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Abstract
Several variants of high-level replacement (HLR) and adhesive cate-

gories have been introduced in the literature as categorical frameworks for
graph transformation and HLR systems based on the double pushout (DPO)
approach. In addition to HLR, adhesive, and adhesive HLR categories sev-
eral weak variants, especially weak adhesive HLR with horizontal and ver-
tical variants, as well as partial variants, including partial map adhesive and
partial VK square adhesive categories are reviewed and related to each other.
We propose as weakest version the class of vertical weak adhesive HLR cate-
gories, shortM-adhesive categories, which are still sufficient to obtain most
of the main results for graph transformation and HLR systems. The results
in this paper are summarized in Fig. 1 showing a hierarchy of all these vari-
ants of adhesive, adhesive HLR, andM-adhesive categories, which can be
considered as different categorical frameworks for graph transformation and
HLR systems.
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1 Introduction
The concepts of adhesive [10] and adhesive high-level replacement (HLR) [4]
categories have been a break-through for the double pushout approach (DPO) of
algebraic graph transformations [6, 5, 11]. Almost all main results in the DPO ap-
proach have been formulated and proven in these categorical frameworks and in-
stantiated to a large variety of HLR systems, especially graph transformation sys-
tems for different types of graphs. These main results include the Local Church-
Rosser, Parallelism, and Concurrency Theorems, the Embedding and Extension
Theorem, Completeness of Critical Pairs, and the Local Confluence Theorem [2].
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Figure 1: Hierarchy of Adhesive Categories

The notion of HLR systems has been introduced in [3] as categorical frame-
work, based on a variety of axiomatic HLR properties, which have been used to
prove the main results mentioned above. The concept of adhesive categories, in-
troduced by Lack and Sobocinski [10] , allows to prove most of these HLR proper-
ties from the axioms of adhesive categories, which was an important step towards
an elegant categorical framework. Instantiations of this framework include the
categories of sets, graphs, typed graphs, and hypergraphs, but unfortunately not
the categories of typed attributed graphs, algebraic specifications, and different
kinds of Petri nets. In [4], adhesive categories have been generalized to adhesive
HLR categories essentially by replacing the class of all monomorphisms in ad-
hesive categories by a suitable subclass M of all monomorphisms. This allows
to obtain also typed attributed graphs and algebraic specifications as instantia-
tions of adhesive HLR categories, where the class M is a proper subclass of all
monomorphisms. This was another important improvement, because typed at-
tributed graphs are most important to model visual languages and various aspects
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of model driven software development.
It turned out, however, that place/transition nets and several other variants

of Petri nets do not satisfy the axioms of adhesive HLR categories [2]. For this
reason, weak adhesive HLR categories were introduced, which still allow to prove
the same kind of HLR properties mentioned above. Weak adhesive HLR means
that pushouts along M-morphisms are weak van Kampen (VK) squares. This
means that the corresponding VK properties – roughly spoken compatibility of
pushouts and pullbacks – hold for VK cubes, where all horizontal or all vertical
morphisms areM-morphisms.

These two cases are called in this paper horizontal resp. vertical weak adhesive
HLR. In fact, all Petri net categories we considered so far are weak adhesive HLR
and all HLR properties mentioned above have been shown also for weak adhesive
HLR categories in [2]. Recently, we recognized by inspection of the proofs that it
is sufficient to consider vertical weak adhesive HLR categories in order to obtain
all these HLR properties. For this reason, we propose in this paper to use the short
nameM-adhesive category for this important class of vertical weak adhesive HLR
categories. Note, that this is in contrast to some other papers like [1], where weak
adhesive HLR categories are calledM-adhesive.

Another variant of adhesive categories has been introduced by Heindel [8],
called partial map adhesive categories. They are based on the requirement that
pushouts alongM-morphisms are hereditary [9]. This means that such pushouts
are preserved by the inclusion functor from the category C into the category of

partial maps over C. A partial map from A to B is a span (A
m
← A′

f
→ B) of

morphisms in C with m ∈ M , where A′ is unique up to isomorphism. In [8],
it is pointed out that the existence of an M-partial map classifier, which means
that the inclusion functor has a right adjoint, is an interesting sufficient condition
for pushouts to be hereditary. Hence we have a sufficient condition for partial
map adhesiveness, because left adjoint functors preserve colimits and especially
pushouts.

On the other hand, it is shown in [8] that hereditary pushouts can be character-
ized by partial VK squares, which can be seen as a variant of weak VK squares in
vertical weak adhesive HLR categories, i.e. inM-adhesive categories. In fact, it
is easy to see that partial VK square adhesiveness implies vertical weak adhesive-
ness, but the inverse implication is open. In [8], it is shown that all the relevant
HLR properties are valid in partial map adhesive categories. Actually, this is now
a consequence of the fact that partial map adhesive categories are also vertical
weak adhesive, which – as mentioned above – is sufficient to show these HLR
properties.

Summarizing, we will review in this paper all the variants of HLR and adhe-
sive categories mentioned above leading to the hierarchy shown in Fig. 1.
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2 From Adhesive toM-Adhesive Categories
Adhesive categories have been introduced by Lack and Sobocinski [10] as a cat-
egorical framework for graph transformation systems, which allows to verify the
variety of axiomatic HLR properties required for the theory of high-level replace-
ment (HLR) systems in [3]. Adhesive categories are based on van Kampen (VK)
squares as pushouts which are – roughly spoken – stable under pullbacks and vice
versa.
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Figure 2: Pushout and VK cube for VK property.

Definition 2.1 (Adhesive Category and VK Square). A category C is called an
adhesive category, if:

1. C has pushouts along monomorphisms.

2. C has pullbacks.

3. Pushouts in C along monomorphisms are VK squares, i.e. the following
VK property holds for all commutative cubes with the given pushout in the
bottom and the back squares being pullbacks (see Fig. 2). The VK property
is the following equivalence:
The top square is a pushout if and only if the front squares are pullbacks.

Important examples of adhesive categories are the categories Sets of sets,
Graphs of graphs, and GraphsTG of typed graphs over a type graph TG, while
the category AGraphsATG of typed attributed graphs is not adhesive. But in the
latter case, pushouts alongM-morphisms are VK squares for the classMmono−iso

of all monos, which are isomorphic in the data type part. In fact, AGraphsATG is
an adhesive HLR category in the following sense:
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Definition 2.2 (Adhesive HLR Category and PO-PB Compatibility). Given a PO-
PB compatible classM of monomorphisms in C (see below), then (C,M) is called
adhesive HLR category, if pushouts along M-morphisms are VK squares (see
Def. 2.1).

A classM of monomorphisms in C is called PO-PB compatible, if

1. Pushouts alongM -morphisms exist andM is stable under pushouts.

2. Pullbacks alongM -morphisms exist andM is stable under pullbacks.

3. M contains all identities and is closed under composition.

Remark. A PO-PB compatible class M contains all isomorphisms and is also
closed under decomposition, i.e. g ◦ f ∈ M and g ∈ M implies f ∈ M. In fact,
isomorphisms can be obtained by pushouts or pullbacks along identities, and the
pullback of (g ◦ f , g) is (id, f ) s.t. pullback closure ofM implies f ∈ M [8]. It
can be shown that the classMmono of all monomorphisms in an adhesive category
C is PO-PB compatible [10], such that (C,Mmono) is also an adhesive HLR cate-
gory leading to the implication “adhesive implies adhesive HLR” in Fig. 1. This
implication is proper, because AGraphsATG is not adhesive, but (AGraphsATG,
Mmono−iso) is adhesive HLR [2].

However, there are important examples, like the category (PTNets,Mmono) of
place/transition nets with the class Mmono of all monos, which are not adhesive
HLR, but only weak adhesive in the following sense:

Definition 2.3 (Weak Adhesive HLR Category). Given a PO-PB compatible class
M of monomorphisms in C then (C,M) is called weak adhesive HLR category,
if it is horizontal and vertical weak adhesive HLR in the following sense:

1. (C, M) is called horizontal weak adhesive HLR, if pushouts in C along
m ∈ M exist and they are horizontal weak VK squares, i.e. the VK square
property (see Def. 2.1) is only required for commutative cubes, where all
horizontal morphisms ( f , g,m, n, f ′, g′,m′, n′) are inM.

2. (C,M) is called vertical weak adhesive HLR, if pushouts in C along m ∈ M
exist and they are vertical weak VK squares, i.e. the VK property (see
Def. 2.1) is only required for commutative cubes, where all vertical mor-
phisms (a, b, c, d) are inM.

Remark. In the horizontal case it is sufficient to assume f ,m ∈ M, because
closure under pushouts and pullbacks implies that all horizontal morphisms are
in M. Similar in the vertical case it is sufficient to assume in addition to m ∈
M also b, c, d ∈ M , because this implies a ∈ M and also n,m′, n′ ∈ M by
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closure under pushouts and pullbacks. By definition we have the implications on
the right hand side of Fig. 1 between the different adhesive HLR properties. The
category (PTNets, Mmono) shows that the implication from ”adhesive HLR” to
“weak adhesive HLR” is proper. Later we will conclude that also the implication
from “weak adhesive HLR” to “vertical weak adhesive HLR” is proper, but it is
open, whether also the corresponding one to “horizontal weak adhesive HLR” is
proper.

The following HLR properties, which are essential to prove the main results
for graph transformation and HLR systems mentioned in the introduction, are
valid not only for weak adhesive HLR categories as shown in [2], but already
for vertical weak adhesive HLR categories. For this reason we propose the short
notion “M- adhesive category” for this case.

Definition 2.4 (M-Adhesive Category). An M-adhesive category (C, M) is a
short notation for a vertical weak adhesive HLR category. The corresponding
vertical weak VK squares are calledM-VK squares.

Since the proof of the HLR properties in [2] Thm. 4.26 – stated for weak adhe-
sive HLR categories – uses only the axioms of vertical weak adhesive categories,
which are now calledM-adhesive, we can conclude the following main result:

Theorem 2.5 (HLR Properties inM-Adhesive Categories). Given anM-adhesive
category (C,M) the following HLR properties are valid:

1. Pushouts alongM-Morphisms are Pullbacks.

2. M-Pushout-Pullback Decomposition Lemma

3. Cube Pushout-Pullback Lemma

4. Uniqueness of Pushout Complements

These HLR properties are essential to prove the main results for graph trans-
formation and HLR systems in [2].

3 Partial Map and Partial VK Square Adhesive
Categories

Heindel proposes in [8] to reconsider hereditary pushouts of [9] in connection with
adhesive and weak adhesive HLR categories. Hereditary pushouts in a category C
are those pushouts that are preserved by the embedding into the associated cate-
gory ParM(C) of partial maps over C. Heindel has shown that hereditary pushouts
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can be characterized by a variant of VK squares, called partial VK squares, which
are closely related to weak VK squares in weak adhesive HLR categories. This
leads to the new concept of partial map adhesive categories, introduced by Heindel
in [8], which are equivalent to partial VK square adhesive categories. Moreover
we will discuss the relationship with the concepts of adhesiveness introduced in
Section 2.

The concepts in this section are based on an admissable class M of monos
according to [8], which we call PB compatible in anology to PO-PB compatible
classes in Def. 2.1.

Definition 3.1 (Partial Map Category and PB Compatibility). Given a PB compat-
ible classM of monos in C (see below) the category ParM(C) ofM-partial maps
over C, called partial map category, has the same objects as C and morphisms

from A to B are (isomorphism classes of ) spans (A
m
← A′

f
→ B) of morphisms in

C with m ∈ M, called partial maps (m, f ) : A → B in ParM(C). Identities are
identical spans and composition of spans is defined by pullbacks.

A classM of monos in C is called PB compatible, if

1. Pullbacks alongM-morphisms exist andM is stable under pullbacks.

2. M contains all identities and is closed under composition.

Remark. A PB compatible classM is PO-PB compatible, if pushouts alongM-
morphisms exist andM is stable under pushouts.

There is an inclusion functor I : C → ParM(C), called graphing functor in
[8], which is the identity on objects and maps each morphism f : A → B in C to
the partial map I( f ) = (id, f ) : A→ B in ParM(C).

Now we are able to define hereditary pushouts and partial map adhesive cate-
gories.

Definition 3.2 (Hereditary Pushout and Partial Map Adhesive Category). Given a
PB compatible classM of monos in C, then a pushout in C is called hereditary,
if it is preserved by the inclusion functor I : C→ ParM(C).

The category (C, M) is called partial map adhesive, if pushouts along M-
morphisms exist and are hereditary.

Remark. If C has pushouts alongM-morphisms a sufficient condition for (C,M)
to be partial map adhesive is the existence of a cofree construction leading to a
right adjoint functor R for the inclusion functor I : C→ ParM(C). In this case I is
left adjoint and preserves all colimits, especially pushouts alongM-morphisms,
such that these pushouts are hereditary. In the case (C, M) = ( Sets, Mmono)
we have that ParM(C) is isomorphic to the category of partial functions, where
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R(X) is the extension of a set X by one distinguished (“undefined”) element.In
several examples like Sets the construction of a right adjoint R is much easier
than the explicit verification of VK properties. Moreover, it is shown in [8] that
in partial map adhesive categories double pushout transformation in (C,M) can
be considered as single pushout transformation in ParM(C) with total match and
comatch.

Hereditary pushouts are important in connection with adhesive categories, be-
cause it has been shown in [8] that they are equivalent to partial VK squares in the
following sense:

Definition 3.3 (Partial VK Square Adhesive Category). Given a PB compatible
class M of monos in C, then (C, M) is called partial VK square adhesive, if it
has pushouts along m ∈ M which are partial VK squares, i.e.for any commutative
cube with the given pushout in the bottom (see Def. 2.1 and Fig. 2), where the
back squares are pullbacks with b, c inM, the following equivalence holds:
The top square is a pushout if and only if the front squares are pullbacks with d in
M.

Remark. Partial VK squares are closely related to vertical weak VK squares in
Def. 2.3, but the assumption resp. conclusion concerning d inM is different. Both
will be compared below.

The following theorem shows that partial VK square and partial map adhesive
categories are in fact equivalent. The proof is sketched in [8] based on results in
[7]. Moreover, the highly non-trivial proof has been verified independently by the
authors of this paper. As indicated in [8], the statement and proof remains valid if
“pushout alongM-morphisms” is replaced by arbitrary “pushouts”.

Theorem 3.4 (Equivalence of Partial Map and Partial VK Square Adhesive Cate-
gories). Given a PB compatible classM of monos in C such that C has pushouts
along M-morphisms. Then pushouts along M-morphisms are hereditary if and
only if they are partial VK squares.

Remark. Based on [7] it is shown in [8] that adhesive categories are also partial
map adhesive for M = Mmono. Moreover, an example of a category lSet of list
sets is given in [8], which is partial map adhesive, but not adhesive. Together
with Thm. 3.4 this leads to the implication and equivalence on the left hand side
of Fig. 1. It remains to analyse the relationship with the different adhesive HLR
notions.

In [8], it is shown that PB compatibility already implies PO-PB compatibility
such that we have the following equivalence:
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Theorem 3.5 (Equivalence of PB and PO-PB Compatibility). In partial VK
square adhesive categories (C,M) PB compatibility is equivalent to PO-PB com-
patibility.

Proof. It suffices to show that in partial VK square adhesive categoriesM is stable
under pushouts. Given a pushout with m ∈ M in the bottom of the partial VK cube
in Fig. 3, which has pullbacks in the back squares with id, f ∈ M and a pushout in
the top. Hence the partial VK property implies that the front squares are pullbacks
with n ∈ M. HenceM is stable under pushouts. �
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Figure 3: Special partial VK-cube.

Now we study the relationship between partial VK square and M-adhesive
categories.

Theorem 3.6 (Partial VK Square Adhesive Categories are M-Adhesive). Given a
partial VK square adhesive category (C,M) with PB compatibleM then (C,M)
is anM-adhesive category with PO-PB compatibleM.

Proof. Given a partial VK square adhesive category (C, M) then M is already
PO-PB compatible by Thm. 3.5. Moreover, pushouts alongM-morphisms satisfy
the vertical weak VK square property, because we only have to consider cubes
with a, b, c, d ∈ M in contrast to partial VK squares, where the equivalence holds
under the assumption a, b, c ∈ M. Hence (C,M) is vertical weak adhesive HLR
and hence alsoM-adhesive by definition. �

Remark. By Thm. 3.6 we have the implication from “partial VK square adhe-
sive” to “M-adhesive” in Fig. 1. But it is open whether the implication is an
equivalence. Moreover, Heindel [8] has shown that his example lSet of list sets
is partial map adhesive – and hence partial VK square adhesive – but violates
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the property that pushouts of pairs ofM-morphisms are VK squares. Hence this
is a counterexample for horizontal weak adhesive HLR, and hence also for weak
adhesive HLR categories. This implies that there is no implication from “partial
VK square adhesive” to “weak adhesive HLR” in Fig. 1. This explains also that
there are no implications from “M-adhesive” to “weak adhesive HLR” and to
“horizontal weak adhesive HLR. The remaining implications are open.

4 Conclusion

In this paper we have reviewed several variants of adhesive and adhesive HLR
categories and discussed how they are related to each other. The main results
are summarized in Fig. 4. For graph transformations and high-level replace-
ment (HLR) systems it is most important that the HLR properties in Thm. 2.5
are valid, which are essential for the main results including the Local Church-
Rosser, Parallelism, and Concurrency Theorems, the Embedding and Extension
Theorem, Completeness of Critical Pairs, and the Local Confluence Theorem [2].
These HLR properties are valid already in vertical weak adhesive HLR categories,
shortM-adhesive categories, whereM is a PO-PB compatible class of monomor-
phisms. The latter ones are closely related – but probably slightly weaker – then
partial map adhesive categories. They are recommended by Heindel [8], based
on heraditary pushouts advocated by Kennaway [9]. A useful sufficient condition
for the existence of hereditary pushouts is the existence of a right adjoint for the
inclusion functor from C into the corresponding partial map category ParM(C).
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Figure 4: Hierarchy of Adhesive Categories
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Altogether we advocate now M-adhesive categories as main categorical
framework for graph transformation and HLR systems, while we have used (weak)
adhesive HLR categories in our book [2].
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