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Abstract

In the k-set agreement problem, each process proposes a value and has
to decide a value in such a way that a decided value is a proposed value and
at most k different values are decided. This problem can easily be solved in
synchronous systems or in asynchronous systems prone to t process crashes
when t < k. In contrast, it has been shown that k-set agreement cannot be
solved in asynchronous systems when k ≤ t. Hence, since several years, the
failure detector-based approach has been investigated to circumvent this im-
possibility. This approach consists in enriching the underlying asynchronous
system with an additional module per process that provides it with informa-
tion on failures. Hence, without becoming synchronous, the enriched system
is no longer fully asynchronous. This paper surveys this approach in both
asynchronous shared memory systems and asynchronous message passing
systems. It presents and discusses recent results and associated k-set agree-
ment algorithms.

Keywords: Asynchronous system, Eventual leader, Failure detector, Mes-
sage passing system, Quorum, k-Set agreement, Shared memory system,
Wait-freedom.

1 Introduction
The k-set agreement problem This problem, that involves n processes that may
fail by crashing, is a coordination problem (sometimes called decision task) intro-
duced by S. Chaudhuri [11]. Her aim was to explore the relation linking the num-
ber of process failures and the minimal number of values that the processes are
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allowed to decide. This problem is defined as follows [11, 34, 39]. Each process
proposes a value and every non-faulty process has to decide a value (termination),
in such a way that any decided value is a proposed value (validity) and no more
than k different values are decided (agreement). The problem parameter k defines
the coordination degree: k = 1 corresponds to its most constrained instance (con-
sensus problem) while k = n − 1 corresponds to its weakest non-trivial instance
(called set agreement problem).

Let t be an upper bound on the number of processes that may crash in a run,
1 ≤ t < n. Hence, t is a model parameter. If t < k, k-set agreement can be trivially
solved in both synchronous and asynchronous systems: k predetermined processes
broadcast the values they propose and a process decides the first proposed value
it receives. Hence, the interesting setting is when k ≥ t, i.e., when the number of
values that can be decided is smaller or equal to the maximal number of processes
that may crash in any run.

Algorithms that solve the k-set agreement problem in message passing syn-
chronous systems when k ≥ t are presented in [3, 27, 37]. These algorithms are
based on sequence of synchronous rounds. It is shown in these books (see also
[12]) that b t

k c + 1 rounds are necessary and sufficient to solve k-set agreement. (It
is shown in [37] that this lower bound is still valid in more severe failure mod-
els such as the general omission failure model.) For asynchronous systems, the
situation is different. When t ≥ k, the k-set agreement problem has no solution
[7, 24, 40].

The failure detector-based approach A failure detector is a distributed oracle
that gives alive processes hints on process failures [9, 35]. Failure detectors have
been investigated to solve the k-set agreement problem since 2000 [30]. (Random
oracles to solve the k-set agreement problem have also been investigated [31].)
Lower bounds to solve k-set agreement in asynchronous message passing systems
enriched with limited accuracy failure detectors have been conjectured in [30]
and proved in [23]. The question of the weakest failure detector class for the k-set
agreement problem (k > 1) has been stated first in [38].

Let P be a problem that is impossible to solve in a pure asynchronous sys-
tem. A non-trivial failure detector is a failure detector that allows a problem such
as P to be solved. Implementing a non-trivial failure detector requires that the
underlying system satisfies appropriate behavioral assumptions. The interested
reader will find such assumptions and corresponding algorithms in [36] (Chapter
7) for asynchronous message passing systems and in [18] for asynchronous shared
memory systems.



85 85

85 85

The Bulletin of the EATCS

77

Content of the paper The paper is on the use of failure detectors that allows
k-set agreement to be solved in asynchronous systems prone to process crashes.
It is made up of 5 sections. Section 2 presents the process model and defines the
k-set agreement problem. Then the two main sections of the paper follow. Section
3 considers the case where the communication medium is a read/write shared
memory. It presents the weakest failure detector for the k-set agreement problem
in such a setting. This failure detector, denoted Ωk, which was conjectured to be
the weakest in [33], has been proved to be the weakest in [20]. A corresponding
k-set agreement algorithm is also presented in that section. “Weakest” means here
that any failure detector that can be used to solve the k-set agreement problem in
a crash-prone asynchronous shared memory system provides us with information
on failures from which Ωk can be built. (More formally, showing that a failure
detector is as strong as another one is based on reductions, e.g., [6, 10, 14]).

FD class Introduced in Presented in Sec. Property
Ω [10] 4.3 Weakest for Consensus in SM
Ωk [32] 4.5 Solves k-set agreement in SM
Υ [21] 3.2 Sufficient for (n − 1)-set agreement in SM

Ωn−1 [41] 3.2 Weakest for (n − 1)-set agreement in SM
Ωk [33] 3.2 Weakest for k-set agreement in SM
Σ [14] 4.2 Weakest for Register in MP

(Σ,Ω) [15] 4.3 Weakest for consensus in MP
Σk [5] 4.5 Necessary for k-set agreement in MP
L [16] 4.3 Weakest for (n − 1)-set agreement in MP
Lk [4] 4.4 Solves k-set agreement in MP
Πk [5] 4.5 Same power as to (Σk,Ωk)

Table 1: Global picture: failure detector classes related to k-set agreement

Section 4 considers then the case where the communication medium is a re-
liable asynchronous message passing network. Maybe surprisingly, the weakest
failure detector for solving k-set agreement is different in shared memory systems
and message passing systems. Moreover, the corresponding weakest failure detec-
tors are known only for the case k = 1 (consensus) and k = n − 1 (set agreement).
This section presents the most recent results known for the other cases, which
leaves open the discovery of the corresponding weakest failure detector. Several
failure detector proposals and algorithms are also described. Finally, Section 5
concludes the paper. (To keep the presentation simple, the theorems and algo-
rithms are presented without their proof. The reader will find them in the papers
in which they have been introduced.)

To help the reader have a global view, Table 1 summarizes the main failure
detector classes presented in this paper (FD, SM and MP stand for failure detec-



86 86

86 86

BEATCS no 103 THE EATCS COLUMNS

78

tor, shared memory and message passing, respectively). The reader interested in
the computability power and the robustness of k-set agreement-oriented failure
detector classes can consult [29].

2 Process model and k-set agreement
Process model The system consists of a set Π = {p1, . . . , pn} of n asynchronous
processes. The integer i is called the index or identity of process pi.

Each process executes a sequence of atomic steps (each of which may contain
any finite amount of local computation and either a read from or a write to the
shared memory in case of a shared memory system, or a message send or receive
in case of a message passing system). A process executes its code until it possibly
crashes. After it has crashed a process executes no more step.

A run is a sequence of steps issued by processes such that, according to the
communication model, any value read has been previously written or any message
received has been previously sent. A process that crashes during a run is faulty in
that run, otherwise it is correct. Given a run, C denotes the set of processes that
are correct in that run.

>From a notation point of view, local variables are denoted with lowercase
letters and the process index i is used as a subscript.

External global time For presentation and analysis purposes, we assume that
there is a discrete global clock which ticks every time a process takes a step. This
clock is not accessible by the processes.

Let vari be a local variable of process pi. varτi denotes the value of vari at time
τ.

Failure pattern The failure pattern associated with a run, is a function F(τ)
that outputs the set of processes crashed at time τ, τ ≥ 0. As processes do not
recover, we have F(τ) ⊆ F(τ + 1). F = ∪τ≥0F(τ) (the set of faulty processes in
the corresponding run). Let us observe that C = Π \ F .

The model parameter t, 1 ≤ t < n, denotes the upper bound on the number of
processes that may crash in a run. When t = n − 1, the set of all possible failure
patterns is called the wait-free environment. We say that an algorithm wait-free
solves a problem if any correct process terminates with the right result whatever
the number of faulty processes.

Failure detector A failure detector is a device (oracle) that provides each pro-
cess pi with read-only local variables containing information of process failures
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[9, 35]. According to the quality of this information and the problem they help
solve, several classes of failure detectors have been defined [9, 15].

The k-set agreement problem As already indicated, the k-set agreement prob-
lem has been introduced by S. Chaudhuri [11]. It generalizes the consensus prob-
lem (that corresponds to k = 1). It is defined as follows. Each process proposes
a value and has to decide a value in such a way that the following properties are
satisfied:

• Termination. Every correct process decides a value.

• Validity. A decided value is a proposed value.

• Agreement. At most k different values are decided.

A process pi invokes the operation X.set_agreementk(vi) (where vi is the value
it proposes) to participate in a k-set agreement instance denoted X. This operation
returns to the invoking process pi the value that pi decides. The k-set agreement
problem is a one-shot problem, which means that each problem instance is inde-
pendent of the other instances.

3 k-Set agreement in asynchronous shared memory
systems

This section presents first the class of the weakest failure detectors for k-set agree-
ment in crash-prone shared memory systems. This class is denoted Ωk. The sec-
tion describes then an Ωk-based k-set agreement for these systems.

3.1 Communication model
The processes communicate by reading and writing atomic registers [25]. This
means that all shared memory accesses appear as if they have been executed one
after the other and this total order respects the partial order imposed by their exe-
cution. From a notation point of view, shared variables are denoted with uppercase
letters.

The corresponding shared memory model (in which at most t processes may
fail) is denoted byASMn,t[∅]. When the system is enriched with a failure detector
X, it will be denoted ASn,t[X]. ASMn,n−1[∅] is consequently the asynchronous
wait-free shared memory model (wait-free because algorithms designed for this
model have to be correct and allow correct processes to terminate despite the
occurrence of up to t = n − 1 process failures).
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Despite the fact that the sentence “an algorithm wait-free solves a problem
in a system model in which t = n − 1” is a pleonasm (as it contains both “wait-
free” and “t = n − 1”), we voluntarily use it in the following to insist on wait-free
solvability.

3.2 The failure detector class Ωk

A failure detector called anti-Ω (denoted here Ωn−1) has been introduced by Zielin-
sky [41] and shown to be the weakest to solve the (n − 1)-set agreement problem.
As indicated by Zielinsky, the failure detector class Υ, that has been previously
proposed in [21], was instrumental in the discovery of Ωn−1. A failure detector
of the class Υ eventually informs the processes that, in the current run, some set
of processes cannot be the set of correct processes. It is shown in [21] that Υ is
sufficient for solving (n − 1)-set agreement.

A generalization of Ωn−1 denoted Ωk has been introduced in [33] where it is
conjectured to be the weakest for shared memory k-set agreement. This conjecture
has been proved by Gafni an Kuznetsov in [20].

Definition A failure detector of the class Ωk provides each process pi with a
read-only variable denoted mv_leaderi (moving leaders) such that the following
properties are satisfied.

• Validity. ∀i : ∀τ : mv_leadersτi is a set of k process identities.

• Weak Eventual leadership. ∃τ : ∃` ∈ C : ∀τ′ ≥ τ : ∀i ∈ C : ` ∈
mv_leadersτ

′

i .

The weak eventual leadership property states that there is a time τ and a correct
process p` such that, after time τ, no correct process “suspects p` to have crashed”.
Let us notice that the time τ is never revealed to the processes. Moreover, no
process explicitly knows the fact that a correct process is included (and will stay
forever after) in all sets identified by mv_leadersi, ∀ i ∈ C.

after a correct process p` remains forever in all sets mv_leadersi, no process
knows this fact explicitly.

Ω1 is the same as Ω (the eventual leader failure detector which has been
proved to be the weakest failure detector for solving the consensus problem in
asynchronous shared memory systems [10, 26]).

Theorem 1. [Gafni-Kuznetsov 2009]1 When considering failure detector-enriched
systems, the model ASMn,n−1[Ωk] is the weakest asynchronous shared memory

1This result has also been proved in [17] and [19] using different techniques.
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model in which the k-set agreement problem can be wait-free solved. (Proof in
[20].)

In this theorem (and following ones), we use the sentence “When consider-
ing failure detector-enriched systems” to insist on the fact that we are interested
in systems enriched only with failure detectors. This is because one could imag-
ine other possible types of “enrichment” that would allow k-set agreement to be
solved in the corresponding enriched systems.

3.3 An Ωk-based k-set agreement algorithm

Underlying principle The principle that underlies the design of the Ωk-based
k-set agreement algorithm that follows [1, 41] is pretty simple: each process pi

participates in k independent parallel consensus instances, pi proposes the same
value to every instance and decides the value returned from the first instance that
locally terminates. To that end the algorithm is made up of two parts: an algorithm
that gives Ωk a vector shape denoted vector_Ωk, and a vector_Ωk-based algorithm
that solves k-set agreement.

From Ωk to vector_Ωk vector_Ωk is a vector denoted Omega[1..k] such that (a)
each Omega[x] returns a process identity each time it is called, and (b) at least
one Omega[x] behaves as Ω1 (which is the weakest failure detector that allows
consensus to be wait-free solved in ASMSn,n−1[∅]). This means that there is
at least one Omega[x] that outputs the same correct process p` at each correct
process after some finite time.

Task Ti % the task Ti is executed by pi %
repeat forever

seti ← mv_leadersi;
for each j < seti do

SUSPICIONS[i][ j]← SUSPICIONS[i][ j] + 1 end for
end repeat.

when Omega[x] is queried by pi:
for each j ∈ [1..n] do total[ j]← Σ1≤x≤nSUSPICIONS[x][ j] end for;
let p j1 , . . . , p jn = permutation on the n proc.

s. t. (total[ j1], j1) < · · · < (total[ jn], jn);
return( jx).

Figure 1: From Ωk to vector_Ωk (code for pi) [41]
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The code of the wait-free algorithm that constructs vector_Ωk from Ωk is de-
scribed in Figure 1. A shared array SUSPICIONS[i][1..n] is associated with each
process pi. Only pi can write it, but any process can read it. SUSPICIONS[i][ j]
contains the number of times process p j has been suspected by process pi (“sus-
pected by pi” means here “not belonging to the output of Ωk invoked by pi”).

When process pi queries Omega[x], it first computes the total number of sus-
picions of every process p j (total[ j]) and then orders the processes from the less
to the more suspected. Process identities are used to obtain a total order (let us
remember that lexicographical order (a, i) < (b, j) is defined as (a < b) ∨

(
(a =

b) ∧ (i < j)
)
).

The intuition that underlies this algorithm is the following. Let p` be a cor-
rect process that, after some finite time, belongs to the set mv_leadersi of every
correct process pi. (Due to the definition of Ωk, such a process p` does exists.)
Consequently, after some finite time, the quantity Σ1≤x≤nSUSPICIONS[x][`] stops
increasing and the pair (total[`], `) will then be one of the k smallest pairs com-
puted by any process.

when operation set_agreementk(vi) is invoked by pi:
for each x ∈ [1..k] do CONS[x].propose1(vi) end for;
let v be the value returned by the first consensus instance

CONS[x] that terminates;
return(v).

Figure 2: Wait-free vector_Ωk-based k-set agreement (code for pi)

The vector_Ωk-based k-set agreement algorithm is described in Figure 2. As
already indicated, it consists of k parallel and independent consensus instances de-
noted CONS[1..k]. Process pi proposes vi to each consensus instance and decides
the first value returned by any of these instances. The Ω-based consensus instance
CONS[x] uses Omega[x] as its underlying failure detector Ω. It is easy to see that
at most k values can be decided, and that a process that does not crash decides a
value. This is because at least one Omega[x] -not known in advance- behaves as
Ω and Ω allows consensus to be wait-free solved in asynchronous shared memory
systems [22, 26].

4 k-Set agreement in asynchronous message passing
systems

This section focuses on failure detectors for the k-set agreement problem in crash-
prone asynchronous message passing systems. In contrast to shared memory sys-
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tems, the weakest class of failure detectors for these systems is not yet known.
Hence, this section presents the last results in that direction.

The weakest class of failure detectors for k-set agreement suited to crash-prone
asynchronous message passing systems is known only for k = 1 and k = n − 1.
Let us remember that 1-set agreement is the consensus problem, i.e., the more
constraining (or strongest) agreement problem, while (n − 1)-set agreement is the
weakest in the sense that the processes have to eliminate a single value from the
proposed values (when we assume that each process proposes a distinct value).

4.1 Communication model
The processes communicate by sending and receiving messages through channels.
Every pair of processes is connected by a bidirectional channel. The channels
are failure-free (there is no creation, alteration, duplication or loss of messages)
and asynchronous (albeit the time taken by a message to travel from its sender
to its destination process is finite, there is no bound on transfer delays). The
notation “broadcast _(m)” is used to send a message m (the type of which
is _) to all the processes. It is a (non-atomic) shortcut for “for each j ∈
{1, . . . , n} do send _(m) to p j end for”.

Notation The previous asynchronous message-passing model in which at most t
processes can crash is denotedAMPn,t[∅]. When enriched with a failure detector
or an additional assumption X, it will be denoted AMPn,t[X]. As an example
AMPn,t[t < n/2,Ω] means that, in any run, at least a majority of processes are
correct and processes can access a failure detector of the class Ω).

4.2 From shared memory to message passing
The main question It is shown in [2] that t < n/2 is a necessary and sufficient
requirement on the value of the model parameter t in order to simulate a shared
read/write register on top of a crash-prone asynchronous message passing system.

Hence, a fundamental question is: “Which is the weakest failure detector that
allows a register to be built inAMPn,n−1[∅]?” This question has been answered by
Delporte, Fauconnier and Guerraoui who have shown that Σ is this failure detector
[14].

The failure detector class Σ A failure detector of the class Σ provides each
process pi with a set qri (called quorum) such that the set of variables qri satisfies
the following properties. After a process pi has crashed (if it ever does), it is
assumed that qri remains forever equal to {1, . . . , n}.
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• Intersection. ∀ i, j : ∀τi, τ j : (qrτi
i ∩ qrτ j

j , ∅).

• Liveness. ∃τ : ∀τ′ ≥ τ : ∀i ∈ C : qrτ
′

i ⊆ C.

The first property states that any pair of values of two quorums, each taken at
any time, do intersect. The second property states that the quorum of any correct
process eventually contains only correct processes. When we look at a Σ-based al-
gorithm, the first property is used to ensure its safety/consistency while the second
one is used to guarantee its progress.

Theorem 2. [Delporte-Fauconnier-Guerraoui 2010] When considering failure detector-
enriched systems, AMPn,n−1[Σ] is the weakest asynchronous message passing
system model on top of which a shared read/write register can be wait-free built.
(Proof in [6, 14].)

More developments and algorithms building a register in ASMn,t[t < n/2]
andASMn,n−1[Σ] can be found in [37].

4.3 The cases of consensus (k = 1) and set agreement (k = n−1)
The case of consensus (k = 1) in message passing systems The failure detector
Ω has been introduced by Chandra, Hadzilacos and Toueg in [10]. It provides each
process pi with a read-only local variable leaderi that always contains a process
identity. Moreover, after some unknown but finite time, the variables leaderi of
all correct processes pi contain the same process identity which is the identity of a
correct process. As already said, when considering Ωk, Ω1 is Ω. The fundamental
result associated with Ω is the following.

Theorem 3. [Chandra-Hadzilacos-Toueg 1996] When enriching a system with a
failure detector, Ω is the weakest failure detector the systemAMPn,t[t < n/2] has
to be enriched with in order for consensus to be solved. (Proof in [10].)

This result is extended in [14] where it is shown that the pair of failure detec-
tors (Ω,Σ) is the weakest to solve consensus in ASMn,n−1[∅]. The correspond-
ing (Ω,Σ) failure detector provides two outputs, one for Ω the other one for Σ.
Intuitively, Σ is used to simulate a shared memory while Ω is used to allow cor-
rect processes to terminate. Several consensus algorithms for both system models
ASMn,t[t < n/2] andASMn,n−1[Σ,Ω] are described in [36].

The case of set agreement (k = n− 1) in message passing systems The failure
detector class L (for loneliness), that has been introduced in [16], is defined as
follows. Each process pi is provided with a read-only boolean variable alonei and
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these boolean variables satisfy the following properties. (After a process pi has
crashed (if it ever crashes) its boolean alonei is assumed to remain forever equal
to false.)

• Stability. ∃ i: ∀ τ: aloneτi = false.

• Loneliness. (C = {i}) ⇒
(
∃τ : ∀τ′ ≥ τ : aloneτi = true

)
.

The stability property states that there is at least one process pi whose boolean
local variable alonei remains forever equal to false, while the loneliness property
states that, if only one process (say pi) is correct, its boolean local variable alonei

eventually outputs true forever. Let us notice that nothing prevents the value of
a boolean local variable alonei from changing infinitely often (as long as the cor-
responding process pi is neither the one whose boolean local variable remains
always false, nor the only correct process pi in the the case where n − 1 processes
crash). The main result associated with L is the following Theorem.

Theorem 4. [Delporte-Fauconnier-Guerraoui-Tielmann 2008] When considering
failure detector-enriched systems,ASMn,n−1[L] is the weakest asynchronous mes-
sage passing system model in which (n−1)-set agreement can be wait-free solved.
(Proof in [16].)

An algorithm that solves the (n−1)-set agreement problem inASMn,n−1[L] is
described in [16], where it is also shown that L is strictly stronger than Ωn−1 and
strictly weaker than Σ. This algorithm has given rise to a more general algorithm
for k-set agreement (described in Figure 3) and can be obtained from it by taking
k = n − 1.

4.4 The class of failure detectors Lk (1 ≤ k ≤ n − 1)
More general failure detectors than the pair (Ω,Σ) (that is optimal for k = 1) and
L (that is optimal for k = n−1) have also been proposed (e.g., [5]). Unfortunately,
none of them is the weakest for 1 ≤ k < n − 1. This section presents one of them
proposed by Biely, Robinson and Schmid [4].

The failure detector class Lk This class of failure detectors is a simple gener-
alization of L. More specifically it holds that L = Ln−1. A failure detector of
the class Lk is called (n − k)-loneliness failure detector. It is formally defined as
follows.

• Stability. ∃ a set of processes K : |K| = n−k : ∀ i ∈ K: ∀ τ: aloneτi = false.

• Loneliness. (|C| ≤ n − k) ⇒
(
∃` ∈ C : ∃τ : ∀τ′ ≥ τ : aloneτ` = true

)
.
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As we can see, this failure detector generalizes L. While the loneliness prop-
erty of L detects the case where only one process remains alive forever, the lone-
liness property of Lk detects the case where at most n − k processes remain alive
forever.

An Lk-based k-set agreement algorithm The Lk-based algorithm described in
Figure 3 solves the k-set agreement problem [4]. This algorithm is based on a
sequence of asynchronous rounds (ri denotes the current round number of pi).
The local variable esti is pi’s current estimate of its decision value. The execution
of the statement return(v) returns the value v and terminates the invocation the
set_agreementk().

when operation set_agreementk(vi) is invoked by pi:
(01) esti ← vi; ri ← 1;
(02) repeat forever
(03) for each j , i do send (ri, esti) to p j end for;
(04) wait until

(
(n − k) messages (ri,−) have been received

)
;

(05) esti ← min(esti, the est j received at the previous line);
(06) if (ri = k + 1)
(07) then for each j , i do send (esti) to p j end for;
(08) return(esti)
(09) else ri ← ri + 1
(10) end if
(11) end repeat.

when
(
alonei ∨ (v) is received

)
:

(12) if ((v) received) then esti ← v end if;
(13) for each j , i do send (esti) to p j end for;
(14) return(esti).

Figure 3: An Lk-based k-set agreement algorithm (code for pi) [4]

In each round, each non-crashed process pi first broadcasts a message (ri, esti)
(line 03) to inform the other processes of its current estimate esti and waits un-
til it has received (n − k) estimate messages associated with its current round ri

(line 04). When it has received these estimates, it computes the smallest of them
including its own estimate (line 06). Then if ri < k + 1, it proceeds to the next
asynchronous round (line 09). If ri = k + 1 it broadcasts (esti) to inform the
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other processes on the value it is about to decide (line 07) and then decides it (line
08).

When considering lines 01-11 only, let us observe that pi can block forever at
line 04 if more than k processes crash. Such a permanent blocking is prevented
by the use of () messages (that ensures that, as soon as a process decides, all
correct processes eventually decide), and the use of the failure detector. Let us
also observe that the boolean alonei of a correct process pi becomes true when the
number of correct processes is smaller than or equal to n − k. In that case, this
correct process pi unblocks the situation.

On the power of Lk It is shown in [4] that, for n > 2 and k ≥ 2, Lk is either
weaker than or not comparable to Σ. As (a) consensus can be solved in both
system models AMPn,n−1[L1] and AMPn,n−1[Ω,Σ], and (b) AMPn,n−1[Ω,Σ] is
the weakest failure detector-based model in which consensus can be solved, it
follows that L1 is not the weakest failure detector with which AMPn,n−1[∅] has
to be enriched in order to solve consensus.

It also follows that, while Ln−1 = L is the weakest failure detector for (n − 1)-
set agreement [16], Lk, 1 ≤ k < n − 1, is not the weakest failure detector for k-set
agreement. But, as shown IN the following theorem, Lk seems to be not too much
stronger than what is necessary.

Theorem 5. [Biely-Robinson-Schmid 2009] Let 2 ≤ k ≤ n − 1. k-Set agreement
can be wait-free solved in AMPn,n−1[Lk] but (k − 1)-set agreement cannot wait-
free solved inAMPn,n−1[Lk]. (Proof in [4].)

4.5 An important step: Σk is necessary for k-set agreement
Where is the difficulty As far as the agreement property is concerned (at most
k values are decided), a main difficulty in the quest for the weakest failure detec-
tor that solves k-set agreement in a message passing system lies in capturing the
shared memory properties needed to solve this problem. (Said, differently, while
implementing shared registers in a message passing system is stronger than neces-
sary when one wants to solve k-set agreement, it is not yet known how to weaken
the register properties in such a way that, once these “weak” registers have been
implemented in a message passing system, k-set agreement could be solved in
such a system).

An effort in that direction is presented in [13] where are investigated the re-
lations between the implementation of a register and k-set agreement in asyn-
chronous crash-prone message passing systems. Let an x-register be a register
that (a) is shared by x processes only and (b) is implemented by processes that
communicate by exchanging messages.
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Let us remember that AMPn,n−1[X] is AMPn,n−1[∅] enriched with objects
X. It is shown in [13] that, for n/2 ≤ k ≤ n − 1, k-set agreement can be
solved in AMPn,n−1[2(n − k)-register] while a 2(n − k)-register cannot be built
inAMPn,n−1[k-set agreement].

The failure detector class Σk This failure detector class, that generalizes Σ, has
been introduced by Bonnet and Raynal [5] as an effort to capture the shared mem-
ory properties necessary to solve k-set agreement in message passing systems. As
for Σ, each process is provided with a local read-only variable qri. It is assumed
that after a process pi has crashed (if ever it does), qri remains forever equal to
{1, . . . , n}. These variables satisfy the following properties.

• Intersection. Let id1, . . . , idk+1 denote k + 1 process ids, and τ1, . . . , τk+1

denote k + 1 arbitrary time instants. ∀id1, . . . , idk+1, τ1, . . . , τk+1 : ∃i, j : 1 ≤
i , j ≤ k + 1 : (qrτi

idi
∩ qrτ j

id j
, ∅).

• Liveness. ∃τ : ∀τ′ ≥ τ : ∀i ∈ C : qrτ
′

i ⊆ C.

The liveness property is the same as for Σ while the intersection property gener-
alizes the one of Σ (we have Σ1 = Σ). That property states that any set of k + 1
quorums is such that any two of its quorums intersect whatever the time instants
at which the values of these quorums have b.en obtained. (It is interesting to no-
tice that this intersection property is the same as the one used to define k-coteries
[28].) The main property of Σk is the following theorem.

Theorem 6. [Bonnet-Raynal 2009] Σk is a necessary requirement when one wants
to wait-free solve k-set agreement (with a failure detector) inAMPn,n−1[∅]. (Proof
in [5].)

It is also shown in [5] that Σn−1 and Ln−1 = L are equivalent. This means that
L can be built in AMPn,n−1[Σn−1] and Σn−1 can be built in AMPn,n−1[L]. The
algorithm that builds L in AMPn,n−1[Σn−1] is pretty trivial. At each process pi,
the boolean local variable alonei is initialized to false and is set forever to true
when the quorum qri becomes equals to {i}.

The algorithm that builds Σn−1in AMPn,n−1[L] is described in Figure 4. At
each process pi, qri is initialized to {i, j} where j , i. Then, pi periodically broad-
casts an (i) message to indicate that it has not (yet) crashed. When pi’s
boolean local variable alonei becomes true, qri is set to {i} and keeps that value
forever. When it receives a message ( j), pi resets qri to {i, j} if qri , {i}. A
proof of correctness of this construction is given in [5].

Consequently, Σn−1 provides us with a quorum-based formulation of the weak-
est failure detector to solve (n−1)-set agreement. In contrast, while Σ1 can be built
inAMPn,n−1[L1], the converse is not true.
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Task T : repeat periodically for each j , i do
send (i) to p j end for end repeat.

when alonei becomes true: qri ← {i}.

when ( j) is received: if |qri| , 1) then qri ← {i, j} end if.

Figure 4: Building Σn−1 inAMPn,n−1[L (code for pi)

The class of failure detectors Πk This class of failure detectors has been intro-
duced by Bonnet and Raynal in in [5]. It is Σk with the additional property.

• Eventual leadership. ∃τ : ∃LD = {`1, . . . , `k} : ∀τ′ ≥ τ : ∀i ∈ C :
qrτ

′

i ∩ LD , ∅.

It is shown in [5] that Πn−1 = Ln−1 and Π1 = (Σ,Ω). Hence Πk captures in a
single formulation the weakest failure detector to solve k-set agreement for k = 1
and k = n − 1. It seems that (unfortunately) Πk is not the weakest class of failure
detectors for other values of k.

It is also shown in [5] that the class Πk and the class (Σk,Ωk) are equivalent
(any failure detector of one class can be used to build a failure detector of the
other class). The failure detector class Ωk has been introduced by Neiger [32].
This class (that has inspired the definition of Ωk) provides each process pi with a
set leadersi such that the following properties are satisfied.

• Validity. ∀i : ∀τ : leadersτi is a set of k process identities.

• Strong Eventual leadership. ∃τ : ∃LD = {`1, . . . , `k} : (LD∩C , ∅)∧ (∀τ′ ≥
τ : ∀i ∈ C : leadersτ

′

i = LD).

It is easy to see that Ωk is strictly stronger than Ωk: any failure detector of the
class Ωk belongs to the class Ωk while the opposite is not true.

4.6 What can be done with Σx

A Σx-based k-set agreement algorithm In [8], Bouzid and Travers present an
interesting k-set algorithm for the system model AMPn,n−1[Σx]. This algorithm
(that combines ideas from [13] and [16]) is described in Figure 5. A process
invokes set_agreementk(vi) where vi is the value it proposes.
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The processes are statically partitioned into x + 1 partitions, A1, . . . , Ax+1 (i.e.,
∀y , z : Ay ∩ Az = ∅ and ∪1≤y≤xAy = {1, . . . , n}). Moreover their sizes are such
that ∀ y ∈ [1..x] : |Ay| = b

n
x+1c and |Ax+1| = b

n
x+1c + (n mod (x + 1)).

when operation set_agreementk(vi) is invoked by pi:
(01) for each j ∈ Ay+1 ∪ · · · ∪ Ax+1 do send (vi) to p j end for;
(02) repeat aux← qri until aux ⊆ Ay end repeat;
(03) for each j , i do send (vi) to p j end for;
(04) return(vi).

when
(
(v) or (v) is received

)
:

(05) for each j , i do send (v) to p j end for;
(06) return(v).

Figure 5: k-Set agreement in inAMPn,n−1[Σx] (code for pi ∈ Ay) [8]

Let pi be a process belonging to partition Ay. The idea is for pi to decide the
proposal of some process that belongs to a partition Az such z < y (i.e., belonging
to a partition “lower” than the one of pi). To that end, each process pi of Ay sends
its proposal vi to all processes of “higher” partitions (line 01). Let us notice that
every process, other than the processes of the “highest” partition Ax+1 and the
processes that have initially crashed, sends an () message.

When a process pi receives a message (v) (such a message is necessarily
from a process belonging to a “lower” partition) it decides the value v (line 06).
Moreover, just before deciding its value, it informs the other processes that it
is about to decide v (message (v) sent at line 05). Process pi does the same
processing when it receives a message () (let us notice that such a message can
come from any other process). Let us observe that, as no process in Ax+1 ever
sends a message (), at most n − |Ax+1| = xb n

x+1c values can be decided from the
reception of () messages.

Unfortunately the previous mechanism is not sufficient to prevent processes
from blocking forever. Such a blocking can occur when all correct processes
belong to the very same partition. Line 02 is used to prevent such a definitive
blocking. As after some finite time qri contains only correct processes, we even-
tually have qri ⊆ Ay if all correct processes belongs to Ay. Hence, if qri ⊆ Ay,
pi is allowed to decide its own proposal (line 04) after having informed the other
processes with a () message (line 03). The proof (see [8]) shows that, due to
the quorum intersection property of Σx, at most n mod (x + 1) additional values
can be decided, from which follows that no more than xb n

x+1c + (n mod (x + 1))
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are decided.

Theorem 7. [Bouzid-Travers 2010] The algorithm described in Figure 5 wait-free
solves the k-set agreement problem in the system modelAMPn,n−1[Σx] for k ≥ n−
b n

x+1c. Moreover, there is no wait-free k-set agreement algorithm inAMPn,n−1[Σx]
when the triple (n, x, k) is such that k < n − b n

x+1c. (Proof in [8].)

Remark As we have seen, Σ1 is the weakest failure detector AMPn,n−1[∅] has
to be enriched with in order to wait-free build a shared register. The previous
theorem shows that d n

2e-set agreement can be wait-free solved in AMPn,n−1[Σ1].
Hence, while neither a register nor d n

2e-set agreement can be built inAMPn,n−1[∅],
both can be solved inAMPn,n−1[Σ1].

In contrast, when we consider the asynchronous shared memory system model
ASMn,n−1[∅], shared registers are given for free while the weakest failure detector-
based model in which d n

2e-set agreement can be wait-free solved isASMn,n−1[Ωd n
2 e

].

Using both Σx and Ωz In [8] a k-set agreement algorithm for the system model
AMPn,n−1[Σx,Ωz] is presented. This algorithm works for k ≥ x × z. More-
over, it is also shown in this paper that there is no k-set agreement algorithm
inAMPn,n−1[Σx,Ωz] when k < x × z and n ≥ x × 2z.

5 Conclusion

This paper focused on the k-set agreement problem in asynchronous systems
prone to process crash failures. In such a context, it has considered two different
communication models: the read/write shared memory model and the message
passing model.

As k-set agreement cannot be solved in these models, the paper has presented
recent results when the failure detector-based approach is used to circumvent the
previous impossibility. As we have seen, while the weakest failure detector (i.e.,
the one that provides processes with “as few information on failures as possible”)
is known when communication is by read/write shared memory, this is not the case
when communication is by message passing. The paper has presented the most
recent results in that direction. It is hoped that this paper not only will help readers
to better understand the problem and its difficulty, but will also help them in the
quest for the discovery of the weakest failure detector for the message passing
case.
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