a more useful translation into the universal Horn frag-
ment of first-order logic. In this translation, the Horn theory Ŝ will
not need axioms induced by the substitution rules, because the ef-
fect of those rules will be simulated by the substitutions available in
universal Horn (or Datalog) inference. Furthermore, our translation
will use, in first-order logic, a purely relational vocabulary (except for
constant symbols).

Q: OK, but what’s so great about universal Horn theories in purely
relational vocabularies? Why do you want to translate into just such
theories?

A: Computational efficiency. Universal Horn logic with no function
symbols (except constants) is essentially the logic of Datalog, and
much work has been done on building efficient Datalog software. By
translating substitutional Hilbertian systems into Datalog, we can take
advantage of this work to obtain more efficient implementations of
appropriate substitutional Hilbertian systems.

Remark 13. In the application to DKAL, the target of the translation would, in
general, be a version of Datalog with constraints. The reason is that deduction in
a DKAL world is done by computational agents (usually called principals) that
have states, and various sorts of information about the state can be used in the
deductive process. Such information would be reflected in the Datalog approach
in the form of constraints. The overall efficiency of deduction will, of course,
depend on the efficiency with which these constraints can be evaluated.
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The universal Horn translation of a substitutional Hilbertian system is de-
fined very similarly to the (propositional) Horn translation Ŝ in the preceding
section. The main differences are that, in place of the propositional variables
[ξ is obtainable], we now have predicate symbols |ξ| and that we do not include
Horn clauses induced by the substitution rules.

Let S be a substitutional Hilbertian system. Its universal Horn translation S̃
is defined as follows. It has the same variables and constant symbols as S . It has
a predicate symbol |α| for each formula α of S . If the distinct variables in α are
x1, . . . , xk, in order of first occurrence in α, then the associated predicate symbol
|α| is k-ary, and we say that an atomic formula |α|(u1, . . . , uk) of S̃ (where the ui

are terms, i.e., variables or constants) points to the formula α(u1/x1, . . . , uk/xk) of
S . In particular, |α|(x1, . . . , xk) points to α, and we call |α|(x1, . . . , xk) the standard
translation of α and denote it by [α]. We emphasize, for future reference, that [α]
points to α. With this terminology and notation, we can now list the axioms of S̃ .
They are of three sorts:

• If an atomic formula ξ (in the vocabulary of S̃ ) points to a formula α of S ,
then S̃ has the bookkeeping axioms

ξ → [α] and [α]→ ξ.

• If α is an axiom of S , then S̃ has the corresponding axiom [α].

• If 〈P, γ〉 is a rule of S but not a substitution rule, then S̃ has the induced
axiom (∧

π∈P

[π]
)
→ [γ].

Q: I see you’ve discarded the unnecessary words from the notation
[α is obtainable].
A: Yes, but there’s another reason, in addition to brevity, for chang-
ing the notation. In the proof of the “if” half of Theorem 4, we
used a semantical interpretation in which a propositional variable
[α is obtainable] meant that α is deducible in S from certain given hy-
potheses. In the corresponding argument for our new translation, the
semantical situation will be somewhat different, and it seems helpful
to indicate that difference with a new notation.

Theorem 14. A formula γ is deducible from a set H of formulas in a substitutional
Hilbertian system S if and only if [γ] is deducible from {[ξ] : ξ ∈ H} in the
universal Horn theory S̃ .
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Q: Before embarking on the proof, please remind me of the axioms
and inference rules of universal Horn logic.

A: Recall (from Convention 1) that we care only about deductions
where the conclusion is atomic. So we’ll describe rules of inference
for this situation. (For the more general case, where the conclusions
can be non-atomic universal Horn formulas, see the appendix at the
end of the paper.)

Given a set H of universal Horn clauses, i.e., formulas of the form(∧
π∈P

π
)
→ η,

where all π ∈ P and η are atomic, the set of atomic formulas deducible
from H is defined to be the smallest set D with the following closure
property:

• If, for some substitution σ (of constants or variables for vari-
ables) and some universal Horn clause (as above) in H, all the
instances σ(π) of the antecedent are in D, then so is the corre-
sponding instance σ(η) of the consequent.

The basis of this induction is given by clauses in H with empty an-
tecedent, i.e., > → η, which we write as just η (without changing
the meaning). When we speak, as in the theorem, of deducibility
from some hypotheses in some system of universal Horn formulas,
we mean that both the hypotheses and the axioms of the system are to
be used as hypotheses in the definition of deducibility. When atomic
formulas occur as hypotheses, they are to be treated as universal Horn
clauses with the empty conjunction > as antecedent.

Q: These axioms and rules are obviously sound. I suppose they’re
known to be complete as well.

A: Yes, in fact, given H, one can construct a model M such that
the atomic formulas that hold in M (when the free variables are in-
terpreted as universally quantified) are exactly those deducible from
H. To obtain M, temporarily introduce a countable infinity of new
constants. Then interpret the predicate symbols by making a ground
atomic formula true if and only if it is deducible from H.

Q: Why do you need the new constants here?

A: To provide counterexamples for unprovable atomic formulas that
contain variables. Suppose, for example, that there were just two
constant symbols and that H contains Pa and Pb, where P is a unary
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predicate. Then Px, with a variable x, is not deducible from H, but it
holds in every model of H whose only elements are a and b.
Q: OK; I see why you need an additional element in your model,
but why infinitely many? Couldn’t a single new element serve as the
counterexample for all the formulas that need one?
A: No. Suppose again that a and b are the only constants, but now
suppose H contains Qax, Qbx, Qxa, Qxb, and Qxx for a binary pred-
icate Q. Then Qxy is not deducible from H but holds in any model
of H containing at most one element other than a and b. There are
similar counterexamples, using an n-ary predicate, to show that you
might need n elements beyond those named by the constants in H.
Q: Are relations of high arity the only reason for needing many new
constants?
A: Yes. If all the predicates are at most n-ary, then n new constants
suffice. To see this, consider a model as described above, where
ground atomic formulas are true just in case they’re deducible from
H, and suppose we have an atomic formula α in the original vocabu-
lary (so variables and original constants are allowed, but not the n new
constants) that isn’t deducible from H. Because of the arity bound, at
most n variables occur in α, so we can consider a formula α′ obtained
from α by replacing all its variables by distinct fresh constants (from
the n new constants that are available). This α′ won’t be deducible
from H — any deduction of it could be converted to a deduction of α
by changing the new constants back to variables (and perhaps renam-
ing some other variables in the middle of the deduction). So, being
an atomic ground formula, α′ won’t be true in our model; that is, the
model contains a counterexample to α.

Lemma 15. If an atomic formula γ is deducible in universal Horn logic from a
set H of Horn clauses, then so is every substitution instance of γ.

The lemma can be expressed by saying that substitution rules, though not of-
ficially among the rules of inference in Datalog, are admissible for Datalog.

Proof of Lemma. This is immediate from the soundness and completeness of the
deductive system, but it can also be proved by a direct syntactic argument. The set
of atomic formulas γ such that all their substitution instances are deducible from
H is easily seen to enjoy the closure property in the definition of universal Horn
deducibility. �

Proof of Theorem 14. For the “only if” direction, we proceed as in the proof of
Theorem 4. We consider the set D of those formulas δ of the system S for which
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[δ] is deducible from {[ξ] : ξ ∈ H} in S̃ . As before, this set contains H and all the
axioms of S (because of the corresponding axioms in S̃ ) and is closed under all
rules of inference of S except substitution rules (because of the induced axioms
of S̃ ). We must still check that D is also closed under substitution rules. Once
this is done, it follows, from the definition of “deducible”, that D contains all
the formulas that are deducible in S from H, and so the “only if” proof will be
complete.

Consider, therefore, a substitution rule of S , say 〈{α}, α(u/x)〉, and suppose
α ∈ D. That is, [α] is deducible from {[ξ] : ξ ∈ H} in S̃ . Recall that [α] is
|α|(x1, . . . , xk) (with notation as in the definition of [α]). We may assume that x is
xi for some i, because otherwise x wouldn’t occur in α and α(u/x) would just be
α and so there would be nothing to prove. Working in S̃ with the hypotheses H,
we already have that [α] is deducible. By Lemma 15, it follows that the formula
[α](u/x) is deducible as well. But this formula is |α|(x1, . . . , xi−1, u, xi+1, . . . , xk),
which points to α(u/x). Therefore, S̃ has the bookkeeping axiom [α](u/x) →
[α(u/x)]. Therefore, [α(u/x)] is deducible from {[ξ] : ξ ∈ H} in S̃ , as required.
This completes the proof of the “only if” half of the theorem.

For the “if” half, we prove the following stronger statement: If an atomic
formula η is deducible in universal Horn logic from S̃ and {[ξ] : ξ ∈ H}, and if η
points to the formula η̄, then η̄ is deducible from H in S . This includes the desired
result because, as noted earlier, [γ] points to γ.

Let E be the set of atomic formulas ηwith the desired property that the formula
η̄ to which they point is deducible from H in S . It suffices to show that E is
closed under the inference rule of universal Horn logic with respect to the given
hypotheses S̃ and {[ξ] : ξ ∈ H}. Suppose, therefore, that we have one of these
hypotheses, say (∧

κ∈Q

κ
)
→ λ,

and a substitution σ such that all the instances σ(κ) of the antecedent are in E; we
must show that σ(λ) ∈ E. Using, as above, the bar notation to indicate the formula
of S to which an atomic formula points, we have that each σ(κ) is deducible from
H in S , and we must show the same for σ(λ). There are several cases, depending
on the provenance of the hypothesis

(∧
κ∈Q κ

)
→ λ.

The first possibility is that this hypothesis is [ξ] for some ξ ∈ H. So Q is empty
and λ is [ξ]. It follows immediately from the definitions that σ(λ) points to σ(ξ),
so what we must show is that σ(ξ) is deducible from H in S . But this is obvious;
since ξ ∈ H, we obtain σ(ξ) by one application of a substitution rule of S .

The second possibility is that the hypothesis is a bookkeeping rule of S̃ . In
this case, Q consists of a single atomic formula κ pointing to the same formula as
λ does. Then σ(κ) points to the same formula as σ(λ). Thus, what we must prove
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is already covered by the induction hypothesis.
The third possibility is that the hypothesis is [α] for an axiom α of S . This

case is handled exactly like the first case above.
The fourth and final possibility is that the hypothesis is the axiom induced by

some rule R of S . In view of the definition of induced axioms, the rule R has as its
premises the formulas κ̄ for κ ∈ Q and as its conclusion λ̄. We know that R is not a
substitution rule (because substitution rules don’t induce axioms of S̃ ), and so, by
clause (5) in the definition of substitutional Hilbertian system, S also has a rule of
inference with premises σ(κ̄) (for κ ∈ Q) and conclusion σ(λ̄). By the definition of
“points to”, these premises are formulas σ(κ) that we already know are deducible
from H in S , and the conclusion is σ(λ). So the latter is also deducible from H in
S , as required. �

4 Complexity

Q: You’ve suggested that you’re aiming for a computational benefit
by translating Hilbertian systems with variables into Datalog. But the
translations you actually produced, in Theorems 4 and 14, end up with
infinitely many hypotheses in Ŝ or S̃ , so I don’t see any computational
benefit, or indeed any relevance to computation.
A: What we have done so far is just setting up a general framework.
It covers not only situations like the infon logic of [5], for which we
expect a computational benefit, but also other systems whose worst-
case behaviors are computationally hopeless. It is entirely possible to
mirror, in universal Horn logic, the computations of arbitrary Turing
machines.

To obtain computational benefits, one must analyze the system S
and show that the translation S̃ can be limited in a way that precludes
combinatorial explosions. Specifically, there are two problems that
must be solved.

The first is that what looks like a simple rule in S , say modus po-
nens, is, from our viewpoint in the preceding sections, a rule schema,
i.e., an infinite collection of rules, each inducing an axiom of S̃ . For
computational tractability, we need to bound the collection of axioms
somehow, limiting Datalog’s attention to the “relevant” ones.

The second is that universal Horn logic allows substitution of ar-
bitrary constants for variables. If there are many constants available,
these substitutions may be too numerous for practical computation.

The benefit of our translations, in particular S̃ , is not that they
immediately give us efficient algorithms but rather that they show us
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what must still be done in order to get such algorithms. The transla-
tions have, in essence, cleared away the underbrush and allowed us to
focus on the essential properties of a substitutional Hilbertian system
that can lead to efficient algorithms.

In the next section, we shall work out the particular example, primal infon
logic with variables, that motivated the present work.

Note that Datalog has two built-in mechanisms to limit the second problem
mentioned above, the excessive number of substitutions available in deductions.
One mechanism is the prohibition of function symbols other than constants. Even
a single, unary function symbol would produce, by iterated application to a con-
stant, an infinite number of ground terms. By allowing no ground terms other than
constants, Datalog at least keeps the number of available substitutions finite. (It
is known that the notion of deducibility in universal Horn logic is unchanged if
one allows in substitutions only the symbols occurring in the hypotheses and the
conclusion.)

The other mechanism is the notion of safety, which means that any variable
occurring in the head of a rule (i.e., in the consequent of a Horn clause) should also
occur in the body (i.e., in the antecedent). When a Datalog program is safe in this
sense, the usual way of evaluating Datalog queries will make fewer substitutions
in any particular rule, because the substitutions into the body (limited by what has
already been deduced) determine the substitutions into the head.

Unfortunately, the universal Horn translations of the various forms of primal
logic are not safe in this sense, so we shall need other methods to limit the substi-
tutions. Those methods are the essential content of the next section.

Convention 16. We assume from now on that the systems we deal with (substitu-
tional Hilbertian systems in general and Datalog in particular) are equipped with
efficient ways to tell which symbols are variables, which are constants, and which
are something else. This is needed for efficient implementation of substitution,
which is taken for granted in Datalog.

5 Primal Infon Logic With Variables
In this section, we apply the preceding results to a particular substitutional Hilber-
tian system, namely the primal infon logic of [5] extended to allow variables. Our
purpose is to discuss the structure of this system and its universal Horn transla-
tion in enough detail to show how the threatened combinatorial explosions can be
avoided.

We begin by recalling the relevant definitions of primal infon logic from [5,
Section 5], while making the obvious modifications to allow (free) variables.
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Atomic formulas are formed as usual from predicate symbols, a countably in-
finite supply of variables, and constants. There is also the propositional constant
>. Compound formulas are built from atomic formulas and > by the binary con-
nectives of conjunction (∧) and implication (→) and unary connectives “p said”
and “p implied”, where p can be a variable or constant. (For simplicity, we ig-
nore typing of variables and constants; had we not ignored it, we should say that
p is of type “principal”.)

A quotation prefix is a finite concatenation of operators of the forms “p said”
and “p implied”, with possibly different p’s. So by putting a quotation prefix
in front of a formula one obtains again a formula. We use pref, sometimes with
subscripts, to denote a quotation prefix. One quotation prefix pref1 is said to
dominate another, pref2 if they differ only in that some occurrences of said in
pref1 become implied in pref2. (In particular, the two prefixes contain the
same number of unary connectives, with the same p’s in the same order.)

The only axioms of primal infon logic are pref> for arbitrary quotation pre-
fixes pref.

The rules of inference are the substitution rules plus the following, for arbitrary
formulas α and β and arbitrary quotation prefixes:

prefix deflation
pref1 α

pref2 α
provided pref1 dominates pref2.

∧ elimination
pref(α ∧ β)
pref α

and
pref(α ∧ β)
pref β

.

∧ introduction
pref α pref β

pref(α ∧ β)
.

→ elimination
pref α pref(α→ β)

pref β
.

→ introduction
pref β

pref(α→ β)
.

It is clear that this system of primal infon logic5 with variables is a substitu-
tional Hilbertian system. We call this system PIV (abbreviating “Primal-Infon-
Variables”) and, following the notation introduced earlier for arbitrary substitu-
tional Hilbertian systems, we write P̃IV for its universal Horn translation satisfy-
ing Theorem 14. Our goal in this section is to show that the notion of deducibility

5The full infon logic is formulated in a different style in [5]. Its most important difference from
the primal logic is that it admits the familiar (non-Hilbertian) rule for implication introduction:
When β has been deduced from α, infer α→ β and discharge the hypothesis α.



147 147

147 147

The Bulletin of the EATCS

139

in PIV is unchanged by certain restrictions on the variables and formulas allowed
in a deduction. These restrictions will permit, in specific applications, the replace-
ment of P̃IV with a subsystem that is computationally efficient.

We concentrate, for the time being, on the derivability problem for PIV: Given
a set H of formulas and another formula γ, is γ deducible from H in PIV? (The
multiple derivability problem discussed, for the propositional case, in [5], can be
treated similarly. It allows several γ’s to be given and the problem is to decide
which of them are deducible from the given H.) For given H and γ, we call a vari-
able or constant u native if if occurs in H or in γ; otherwise u is foreign. Our first
result about PIV is that, as far as the derivability problem is concerned, foreign
variables and constants are irrelevant. The following theorem makes this precise
and gives some additional simplifying information about the sorts of derivations
that are needed. It implies, for example, that one can require all uses of substitu-
tion rules to precede all uses of other rules.

Theorem 17. Let H be a set of formulas and γ a formula of PIV. Then γ is
deducible from H in PIV if and only if there is a set H′ of formulas such that:

• Each formula in H′ is obtainable from some formula in H by substituting
native terms (i.e., variables and/or constants) for some variables (possibly
none).

• γ is deducible from H′ in PIV without using the substitution rule.

Proof. The “if” direction is obvious, so we prove the “only if” direction. Let D be
a tree deduction of γ from H in PIV . We shall modify D to obtain a tree deduction
of the sort required by the theorem.

We begin by disposing of the case that there are no native variables or con-
stants. In this case, we have no choice about H′; it can only be H itself. All the
predicate symbols (if any) in H and γ must be 0-ary, but there might be predi-
cate symbols of higher arity occurring in D, with (necessarily foreign) variables
or constants as their arguments. If this occurs, then replace all atomic formulas in-
volving such predicate symbols with>. The result is still a tree derivation; indeed,
every step is still justified by the same rule as in D. Furthermore, the hypotheses
H and conclusion γ are unchanged. That almost gives us the desired result with
H′ = H. The only remaining problem is that, if D used a substitution rule at some
step, say inferring α(u/x) from α, then in the new derivation the corresponding
step is still officially justified by the same substitution rule, even though the for-
mulas α and α(u/x) have become identical and both x and u have disappeared.
To get a derivation without substitution rules, as required by the theorem, just re-
move such repetitions from the tree deduction. (More pedantically: Replace the
two identical formulas and the edge joining them by a single occurrence of that
formula, maintaining the rest of the tree structure.)
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From now on, we assume that there is at least one native variable or constant;
we fix one and call it g (because it will be used as garbage). We consider various
cases, depending on how the final conclusion γ was justified in D, and we proceed
by induction (on the size of D), assuming as an induction hypothesis that the
theorem is correct for the premises of the last inference in D.

Before we begin considering cases, we make two general remarks. First, the
good news: It follows from clause (5) in the definition of substitutional Hilber-
tian systems (or, in the present case, from inspection of the axioms of PIV) that,
whenever we have a tree derivation that doesn’t use substitution rules, then we can
uniformly replace any one variable by any other variable or constant, throughout
the tree, and still have a tree derivation. In fact, for PIV , the situation is even better
than clause (5) requires. We can also replace a constant uniformly by a variable or
constant throughout a substitution-free derivation, and the result remains a deriva-
tion.

Second, the bad news: When we apply our induction hypothesis to a premise
β of the final step in D, the relevant notion of “native” is “occurring in H or in
β”. We have β here, where we would prefer to have γ so we shall have to include
some steps to resolve the discrepancy.

We now begin to consider the possibilities for the final step in D. If γ is an
axiom of PIV or a hypothesis from H, then we don’t need to do anything (except
to officially say that H′ should be H). So from now on, we are concerned only
with the case that there is a genuine step leading to γ at the root of D.

Suppose that step is prefix deflation. Then its premise β contains the same
variables and constants as γ (they differ only in that γ may have “implied” at
some places where β has “said”). So the induction hypothesis gives us an appro-
priate H′ and a deduction, without substitution rules, from H′ to β. Retaining the
final prefix deflation, we get an appropriate deduction of γ.

The case of→ introduction is equally easy, because here again every variable
in the premise occurs also in the conclusion, and so the H′ given by the induction
hypothesis is as desired.

The same discussion applies to ∧ introduction, except that now there are two
premises. Apply the induction hypothesis to both.

The elimination rules are a bit more complicated. Consider the case of ∧ elim-
ination. Say γ is pref α, obtained from the premise pref(α∧ ξ). (The case of the
other ∧ elimination rule, giving the second conjunct, is exactly analogous.) Now
the induction hypothesis gives us a substitution-free deduction D′ of pref(α ∧ ξ)
from a set H′ of substitution instances of H by native variables and constants. But
these native symbols could include ones that occur only in ξ, not in H or γ, and
these are not permitted in the deduction we want. Fortunately, they are easy to
eliminate. Obtain D′′ from D′ by replacing all the unwanted variables or con-
stants by the g that we fixed earlier. The result is a tree derivation (because there
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are no substitution rules in D′) of pref(α∧ ξ′) (where ξ′ is a substitution instance
of ξ) from hypotheses H′′ that are substitution instances of those in H′. Thus the
formulas in H′′ are obtainable from those in H by substitution, and in fact by sub-
stitution of native (to H and γ) variables or constants, because the foreign ones
arising from ξ have been eliminated in favor of the native g. Thus, D′′ followed
by ∧ elimination to produce γ is as required by the theorem.

The case of→ elimination is handled the same way. Here γ is pref α and it
is obtained from the premises pref ξ and pref(ξ → α). In the new deductions
of pref ξ and pref(ξ → α) provided by the induction hypothesis, replace all the
variables and constants foreign to H and γ (hence arising from ξ) with g. The
resulting two tree deductions, followed by → elimination to produce γ, witness
the theorem in this case.

Finally, there is the case that γ is obtained from some β by substitution; say
γ is β(u/x). We may assume that x actually occurs in β and therefore u occurs
in γ, because otherwise the substitution is vacuous and the induction hypothesis
immediately gives what we need. So u is native for H and γ, but x might not be.
The induction hypothesis gives us a substitution-free tree deduction D′ of β from
hypotheses H′ obtained from H by native substitution — where “native” refers
to β and may therefore include x. Obtain D′′ from D′ by replacing x everywhere
by u. This D′′ is still a tree deduction, because D′ didn’t use substitution. Its
hypotheses H′′ are like H′ except that x is no longer there, having been changed
to u; so H′′ is obtainable from the original H by substitutions native for H and γ.
Finally, the conclusion of D′′ is β(u/x), i.e., the desired γ. �

Remark 18. A universal Horn clause [or “rule”, in Datalog terminology]
(∧

X
)
→

η is safe if every variable occurring in the conclusion [or “head”] η also occurs in
the antecedent [or “body”]

∧
X. A set of Datalog rules [a “program”] is safe

if all its rules are so. When Datalog computes the consequences of given rules
by forward inference, it considers an instantiation of a rule only when the cor-
responding instantiations of the atomic formulas in its body have already been
established. Safety implies that, for any such instantiation of the body, only one
instantiation of the head is generated. Thus safety provides a measure of control
over the substitutions used during such a computation.

The safety condition need not hold in instances of the PIV derivability prob-
lem, nor in the Datalog programs obtained by the translation into P̃IV . Instead,
we obtain a similar measure of control over substitutions by Theorem 17. This
theorem assures us that we need only substitute native terms for variables. So it
provides an a priori bound on what can be substituted for variables.

Q: By using only native variables and constants in forming H′, this
theorem addresses the second of the two problems you mentioned
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in connection with the combinatorial explosion. Datalog won’t have
to substitute arbitrary variables and constants, only those native to
the query. But what about the first problem? Modus ponens, now
renamed “→ elimination”, is still an infinite collection of rules, and
nothing in your theorem tells us that a reasonable subcollection will
suffice.

A: There is indeed nothing about that issue in this theorem, but there
is something in [5]. It is shown there that, when a formula γ is deriv-
able from a set H of formulas in primal infon logic, then there is a
deduction that uses only formulas local to the query. This notion of
locality is very similar to the traditional notion of subformula, except
that some manipulation of quotation prefixes is also allowed. In any
case, given a query, consisting of H and γ, the locality theorem [5,
Theorem 5.11] puts useful bounds on which rules are actually needed
for derivations.

Q: That sounds good, but [5] is only about the propositional case.
How do you know that locality applies to PIV , where variables are
allowed and there is a substitution rule.

A: That’s where the “substitution-free” part of the conclusion of our
Theorem 17 comes in (in addition to being used in the proof to make
the induction work). The deduction of γ from H′, since it doesn’t
use substitution rules, amounts to a deduction in propositional primal
infon logic. We simply view all the atomic formulas as propositional
variables; all the rules of PIV except substitution are rules of proposi-
tional primal infon logic. Thus, the locality theorem from [5] applies
to this deduction.

In fact, we can import some more information from [5]. Theo-
rem 5.8 of that paper (in combination with the already cited Theo-
rem 5.11) lets us convert any deduction in propositional primal infon
logic into one that splits into two parts: First there is a segment involv-
ing only formulas local to the hypotheses. Second, from the conclu-
sions of this local part, one obtains the desired conclusion by means
of only introduction rules. As before, this result for propositional pri-
mal infon logic carries over immediately to the substitution-free part
of deduction in PIV .

Note that, if the conclusion is an atomic formula, then the second
part, consisting of introduction rules, can be taken to be vacuous. So
an atomic conclusion must be local to the hypotheses, and then the
whole deduction can be made local to the hypotheses.

Here’s the result we obtain, for PIV , in the light of this informa-
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tion.

Corollary 19. If γ is deducible from H in PIV, then there is a set H′ of formulas,
each obtainable from a formula in H by a native (to H and γ) substitution, such
that γ can be deduced from H′ by a deduction that uses no substitution rules and
uses only formulas local to H′ ∪ {γ}. If γ is atomic, then it must be local to H′,
and the whole deduction of γ from H′ uses only formulas local to H′. If γ is not
atomic, then its deduction from H′ can be taken to be, first, a part consisting of
formulas local to H′, and second, a part building up γ from these local formulas
by means of introduction rules.

Q: There might be a great many substitution instances in H′ even if
there are only a few formulas in H. Can you cut H′ down to something
manageable?
A: In many cases, H′ can indeed be reduced, but manageability de-
pends on the particular problem. Here’s one result in this direction.

Corollary 20. In the situation of Corollary 19, assume in addition either that at
least one variable occurs in γ or that at least one constant occurs in H or in γ.
Then the conclusion of Corollary 19 remains true with the additional requirement
that every variable in H′ also occurs in γ. In particular, if γ is a ground formula
(i.e., without variables), then H′ can be taken to consist of ground formulas.

Proof. Let g be either a variable occurring in γ or a constant occurring in H or
in γ. Fix a deduction D of γ from some H′ as in Corollary 19. In this deduction
D, put g in place of all occurrences of all variables that are not in γ. The result
is still a deduction (as D didn’t use substitution rules), and its conclusion is still
γ (as we replaced only the variables that didn’t occur in γ). The hypotheses H′

have been changed by replacing variables not in γ with g, so they now satisfy the
desired conclusion. (Note that not only the new hypotheses H′ but the whole new
deduction of γ from them uses only variables from γ.) �

6 From Primal Infon Logic to Datalog
We combine the preceding results with an additional simplification and with ob-
servations from [5] to obtain the following reduction of the derivability problem
of PIV to the same problem for Datalog.

Theorem 21. There is an algorithm that converts any instance of the derivability
problem for PIV into an instance of the derivability problem for Datalog with
the same answer. Furthermore, when this algorithm is applied to PIV formulas
of bounded quotation depth, the size of the resulting Datalog problem is linearly
bounded in terms of the size of the PIV problem.
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Proof. The basic idea of the proof is to translate the PIV derivability problem “Is
γ deducible from H?” to the Datalog derivability problem “Is [γ] deducible from
P̃IV and {[ξ] : ξ ∈ H}?” The difficulty is that the output here, specifically the P̃IV
part, is infinite.

Part of this difficulty is removed by Corollary 19. For each non-substitution
rule schema of PIV , contributing infinitely many individual rules to PIV and
thus inducing infinitely many axioms of P̃IV , we need only those individual rules
whose premises and conclusion are local to H and γ.

Q: A prime seems to have gotten lost. Corollary 19 speaks about
formulas local to H′ and γ, but now you want to use formulas local to
H and γ.
A: Fortunately, every formula local to H′ and γ is a substitution in-
stance of a formula local to H and γ. So the Datalog program cor-
responding to Corollary 19, with formulas local to H′ and γ, can be
obtained from the H-and-γ version by substitution. And the way Dat-
alog deduction is defined, any step justified by substitution instances
of a universal Horn formula is equally justified by that formula itself.

It is pointed out in [5] that the number of local formulas is linearly bounded
in terms of the size of H and γ as long as the quotation depth is bounded. It fol-
lows that each rule schema contributes only a linearly bounded number of induced
axioms to the local part of P̃IV .

The remaining part of the problem with P̃IV concerns the bookkeeping ax-
ioms. Our definitions allow far too many of these, because of the possibility of
many different tuples of arguments for a predicate symbol |α|. Fortunately, we can
eliminate the problem by being more frugal with our predicate symbols.

Given H and γ, call two local formulas similar if they become equal when a
particular variable, say z, is substituted for all variables and all constants. Another
way to say this is that the two formulas agree, symbol by symbol, except that
they might have different variables or constants in corresponding positions. For
each similarity class, one can obtain a formula (not necessarily local) ξ such that
each formula in the similarity class is a substitution instance of ξ. One general
way to do this is to let ξ agree, symbol for symbol, with some α in the similar-
ity class, except that in all the places where α has variables or constrants, ξ has
distinct variables. (It may be, however, that ξ can use the same variable at some
pair of positions, namely if no α in the similarity class has different variables or
constants there. It may also happen that ξ can use a constant, if all formulas in the
similarity class have the same constant at that position.) Choose one such ξ for
each similarity class of local formulas and call it the generic form for that class.
Then introduce predicates |ξ| not for all local formulas but rather for these generic
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forms. If α is a local formula, obtained from the generic form ξ of its similarity
class by replacing the variables x1, . . . , xk of ξ (in order of first occurrence) by
u1, . . . , uk, then define [α] to be |ξ|(u1, . . . , uk).

With this revised definition of [α], we no longer need bookkeeping axioms. If
η, in the new, smaller vocabulary of P̃IV , points to α then η is [α], so we no longer
need axioms to say that they are equivalent. �

Q: In this proof, you’ve made some modifications to the original
method, direct translation to PIV , because that method, though rather
easy to describe, was inappropriate for computation. Could you sum-
marize how the new method, after all the modifications, works?
A: Sure. Let me restrict attention to the important case where γ is
atomic. Given an instance of the derivability problem for PIV , say
the instance “Is γ deducible from H?” where γ is atomic, here’s what
you do. First, using the definitions from [5], make a list of the local
formulas with respect to H. Check which of them are similar, in
the sense of the proof of Theorem 21. As in that proof, choose a
generic form for each similarity class, and invent predicate symbols
to correspond to those generic forms. That determines the formulas
[α] for all your local formulas α. Now form a set of universal Horn
formulas (to be used as Datalog rules) as follows.

• For each axiom pref> of PIV , include [pref>].
• For each rule schema of PIV , include the axioms(∧

π∈P

[π]
)
→ [α]

generated by those rules of the schema that consist entirely of
formulas local to H (i.e., α and all π ∈ P are local to H).

• For each hypothesis η ∈ H, include [η].

(Note that there are no bookkeeping axioms here.) Finally ask Data-
log whether [γ] is deducible from this set of rules.
Q: I like that the resulting Datalog program depends only on H.
A: Right, it is often the case that H is fixed while γ varies.
Q: But what if γ is not atomic?
A: Then, for each introduction rule schema of PIV , include the ax-
ioms (∧

π∈P

[π]
)
→ [α]

generated by those rules of the schema that consist entirely of formu-
las local to γ.
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A Universal Horn Logic
In accordance with Convention 1, our treatment of universal Horn logic was re-
stricted to deducing atomic formulas from universal Horn formulas. This part of
the logic is what Datalog uses and it suffices for our application to the derivability
problem for substitutional Hilbertian systems. For the sake of completeness, we
summarize in this appendix some information about the general version of uni-
versal Horn logic, where conclusions are not required to be atomic. So we repeal
Convention 1; we are now concerned with deducing universal Horn conclusions
from universal Horn hypotheses. As before, we do not write universal quantifiers;
free variables are always to be interpreted as universally quantified.

If we do not insist on a substitutional Hilbertian deductive system but allow
the use of temporary hypotheses, then this general version of universal Horn logic
can be reduced to the Datalog case, with atomic conclusions, considered earlier.
Specifically, a universal Horn formula ϕ of the form(∧

π∈P

π
)
→ η

is deducible from a set H of universal Horn hypotheses if and only if for some (or,
equivalently, for every) substitution σ that substitutes new, distinct constants for
the free variables in ϕ, the atomic formula σ(η) is deducible from H ∪ {σ(π) : π ∈
P}.

If, on the other hand, we want a substitutional Hilbertian formulation of uni-
versal Horn logic, then the following seems to be the simplest and most natural
such system.

The only axioms are α→ α for atomic formulas α.
The rules of inference are of three sorts:

• Substitution: From ϕ infer ϕ(u/x) for any variable x and any variable or
constant6 u.

• Weakening: From
(∧

X
)
→ γ infer

(∧
Y
)
→ γ when X ⊆ Y .

• Cut: From
(∧

X
)
→ γ and

(∧
Y
)
→ ξ for all ξ ∈ X, infer(∧

Y
)
→ γ.

By writing the antecedent in a Horn clause as the conjunction
∧

X of a set
of atomic formulas, we’ve implicitly built in the convention that the order of
atomic formulas in the antecedent doesn’t matter. Had we used conjunctions of
sequences, rather than sets, of atomic formulas, then the rules should allow us to

6If we had non-constant function symbols, then arbitrary terms should be allowed as u.
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permute these atomic formulas and to add or delete repetitions, either by addi-
tional explicit rules or by a suitable formulation of cut.

When this general version of universal Horn logic is used with the universal
Horn translation S̃ of a substitutional Hilbertian system S , it produces derived
rules of inference for S . More precisely, consider a Horn clause ϕ in the vocabu-
lary of S̃ , say (∧

β∈B

β
)
→ η

where η and the elements β of the body B are atomic formulas. Write η̄ for the
formula of S to which η points, and analogously for β̄. (“Points to” was defined
during the definition of S̃ shortly before Theorem 14.) We say that the Horn
clause ϕ is a strong derived rule for the system S with a set H of S -formulas as
hypotheses if and only if η̄ is deducible from {β̄ : β ∈ B} and substitution instances
of formulas from H ∪ Ax (where Ax is, as before, the set of axioms of S ) using
only the non-substitution rules of S .

Q: What would be a weak derived rule?
A: Well, the usual meaning of “derived rule”, in a context like this,
would be that η̄ is deducible from {β̄ : β ∈ B} ∪ H ∪ Ax via the
inference rules of S . We added the adjective “strong” because of
the additional requirements that the deduction should use substitution
only on elements of H ∪ Ax and should do so before applying any of
the non-substitution rules.

Proposition 22. A Horn clause ϕ is deducible from {[ξ] : ξ ∈ H} in S̃ if and only
if ϕ is a strong derived rule for S with hypotheses H.

Proof. We begin by proving the “only if” direction. It suffices to show that the
set D of Horn clauses that are strong derived rules for S with H contains all the
assumptions [ξ] for ξ ∈ H, that it contains all the axioms of S̃ and of universal
Horn logic, and that it is closed under the deduction rules of universal Horn logic.

Many of these items are trivial. In the first place, if ξ ∈ H, then [ξ] is in D
because it points to ξ (which is a substitution instance of itself).

Consider next the axioms of S̃ . The bookkeeping axioms are in D because in
such an axiom the antecedent and the consequent point to the same formula of S .

The axioms [α] corresponding to axioms α of S are clearly in D because α is
a (trivial) substitution instance of itself.

Finally, the axiom of S̃ induced by a non-substitution rule 〈P, α〉 of S is in D,
by one application of that very rule 〈P, α〉.

We turn next to the axioms and rules of universal Horn logic. The axioms
α → α are clearly in D, so we need only consider the rules. The case of weaken-
ing is trivial, because we don’t lose deducibility when more hypotheses become
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available (i.e., the system S is a monotone logic). The case of cut is also trivial,
as we can just combine the given deductions to produce the desired one.

It remains to consider the substitution rules. Suppose therefore that ϕ is in D,
that x is a variable, and that u is a variable or constant; we must show that ϕ(u/x)
is in D. We use the notation from the definition of “strong derived rule”, so ϕ is(∧

β∈B β
)
→ η and therefore ϕ(u/x) is

(∧
β∈B β(u/x)

)
→ η(u/x). As we already

saw in another context, η(u/x) is the same as η̄(u/x), and similarly for each β ∈ B.
Our assumption that ϕ is in D means that we have a deduction, say ∆, of η̄ from

{β̄ : β ∈ B} plus substitution instances of formulas from H ∪ Ax using the non-
substitution rules of S . We must show that we also have a deduction ∆′ of η̄(u/x)
from {β̄(u/x) : β ∈ B} plus substitution instances of formulas from H ∪ Ax using
the non-substitution rules of S . We obtain ∆′ from ∆ by replacing every occur-
rence of x by u. Notice that the conclusion η̄ of ∆ becomes the desired conclusion
η̄(u/x) in ∆′. The hypotheses β̄ (β ∈ B) used in ∆ become legitimate hypotheses
β̄(u/x) for ∆′. Any substitution instances of formulas from H ∪Ax that were used
as hypotheses in ∆ become in ∆′ (possibly different) substitution instances of the
same formulas. And the rules of inference used in ∆ were not substitution rules,
so they remain correct in ∆′ because of clause (5) in the definition of Hilbertian
systems with variables.

This completes the proof of the “only if” half of the theorem. We turn to the
“if” half.

We first claim that it suffices to prove:

(∗) if α is deducible, by non-substitution rules of S , from a set Q of formulas
plus substitution instances of H ∪Ax, then

(∧
κ∈Q[κ]

)
→ [α] is deducible in

universal Horn logic from S̃ plus {[ξ] : ξ ∈ H}.

To see that this suffices, suppose
(∧

β∈B β
)
→ η is a strong derived rule for S and

H. Take Q to be {[β̄] : β ∈ B}, take α to be [η̄], and notice that, by definition
of “strong derived rule”, they satisfy the hypothesis of (∗). Therefore, by (∗), we
have a deduction from S̃ plus {[ξ] : ξ ∈ H} of(∧

β∈B

[β̄]
)
→ [η̄].

But S̃ also has the bookkeeping axioms β→ [β̄] and [η̄]→ η. So two applications
of the cut rule produce a deduction of(∧

β∈B

β
)
→ η,

as required.
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We therefore turn our attention to proving (∗), and we proceed by induction on
the deduction of α. There are several cases to consider, none particularly difficult.

Suppose first that α ∈ Q. Then the required
(∧

κ∈Q[κ]
)
→ [α] follows from the

axiom [α]→ [α] by weakening.
Second, suppose α is a substitution instance of an axiom of S ; say ζ ∈ Ax

and α is σ(ζ) for some substitution σ. Then in S̃ , we have the axiom [ζ], and we
can deduce, by a substitution rule, σ([ζ]), which points to α. So we also have the
bookkeeping axiom σ([ζ]) → [α], and we obtain [α] by cut. Finally, we obtain
the required

(∧
κ∈Q[κ]

)
→ [α] by weakening.

The third case is that α is a substitution instance of an element ξ of H. This
case is handled exactly like the preceding one except that, instead of the axiom [ζ]
of S̃ , we use the hypothesis [ξ].

Finally, there remains the case that α was obtained by a non-substitution rule
of S , say 〈P, α〉, from a set P of premises. By induction hypothesis, there are
deductions in universal Horn logic, from S̃ and {[ξ] : ξ ∈ H}, of(∧

κ∈Q

[κ]
)
→ [π]

for all π ∈ P. We also have in S̃ the axiom induced by the rule 〈P, α〉, namely(∧
π∈P

[π]
)
→ [α].

Combining these by the cut rule, we get the required(∧
κ∈Q

[κ]
)
→ [α].

�
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